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ABSTARCT 

The conventional approaches to model dynamic behaviors of customers mainly focused on 

stationary environments of a market. However, as the business environments and the associated 

market structures dynamically change in recent years, the time series analysis extended to capture 

the highly dynamic behaviors of the customers has become highly important. An Auto-Regressive 

eXogenous input (ARX) model has been widely used in engineering fields to model dynamic 

response of a system to exogenous factors. A difficulty in this modeling is the determination of an 

appropriate model complexity. In this paper, we develop a new and practical approach to 

determine the appropriate complexity, and moreover, we apply the developed technique to a real 

marketing data, and analyze dynamic response character of sales amount to advertisement and 

sales promotion.  

 

INTRODUCTION 

In market research, the dynamic effects exerted on purchase behaviors have been analyzed by two 
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approaches. The first is a structural and deterministic approach which introduces the domain 

knowledge based structure into the model of the objective and dynamic system while taking into 

account the relevant dynamic factors, and then examines the validity of this model in terms of the 

consistency with some static data associated with the objective system. Neslin et al. (Neslin85) 

modeled the effect exerted on the results of sales promotions by some factors including the 

purchase interval, the home inventory, and the purchase volume of customers. Gupta (Gupta88) 

built a model of the dynamic factors on sales intervals in concert with the brand selection 

probability. Both of these studies investigated the impact of the factors to the sales promotion. 

Taylor and Neslin (Taylor05) extended their static data based approach to analyze the relationship 

of the factors and the effects over two periods. Moreover, Lachaab et al. (Lachaab06), Bass et al. 

(Bass07), and the others estimated the parameters of given structural models by applying more 

advanced statistical techniques under the consideration of the effect of complex factors on sales 

results over a long time period. However, the application of the structural models representing 

extremely complicated market processes involves the high possibility to overlook or 

misunderstand important factors essentially needed in the representation. This possibility becomes 

particularly high under the acquisition of diversified data in the recent business environment. 

  

The second approach is an empirical and statistical framework based on the time series analysis 

which utilizes some advanced statistical principles to derive dynamic models characterizing the 

objective systems underlying the data. Leone (Leone83, Leone87) evaluated important factors 

such as stockpiling, which affect substantial sales increases, by applying an autoregressive 

integrated moving average (ARIMA) model to a given empirical data set. Dekimpe and Hanssens 

(Dekimpe95) evaluated the long-term effects of advertisements in printed matter and television via 
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the analysis based on an autoregressive (AR) model and an autoregressive moving average 

(ARMA) model, and they suggested the appropriate selection of the medias to be adopted in the 

required marketing strategies based on the evaluation. The reader is advised to consult Dekimpe 

and Hanssens (Dekimpe00) for the detailed survey of the statistical time series analysis in the past 

marketing research. 

 

However, these conventional approaches have the following two drawbacks to capture the 

dynamics of the objective systems in the analysis of the given time series data. The first drawback 

is that only the short time dependence among the factors and the effects over the periods up to three 

sampling intervals has been considered in the models. The second is that the number of exogenous 

factors considered in the model is limited to one at maximum. For example, the model of Leone 

(Leone83, Leone87) is limited to the third order, i.e., the consideration of the dynamic dependence 

over the past three sampling intervals, and that of Dekimpe and Hanssens (Dekimpe95) is limited 

to the second order. Neither has exogenous factors. Contrarily, in real world problems, the periods 

of the dynamic dependence in the objective systems are far longer than the sampling interval, and 

many exogenous factors often exist in the systems. Consequently, the conventional approaches is 

not widely applicable due to these limitations. 

  

The approaches of these past studies are considered to have been developed to conduct long-term 

market predictions under stationary environments. However, as the business environments and the 

associated market structures dynamically change in recent years, their analysis under given model 

structures such as the conventional approaches becomes difficult. Hence, the importance of the 

time series analysis extended to capture the highly dynamic behaviors of the customers based on 
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the daily sales data has become significant. This study proposes a new time series analysis method 

by using higher order ARX models including multiple exogenous factors based on the historical 

data of the daily sales and advertisements while addressing some technical issues for its 

application to the practical marketing data analysis. The proposed approach has been applied to a 

time series data consisting of an objective item sales amount, two exogenous variables of the TV 

advertisement amount and the instore promotion strength. If we can appropriately grasp the 

dynamic contributions of each exogenous factor to the objective item sales amount through the 

analysis, some useful business implications will be provided since the efficiencies of the 

advertisement and the promotion can be precisely  evaluated. 

 

RELATED WORK 

Technical Issues 

One of the representative and quantitative dynamics modeling approaches which have been often 

used in the time series analysis is Auto-Regressive eXogenous input (ARX) modeling (Lennar98). 

Similarly to the many other empirical modeling approaches based on given time series data, a main 

issue in the modeling is to determine an appropriate model complexity well capturing the dynamic 

structure of the objective system. In terms of the ARX modeling, its complexity is defined by the 

model orders which are the finite numbers of the past consecutive quantitative states to take into 

account under a constant time interval sampling. This issue has been explored in many aspects 

including the indices of AIC (Akaike69), BIC (Kuha04) and MDL (GrAunwald04). However, 

these works assume that the time series data is observed from the system without any uncertainty 

and distortions such as sensing accuracy limit, discretization errors from analog to digital 

information and unexpected biases not following any statistical expectations and distributions. 
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This assumption strongly limits the applicability of these criteria to determine the model 

complexity in many practical modeling problems. This issue on the use of the information criteria 

in practical situations have been partially discussed, and some ideas to use the difference of the 

indices between two candidate models such as DAIC (Akaike73) has been proposed. However, the 

selection of the appropriate model order based on the indices still remains within some artistry. 

  

Another important issue which has not been explored in the selection of the appropriate ARX 

model orders is the efficient and complete search algorithm of the orders having the optimal index 

value. In conventional approaches, a simple line search is used in which the index of each model 

order is exhaustively computed up to a limit order. However, in case that an ARX model has 

multiple exogenous inputs, the number of the parameters to define the model orders is also more 

than one. Because the number of the parameter combinations of the ARX model to be explored 

within some order limit is exponential to the number of the parameters, the search of the optimal 

model orders becomes easily intractable under the increase of the exogenous inputs.  

 

In this paper, we address these issues by  providing a novel information criterion named DAIC* 

which is an extension of the DAIC and an efficient and complete search algorithm of the parameter 

combination of the optimal model orders under the criterion. 

 

State of the Art 

Auto-Regressive eXogenous input model 

An Auto-Regressive eXogenous input (ARX) model is a linear recurrence equation to relate the 

current value of an objective variable x(s) with its past finite time series and the past finite time 
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series of the other exogenous input variables yg  (g=1,...,h) as follows.  
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where s is a current time step, ai the contribution coefficient of an i-step past value of the objective 

variable to its current value, bjg the contribution coefficient of the j-step past value of an exogenous 

input variable yg, kg the time lag of the propagation delay of the exogenous input variable, and p,qg 

(g=1,...,h) the model order parameters which define the finite and maximum time steps of the 

contributions from the objective and the exogenous variables. In addition, let  be a prediction 

of x(s) and e(s)=x(s)-  their prediction error. The model coefficients ai (i=1,...,p) and bjg (jg 

=1,...,qg, g =1,...,h) are determined by the least square principle on the variance of the prediction 

error e(s) over a given time series data. The combination of the time lags kg (g=1,...,h) which are 

integers is determined by a greedy method to search the combination which provides less least 

square prediction error on the combination lattice. The model orders, i.e., the parameter values of 

p,qg (g=1,...,h), are conventionally determined by the AIC index as explained in the next 

subsection. 

)(ˆ sx

)(ˆ sx

 

Conventional order determination 

The selection of the appropriate orders of the ARX model is crucial, and it has been performed by 

using AIC (Akaike information criterion) in the conventional and standard approach. AIC is an 

information measure to evaluate the difference between the actual probability distribution of the 

value x(s) and that of the predicted value . AIC can be defined by the following Eq.(2) as the 

measure of the difference between these two probability distributions based on Kullback-Leibler 

quantity of information. 

)(ˆ sx
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AIC = N log ( ) + 2|M|,                                   (2) 2ˆMσ

where N stands for the total number of data and  the variance of the model prediction error e(s). 

Moreover, |M| stands for the total number of coefficients in the ARX model M = [p,qg (g = 1,…, 

h)]. The smaller value indicates that the estimated distribution function is closer to the true 

distribution function.  

2ˆMσ

 

An important issue on this AIC is the limitation in its practical use due to its strong assumption on 

the linearity of the objective system and the absence of observation error. If the objective time 

series data is observed from a linear system without any observation error, AIC should have a clear 

bottom on a model complexity. Thus the optimal model complexity is uniquely determined by the 

bottom of AIC. However, the AIC curve does not follow the ideal case when some nonlinearity of 

the system and some observation error exist, and does not show any clear bottom in many cases. 

This happens since the errors induced by the nonlinearity and the observation are incorporated in 

the evaluation of AIC as if they are some meaningful errors. Accordingly, more practical measure 

to determine an appropriate model order must be established.  

 

PROPOSAL OF DAIC* 

DAIC (Akaike73) which takes the difference of the AIC between consecutive model orders 

provides a criteria to determine some appropriate order of the Auto-Regressive (AR) model which 

has only a unique order parameter. In the principle of DAIC, a model order which shows a 

significant decrease of the AIC value is selected as an appropriate order instead of the minimum 

value of the AIC. This is because the significant decrease of the AIC value may not occur when the 

model incorporates the errors, but may occur when it incorporates major characteristics of the 
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objective system. This principle can be similarly applied to the models having multiple model 

order parameters such as the ARX model. However, to our best knowledge, no approach had 

addressed the application of this principle to the case of the multiple model order parameters.  

 

In this paper, we extend the DAIC to DAIC* to address the above issue. Given a model order 

parameter vector M=[p, q1, q2,..., qh] and the AIC under M as AICM, DAIC* is defined as the 

minimum difference of AICM from AICMp and AICMqg (g=1,...,h) where Mp=[p-1, q1, q2,..., qh] and 

Mqg=[p-1, q1,..., qg-1,..., qh].  

More formally, DAIC* is described as follows. 

))(max,max(*
,...,1 gqhgp DAICDAICDAIC

=
= ,   (3) 

where  

DAICp  = AICM - AICMp,                                            (4) 

 DAICqg  = AICM - AICMqg.   

Note that the minimum difference between two AICs corresponds to the maximum value of the 

difference since their values are always negative. By definition, DAIC* stands for the least 

improvement of the AIC under a unit extension of the model complexity. On the other hand, the 

best model order is considered to be the order which provide the maximum improvement of the 

AIC similarly to the principle of the DAIC. Accordingly, the order providing the maximum 

improvement of the AIC should be selected as the appropriate model order by using the DAIC*. 

This is done by seeking the model order parameter  vector M providing the minimum value of the 

DAIC* due to its negativeness. This approach enables to select the model order to achieve the 

maximum value of the least improvement of the AIC among the order parameter changes. The  

purpose of this strategy is to discover the model where its any simplification certainly and 
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significantly reduces the accuracy of the model beyond the errors. When an order parameter is zero, 

DAIC* including the parameter can not be computed since the further simple model for the 

parameter does not exist. In this case, DAIC* is evaluated by Eq.(3) while excluding the zero order 

parameters since the variables corresponding to the zero order parameters are not included  

in the model. 

 

From Eq.(4), the AIC for the model simpler by one order parameter is as follows. 

AICM' = N log ( ) + 2(|M|-1),                         (5) 2
'ˆMσ

where  is the variance of the prediction error e(s) by the simpler model. Accordingly, the 

concrete formula of DAIC* in Eq.(3) which is the difference between Eq.(4) and (5) is represented 

as  

2
'ˆMσ

2
)ˆ,ˆ(

ˆ
log* 22

,...,1

2

min
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gqp MM

hg

MNDAIC
σσ

σ
.          (6) 

Instead of the original definition of DAIC* in Eq.(3), this formula is used for the computation of 

DAIC* and the search for the optimal ARX model. 

 

SEARCH FOR OPTIMAL MODEL ORDER 

The simplest and complete way to search the optimal model order vector M by DAIC* under a 

given time series data is the thorough search by using loops for all order parameters. However, the 

computational complexity of this algorithm is O(Lh+1) where L is the upper limit of the order to 

search, and hence the computation becomes intractable when the number of the exogenous 

variables and/or the upper limit of the order are large.  
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For practically efficient search of the optimal M based on DAIC*, we introduce A* search 

(Hart68), (Nilsson80). A* search uses a lower bound f of an objective function f to minimize 

instead of the objective function itself. This f is DAIC* in our context. Starting from an initial 

model order vector Mmin=[1,...,1] where all parameters are one, the algorithm evaluates 

f1=DAIC*(Mmin) for the vector, further increment one of the element of Mmin as Mmin
+, and 

evaluate the lower bound  

f2=DAIC*( Mmin
+). If f2>f1, this fact implies that no M deduced by the further increments of Mmin

+ 

does not have the smaller value than f1, and hence the depth first search beyond the Mmin
+  is 

pruned. This pruning principle is recursively applied at every step to evaluate the model order 

vector and its corresponding model. As easily understood by this explanation, A* search is 

complete, i.e., not to miss the optimal solution.  The main issue of the A* search is to design an 

efficient lower bound f which is close to the actual value of f. From Eq.(6) ,DAIC* is the minimum 

when the ratio of the variances of the model prediction error is the minimum. As the variance 

monotonically decreases when any element in M increases, the ratio of the variance under 

Mmax=[L,...,L] over the variance under the current M is the lower bound of the ratio, where L is the 

upper limit of the order to search. This derives the following lower bound of the DAIC*(M). 

2
ˆ

ˆ
log* 2

2
max +=

M

MNAICD
σ
σ

.       (7) 

Figure 1 shows the algorithm of this A* search where Mopt is the optimal model order vector and 

DAIC*(Mopt) the DAIC* under Mopt. The final output of this algorithm are Mopt  and DAIC*(Mopt). 
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Main 

(1) Given M=Mmin and Mmax. 

(2) Compute DAIC*(M) and DAIC*(M). 

(3) Let Mopt=M and DAIC*(Mopt)=DAIC*(M). 

(4) If DAIC*(M) ≥  DAIC*(M) then 

 [Mopt,DAIC*(Mopt)]=A*(M, Mmax, Mopt, DAIC*(Mopt),1) 

(5) end 

Function [Mopt,DAIC*(Mopt)]=A*(M,Mmax,Mopt,DAIC*(Mopt),gs) 

(1) for g=gs to h 

(2)     Let qg=qg+1. 

(3)     Compute DAIC*(M) and DAIC*(M). 

(4)     IfDAIC*(M) ≤  DAIC*(Mopt) then Mopt=M and DAIC*(Mopt)=DAIC*(M). 

(5)     If (rg<L) and (DAIC*(M) ≥DAIC*(M)) 

then [Mopt,DAIC*(Mopt)]=A*(M,Mmax,Mopt,DAIC*(Mopt),g) 

(6) end 

Figure 1 A* search for optimal model order 

 

The lower boundary of DAIC* given by Eq.(7) sometimes too small to efficiently prune the search 

space, since it is based on the error variance which is minimum within the search space. To 

obtain more efficient search performance which is not complete but sufficiently practical, we 

introduce a heuristic measure for the pruning as follows. 

2
maxMσ

2
ˆ

ˆ
log*

/1

2

2
/1 max +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

n

M

Mn NAICD
σ
σ

.        (8) 

  



12 

Because the ratio of the variances always lies in [0,1], its $n$-root is closer to 1, and hence Eq.(8) 

gives a larger value than Eq.(7). Though this change does not ensure the lower boundary property 

of the measure, the larger value of the measure enables tighter pruning which increase the search 

efficiency. 

 

PERFORMANCE EVALUATIOM 

The performance of the proposed approach to determine the ARX model order is evaluated by 

using some artificial data sets. The data sets are generated by the following semi-ARX system 

containing quadratic nonlinear terms. 
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Two order vectors M=[p=3,q1=3,q2=4] and M=[p=6,q1=7,q2=6] are used. The coefficients of 

ai,bj1,bj2 has been determined by a  design method of Infinite-duration Impulse Response (IIR) 

filter while ensuring the stability of the system (Krauss94), (Lennart96). The coefficients of the 

nonlinear terms ai2 are set to be very small values comparing with ai for the stability, and they are 

ai2=ai/20 for M=[p=3,q1=3,q2=4] and ai2=ai/500 for M=[p=6,q1=7,q2=6]. When the data sets 

containing only linear dynamics are generated, all coefficients ai2 are set to be 0. The total time 

steps for the data generation is N=10000, and the time series of the input variables y1(s) and y2(s) 

are chosen to be a unit stepwise form or Gaussian noise having unit variance depending on the  

required conditions of the evaluation. Furthermore, the objective variable x(s) generated by this 

system is distorted by adding Gaussian noises having various relative amplitudes in terms of the 

standard deviation of x(s).  

 

The performance to identify ARX model orders under various conditions of the data is compared 
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between the standard AIC and ourDAIC*. The upper limit of each order parameter for the search is 

set to be L=9. The identified orders for the system having the order parameters 

M=[p=3,q1=3,q2=4] under step/Gaussian inputs of both y1(s) and y2(s), linear/nonlinear dynamics 

and various noise distortion levels are shown in Table 1 and 2 for the AIC and the DAIC* 

respectively. The results for the case of M=[p=6,q1=7,q2=6] are shown in Table 3 and 4. Table 1 

and 3 indicate that the orders determined by the AIC tends to be significantly larger than the true 

order parameters when the noise and/or the nonlinearity are large. In contrast, Table 2 and  

4 indicate that our approach using DAIC* provides almost same or slightly lower orders 

comparing with the true order parameters in case of Gaussian inputs. The reason of the lower order 

estimations in case of the step inputs is that the step inputs contain mainly low frequency signal 

components which tend not to affect the higher order terms of the system. In short summary, 

DAIC* derives better results than AIC for the data containing much errors. 

 

Table 1 Orders by AIC for M=[3,3,4] 

Inputs ai2 

 

Noise 

0% 

Noise 

5% 

Noise 

20% 

Noise 

50% 

Step 0 [3,3,4] [9,3,4] [9,3,3] [9,3,2] 

Gaussian 0 [3,4,5] [9,8,9] [9,9,9] [9,9,9] 

Gaussian ai/20 [6,8,8] [3,5,1] [9,9,9] [9,9,9] 
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Table 2 Orders by DAIC* for M=[3,3,4] 

Inputs ai2 

 

Noise 

0% 

Noise 

5% 

Noise 

20% 

Noise 

50% 

Step 0 [1,1,1] [1,1,1] [1,1,1] [1,1,1] 

Gaussian 0 [1,2,3] [1,2,3] [1,2,3] [2,2,3] 

Gaussian ai/20 [1,2,3] [1,2,3] [1,2,3] [3,2,3] 

 

Table 3 Orders by AIC for M=[6,7,6] 

Inputs ai2 

 

Noise 

0% 

Noise 

5% 

Noise 

20% 

Noise 

50% 

Step 0 [6,5,7] [9,2,4] [9,2,2] [9,1,0] 

Gaussian 0 [7,8,8] [9,9,9] [9,8,9] [9,9,9] 

Gaussian ai/500 [8,9,9] [9,9,9] [8,8,9] [9,9,9] 

 

Table 4 Orders by DAIC* for M=[6,7,6] 

Inputs ai2 

 

Noise 

0% 

Noise 

5% 

Noise 

20% 

Noise 

50% 

Step 0 [4,1,1] [3,1,1] [2,1,1] [2,1,1] 

Gaussian 0 [5,7,7] [5,3,8] [3,4,4] [5,5,5] 

Gaussian ai/500 [6,3,8] [2,3,9] [3,4,4] [5,5,5] 
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ANALYSIS ON REAL MARKETING DATA 

Objective data 

The data was acquired through a marketing investigation. From March, 1st to June, 30th in a year, 

the daily sales amount of a confectionery item in a store belonging to a supermarket chain have 

been recorded. During the period, TV advertisements of the item were broadcasted from April, 

13th to May, 3rd. In additions, the store actively promoted the item sales by placing the items on a 

main rack significantly exposed to the customers in some weeks including the TV advertisement 

period. Let the objective variable x(s) be the daily sales amount of the item, the exogenous input 

variables y1(s) and y2(s) the daily amount of the TV advertisement and the instore sales promotion 

respectively. y1(s) is measured by an index named Gross Rating Point (GRP) representing the 

amount of the TV advertisement exposed to audiences (Damani06). This is evaluated by the sum 

of the audience rating at the times when the TV advertisements are broadcasted. GRP was 

constantly around 100 from April, 15th to 26th when the TV advertisements were the most 

actively broadcasted. y2(s) is 1 during the instore sales promotion in the store and 0 otherwise. 

 

Performance on efficiency and accuracy 

Because the DAIC* value changes in complex manners for practical data, and the search process 

heavily depends on the value, the computation time for the search has been evaluated by using this 

real data. Table 5 shows the number of search steps and the search time of the thorough searches, 

the A* search using Eq.(7) and the heuristic searches using Eq.(8) with n=2,...,5 under the upper 

order limit L=9. Because the loop based thorough search uses a simple pointer management, it is 

faster than the A* search under this upper order limit. However, they becomes almost identical 

630sec under L=15 since the loop based thorough search has high computational complexity 
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O(Lh+1) as mentioned earlier. Accordingly, the A* search is advantageous for the large scale 

problems in terms of the number of input variables and the upper order limits. The heuristic 

searches based on Eq.(8) search the solution far faster than the A* search. Even we apply the 

4th-rooted ratio, the optimal solution can be found. Though the 5th-rooted ratio can not derive the 

optimum, the resulted solution is not very far from the optimum. In this regard, the A* search and 

its associated heuristic searches are very advantageous for the practical use. 

Table 5 Search steps and times for sales data. 

Algorithm Steps Time (sec) p,q1,q2,k1 and k2 

Thorough by loops 1000 20 1,4,1,7,0 

Thorough by 

recursions 

729 99 1,4,1,7,0 

A* search 458 61 1,4,1,7,0 

Search by 2nd-root 231 39 1,4,1,7,0 

Search by 3rd-root 107 19 1,4,1,7,0 

Search by 4th-root 54 10 1,4,1,7,0 

Search by 5th-root 42 8 2,6,1,9,0 

 

Discussion on analysis result 

The impulse responses of the optimal ARX model obtained in the former subsection have been 

investigated to understand the dynamic relation of the sales amount of the item with the TV 

advertisement and the instore sales promotion. The impulse responses are a response of the sales 

amount under the virtual TV advertisement of a unit GRP for a day and a response of the sales 

amount under virtual instore sales promotion for a day. They can be estimated by introducing an 
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impulse time series to each input variable into the ARX model. For example, the impulse response  

of the sales amount to the TV advertisement is derived by adding the time series of 

y1(1)=0,...,y1(s-1)=0,y1(s)=1,y1(s+1)=0,...,y1(n)=0 to the input of the ARX model. 

 

Figure 2 represents the impulse responses for both the instore sales promotion and the TV 

advertisement. In both cases in the figure, the unit impulse is introduced on the 60th day from the 

beginning. Based on the upper response, the effect of one day instore promotion on the sales 

amount is about +1000yen. The lower response indicates that the effect of a unit GRP 

advertisement on the sales amount is 1510 ±± L

1500

yen, and its delay is almost 9days. This time 

delay indicates the time interval required to impress the item among the customers by the TV 

advertisement. Because the standard input amplitude of the GRP is 100, the actual response of the 

sales amount is around yen which is comparable with the effect of the instore 

sales promotion while the response to the instore sales promotion does not include any time delay. 

This is because the instore sales promotion promptly impress the item onsite. The negative 

response of the sales to the GRP is not consistent with our background knowledge. This occurred 

by the characteristics of the ARX modeling where the effects of the input variables can not be 

decomposed perfectly within the finite number of the data samples. This effect is called as cross 

talk among inputs. Even under this cross talk problem, however, the quantitative amplitudes and 

time delays of the responses to the input variables can be approximately known through the 

analysis, and the information can be used for the detailed marketing analysis and its associated  

1000 ±± L

marketing strategy planning. Figure 3 shows the impulse response to the TV advertisement of the 

ARX model derived by using the standard AIC. Due to the excessively high model orders, the 

responses do not reflect the practical behaviors of the item sales amount, and is not interpreted by 
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the marketing domain knowledge. This demonstrates the advantage of our DAIC* approach for 

the ARX modeling under practically noisy and erroneous modeling situations. 

Figure 2 By DAIC* based ARX model. 
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Figure 3 By AIC based ARX model. 

 

  



19 

CONCLUSION 

In this paper, we proposed a novel measure named DAIC* to overcome the current limitations to 

determine the model complexity of the ARX model. In addition, we proposed some efficient 

complete/heuristic search algorithms to determine the optimal combinations of the model order 

parameters. Through the empirical evaluations, DAIC* is confirmed to suggest appropriate model 

complexity under practical conditions, and the algorithms are confirmed to derive the optimal or 

the semi-optimal model complexity in high efficiency. The proposed approaches are expected to 

provide a novel measure for the analysis of the dynamic behaviors of the customer sales in 

marketing.  
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