
Fundamenta Informaticae XXI (2001) 1001–1030 1001

IOS Press

Constructing a Decision Tree for Graph-Structured Data and its
Applications

Warodom Geamsakul
Institute of Scientific and Industrial Research
Osaka University, JAPAN
warodom@ar.sanken.osaka-u.ac.jp

Tetsuya Yoshida
Institute of Scientific and Industrial Research
Osaka University, JAPAN
yoshida@ar.sanken.osaka-u.ac.jp

Kouzou Ohara
Institute of Scientific and Industrial Research
Osaka University, JAPAN
ohara@ar.sanken.osaka-u.ac.jp

Hiroshi Motoda
Institute of Scientific and Industrial Research
Osaka University, JAPAN
motoda@ar.sanken.osaka-u.ac.jp

Hideto Yokoi
Division for Medical Informatics
Chiba University Hospital, JAPAN
yokoi@telemed.ho.chiba-u.ac.jp

Katsuhiko Takabayashi
Division for Medical Informatics
Chiba University Hospital, JAPAN
takaba@ho.chiba-u.ac.jp

Abstract. A machine learning technique called Graph-Based Induction (GBI) efficiently extracts
typical patterns from graph-structured data by stepwise pair expansion (pairwise chunking). It is
very efficient because of its greedy search. Meanwhile, a decision tree is an effective means of data
classification from which rules that are easy to understand can be obtained. However, a decision tree
could not be constructed for the data which is not explicitly expressed with attribute-value pairs. This
paper proposes a method called Decision Tree Graph-Based Induction (DT-GBI), which constructs
a classifier (decision tree) for graph-structured data while simultaneously constructing attributes for
classification using GBI. Substructures (patterns) are extracted at each node of a decision tree by
stepwise pair expansion in GBI to be used as attributes for testing. Since attributes (features) are
constructed while a classifier is being constructed, DT-GBI can be conceived as a method for feature
construction. The predictive accuracy of a decision tree is affected by which attributes (patterns) are
used and how they are constructed. A beam search is employed to extract good enough discrim-
inative patterns within the greedy search framework. Pessimistic pruning is incorporated to avoid
overfitting to the training data. Experiments using a DNA dataset were conducted to see the effect of
the beam width and the number of chunking at each node of a decision tree. The results indicate that
DT-GBI that uses very little prior domain knowledge can construct a decision tree that is comparable
to other classifiers constructed using the domain knowledge. DT-GBI was also applied to analyze
a real-world hepatitis dataset as a part of evidence-based medicine. Four classification tasks of the
hepatitis data were conducted using only the time-series data of blood inspection and urinalysis. The

Address for correspondence: Institute of Scientific and Industrial Research, Osaka University, JAPAN
8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan

1002 Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications

preliminary results of experiments, both constructed decision trees and their predictive accuracies as
well as extracted patterns, are reported in this paper. Some of the patterns match domain experts’
experience and the overall results are encouraging.

Keywords: graph mining, graph-based induction, decision tree, beam search, evidence-based medicine

1. Introduction

Over the last few years there has been much research work on data mining in seeking for better per-
formance. Better performance includes mining from structured data, which is a new challenge. Since
structure is represented by proper relations and a graph can easily represent relations, knowledge discov-
ery from graph-structured data poses a general problem for mining from structured data. Some examples
amenable to graph mining are finding typical web browsing patterns, identifying typical substructures
of chemical compounds, finding typical subsequences of DNA and discovering diagnostic rules from
patient history records.

A majority of methods widely used for data mining are for data that do not have structure and that
are represented by attribute-value pairs. Decision tree [23, 24], and induction rules [17, 5] relate attribute
values to target classes. Association rules often used in data mining also uses this attribute-value pair
representation. These method can induce rules such that they are easy to understand. However, the
attribute-value pair representation is not suitable to represent a more general data structure such as graph-
structured data, and there are problems that need a more powerful representation.

A powerful approach that can handle relation and thus, structure, would be Inductive Logic Pro-
gramming (ILP) [19] which employs Predicate Logic or its subset such as Prolog (Horn clauses) as its
representation language. It has a merit that domain knowledge and acquired knowledge can be utilized as
background knowledge, and has been applied to many application areas [7], especially to the domain of
computational chemistry [18, 22]. However ILP systems tend to be less efficient in computational time
and space than other machine learning systems because they have to search a (possibly very large) lattice
of clauses and test the coverage of clauses during the search process [22]. Although many approaches to
improve the efficiency of ILP have been proposed [3, 22], still more work on the search is needed [22].
One approach commonly adopted by most ILP algorithms to reduce the search space is to introduce
declarative bias [20] such as types and input/output modes of predicate arguments, which is provided by
a user as a part of background knowledge. Well designed biases can effectively reduce the search space
without sacrificing predictive accuracy of learned knowledge, although ill designed ones would affect
the accuracy adversely, as well as the efficiency of the algorithm. However it is not always easy for a
user who is not familiar with logic programming to correctly specify an effective bias in a manner which
is specific to each system.

AGM (Apriori-based Graph Mining) [11, 12] was developed for the purpose of mining the associa-
tion rules among the frequently appearing substructures in a given graph data set. A graph transaction
is represented by an adjacency matrix, and the frequent patterns appearing in the matrices are mined
through the extended algorithm of the basket analysis. This algorithm can extract all connected/disconnected
substructures by complete search. However, its computation time increases exponentially with input
graph size and support.

Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications 1003

SUBDUE [6] is an algorithm for extracting subgraphs which can best compress an input graph based
on MDL (Minimum Description Length) principle. The found substructures can be considered concepts.
This algorithm is based on a computationally-constrained beam search. It begins with a substructure
comprising only a single vertex in the input graph, and grows it incrementally expanding a node in it.
At each expansion it evaluates the total description length (DL) of the input graph which is defined as
the sum of the two: DL of the substructure and DL of the input graph in which all the instances of
the substructure are replaced by single nodes. It stops when the substructure that minimizes the total
description length is found. In this process SUBDUE can find any number of substructures in the input
graph based on a user-defined parameter (default 3). After the best substructure is found, the input graph
is rewritten by compressing all the instances of the best structure, and the next iteration starts using
the rewritten graph as a new input. This way, SUBDUE finds more abstract concepts at each round of
iteration. However, it does not maintain strictly the original input graph structure after compression
because its aim is to facilitate the global understanding of the complex database by forming hierarchical
concepts and using them to approximately describe the input data.

Graph-Based Induction (GBI) [30, 14] is a technique which was devised for the purpose of discover-
ing typical patterns in a general graph data by recursively chunking two adjoining nodes. It can handle a
graph data having loops (including self-loops) with colored/uncolored nodes and edges. GBI is very effi-
cient because of its greedy search. GBI does not lose any information of graph structure after chunking,
and it can use various evaluation functions in so far as they are based on frequency. It is not, however,
suitable for graph-structured data where many nodes share the same label because of its greedy recursive
chunking without backtracking, but it is still effective in extracting patterns from such graph-structured
data where each node has a distinct label (e.g., World Wide Web browsing data) or where some typi-
cal structures exist even if some nodes share the same labels (e.g., chemical structure data containing
benzene rings etc).

This paper proposes a method called Decision Tree Graph-Based Induction (DT-GBI), which con-
structs a classifier (decision tree) for graph-structured data while simultaneously constructing attributes
for classification using GBI [27, 28]. Substructures (patterns) are extracted at each node of a decision
tree by stepwise pair expansion (pairwise chunking) in GBI to be used as attributes for testing. Since
attributes (features) are constructed while a classifier is being constructed, DT-GBI can be conceived as a
method for feature construction. The predictive accuracy of a decision tree is affected by which attributes
(patterns) are used and how they are constructed. A beam search is employed to extract good enough
discriminative patterns within the greedy search framework. Pessimistic pruning is incorporated to avoid
overfitting to the training data. To classify graph-structured data after the construction of a decision tree,
attributes are produced from data before the classification.

There are two systems which are close to DT-GBI in the domain of ILP: TILDE [2] and S-CART [13].
Although they were developed independently, they share the same theoretical framework and can con-
struct a first order logical decision tree, which is a binary tree where each node in the tree is associated
with either a literal or a conjunction of literals. Namely each node can represent a relational or structured
data like DT-GBI. However in both systems, all available literals and conjunctions that can appear in
a node have to be defined as declarative biases beforehand. In other words, although they can utilize a
substructure represented by one or more literals to generate a new node in a decision tree, available struc-
tures are limited to those that are predefined. In contrast, DT-GBI can construct a pattern or substructure
used in a node of a decision tree from a substructure that has been constructed before as well as from an
initial node in the original graph-structured data.

1004 Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications

DT-GBI was evaluated against a DNA dataset from UCI repository and applied to analyze a real-
world hepatitis dataset which was provided by Chiba University Hospital as a part of evidence-based
medicine. Since DNA data is a sequence of symbols, representing each sequence by attribute-value pairs
by simply assigning these symbols to the values of ordered attributes does not make sense. The sequences
were transformed into graph-structured data and the attributes (substructures) were extracted by GBI to
construct a decision tree. To analyze the hepatitis dataset, temporal records in the provided dataset was
converted into graph-structured data with respect to time correlation so that both intra-correlation of
individual inspection and inter-correlation among inspections are represented in graph-structured data.
Four classification tasks of the hepatitis data were conducted by regarding as the class labels: the stages
of fibrosis (experiment 1 and 2), the types of hepatitis (experiment 3), and the effectiveness of interferon
therapy (experiment 4). Decision trees were constructed to discriminate between two groups of patients
using no biopsy results but only the time sequence data of blood inspection and urinalysis. The results
of experiments are reported and discussed in this paper.

There are some other analyses already conducted and reported on these datasets. For the promoter
dataset, [26] reports the results obtained by the M-of-N expression rules extracted from KBANN (Knowl-
edge Based Artificial Neural Network). The obtained M-of-N rules are complicated and not easy to in-
terpret. Furthermore, domain knowledge is required in KBANN to configure the initial artificial neural
network. [15, 16] report another approach to construct a decision tree for the promoter dataset using
the extracted patterns (subgraphs) by pairwise chunking as attributes and C4.5. For the hepatitis dataset,
[29] analyzed the data by constructing decision trees from time-series data without discretizing numeric
values. [10] proposed a method of temporal abstraction to handle time-series data, converted time phe-
nomena to symbols and used a standard classifier. [9] used multi-scale matching to compare time-series
data and clustered them using rough set theory. [21] also clustered the time-series data of a certain time
interval into several categories and used a standard classifier. These analyses examine the temporal corre-
lation of each inspection separately and do not explicitly consider the relations among inspections. Thus,
these approaches do not correspond to the structured data analysis.

Section 2 briefly describes the framework of GBI. Section 3 explains our method called DT-GBI for
constructing a classifier with GBI for graph-structured data and illustrates how a decision tree is con-
structed with a simple example. Section 4 describes the experiments using a DNA dataset to see the
effect of the beam width and the number of chunking at each node of a decision tree. Section 5 describes
the application DT-GBI to the hepatitis dataset and reports the results of experiments: constructed de-
cision trees, their predictive accuracies and extracted discriminative patterns. Section 6 concludes the
paper with a summary of the results and the planned future work.

2. Graph-Based Induction (GBI)

2.1. Principle of GBI

GBI employs the idea of extracting typical patterns by stepwise pair expansion as shown in Figure 1. In
the original GBI an assumption is made that typical patterns represent some concepts/substructures and
“typicality” is characterized by the pattern’s frequency or the value of some evaluation function of its
frequency. We can use statistical indexes as an evaluation function, such as frequency itself, Information
Gain [23], Gain Ratio [24] and Gini Index [4], all of which are based on frequency. In Figure 1 the
shaded pattern consisting of nodes 1, 2, and 3 is thought typical because it occurs three times in the

Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications 1005

1
3

2

4
1

3
2

1
3

2
7 8

5

96

7

5

4

11

11

11

5
7

4

6 9

4

7 8

5

1

3
2

1

3
2

1110
2

Figure 1. The basic idea of the GBI method

GBI(G)
Enumerate all the pairs Pall in G
Select a subset P of pairs from Pall (all the pairs in G)

based on typicality criterion
Select a pair from Pall based on chunking criterion
Chunk the selected pair into one node c
Gc := contracted graph of G
while termination condition not reached

P := P ∪ GBI(Gc)
return P

Figure 2. Algorithm of GBI

graph. GBI first finds the 1→3 pairs based on its frequency, chunks them into a new node 10, then in the
next iteration finds the 2→10 pairs, chunks them into a new node 11. The resulting node represents the
shaded pattern.

It is possible to extract typical patterns of various sizes by repeating the above procedures. Note that
the search is greedy. No backtracking is made. This means that in enumerating pairs no pattern which has
been chunked into one node is restored to the original pattern. Because of this, all the ”typical patterns”
that exist in the input graph are not necessarily extracted. The problem of extracting all the isomorphic
subgraphs is known to be NP-complete. Thus, GBI aims at extracting only meaningful typical patterns
of a certain size. Its objective is not finding all the typical patterns nor finding all the frequent patterns.

As described earlier, GBI can use any criterion that is based on the frequency of paired nodes. How-
ever, for finding a pattern that is of interest any of its subpatterns must be of interest because of the
nature of repeated chunking. In Figure 1 the pattern 1→3 must be typical for the pattern 2→10 to be
typical. Said differently, unless pattern 1→3 is chunked, there is no way of finding the pattern 2→10.
The frequency measure satisfies this monotonicity. However, if the criterion chosen does not satisfy this
monotonicity, repeated chunking may not find good patterns even though the best pair based on the cri-
terion is selected at each iteration. To resolve this issue GBI was improved to use two criteria, one for
frequency measure for chunking and the other for finding discriminative patterns after chunking. The

1006 Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications

latter criterion does not necessarily hold monotonicity property. Any function that is discriminative can
be used, such as Information Gain [23], Gain Ratio [24] and Gini Index [4], and some others.

The improved stepwise pair expansion algorithm is summarized in Figure 2. It repeats the follow-
ing four steps until the chunking threshold is reached (normally minimum support value is used as the
stopping criterion).

Step 1 Extract all the pairs consisting of connected two nodes in the graph.

Step 2a Select all the typical pairs based on the typicality criterion from among the pairs extracted in
Step 1, rank them according to the criterion and register them as typical patterns. If either or both
nodes of the selected pairs have already been rewritten (chunked), they are restored to the original
patterns before registration.

Step 2b Select the most frequent pair from among the pairs extracted in Step 1 and register it as the
pattern to chunk. If either or both nodes of the selected pair have already been rewritten (chunked),
they are restored to the original patterns before registration. Stop when there is no more pattern to
chunk.

Step 3 Replace the selected pair in Step 2b with one node and assign a new label to it. Rewrite the graph
by replacing all the occurrences of the selected pair with a node with the newly assigned label. Go
back to Step 1.

The output of the improved GBI is a set of ranked typical patterns extracted at Step 2a. These
patterns are typical in the sense that they are more discriminative than non-selected patterns in terms of
the criterion used.

Note that GBI is capable of restoring the original pattern represented by the initial nodes and edges
from a chunk (Step 2a, Step 2b). This is made possible because we keep track of the information about
to which node within the chunk an edge is connected to during the recursive chunking process. Further,
GBI can limit the type of subgraph to induced subgraph. In this case, a pair that has more than one edge
is chunked into one node in one step.

2.2. Beam-wise Graph-Based Induction (B-GBI)

Since the search in GBI is greedy and no backtracking is made, which patterns are extracted by GBI
depends on which pair is selected for chunking. There can be many patterns which are not extracted by
GBI. A beam search is incorporated to GBI, still, within the framework of greedy search [15] in order to
relax this problem, increase the search space, and extract more discriminative patterns while still keeping
the computational complexity within a tolerant level. A certain fixed number of pairs ranked from the top
are selected to be chunked individually in parallel. To prevent each branch growing exponentially, the
total number of pairs to chunk (the beam width) is fixed at every time of chunking. Thus, at any iteration
step, there is always a fixed number of chunking that is performed in parallel.

Figure 3 shows how search is conducted in B-GBI when beam width is set to five. First, five frequent
pairs are selected from the graphs at the starting state in search (cs in Figure 3). Graphs in cs are then
copied into the five states (c11 ∼ c15)1, and each of five pairs is chunked in the copied graphs at the
1The current implementation is very naive. All the beam copies of the graph are kept in memory and, within each beam, pair is

Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications 1007

respective state. At the second cycle in search, pairs in graphs are enumerated in each state and five
frequent pairs are selected from all the sates. In this example, two pairs are selected from c11, one pair
from c13, and two pairs from c14.

cs

c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35

Figure 3. Beam search in B-GBI (beam
width = 5)

At the third cycle in search, graphs in c11 are copied into
c21 and c22, graphs in c13 are copied into c23, and graphs
in c24 are copied into c24 and c25. As in the second cycle,
the selected pairs are chunked in the copied graphs. The states
without the selected pairs (in this example c12 and c15) are
discarded.

2.3. Canonical Labeling

GBI assigns a new label for each newly chunked pair. Because
it recursively chunks pairs, it happens that the new pairs that
have different labels because of different chunking history hap-
pen to be the same pattern (subgraph).

To identify whether the two pairs represent the same pattern
or not, each pair is represented by its canonical label[25, 8] and
only when the label is the same, they are regarded as identical.
The basic procedure of canonical labeling is as follows. Nodes
in the graph are grouped according to their labels (node colors)
and the degrees of node (number of edges attached to the node) and ordered lexicographically. Then
an adjacency matrix is created using this node ordering. When the graph is undirected, the adjacency
matrix is symmetric, and the upper triangular elements are concatenated scanning either horizontally or
vertically to codify the graph. When the graph is directed, the adjacency matrix is asymmetric, and all the
elements in both triangles are used to codify the graph in a similar way. If there are more than one node
that have identical node label and identical degrees of node, the ordering which results in the maximum
(or minimum) value of the code is searched. The corresponding code is the canonical label. Let M be
the number of nodes in a graph, N be the number of groups of the nodes, and pi(i = 1, 2, . . . , N) be
the number of the nodes within group i. The search space can be reduced to

∏N
i=1(pi!) from M ! by this

grouping and lexicographical ordering. The code of an adjacency matrix for the case in which elements
in the upper triangle are vertically concatenated is defined as

A =

⎛
⎜⎜⎜⎜⎝

a11 a12 . . . a1n

a22 . . . a2n

. . .
...

ann

⎞
⎟⎟⎟⎟⎠

code(A) = a11a12a22a13a23 . . . ann (1)

=
n∑

j=1

j∑
i=1

(
(L + 1){(

Pn
k=j+1 k)+j−i}aij

)
. (2)

Here L is the number of different edge labels. We choose the option of vertical concatenation. It is
possible to further prune the search space. Elements of the adjacency matrix of higher ranked nodes form
higher elements (digits) of the code. Thus, once the locations of higher ranked nodes in the adjacency

counted independently of the other beams. Thus, many of the pair countings are redundant. We expect that code optimization
can reduce the computation time to less than half.

1008 Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications

1
3

4
5

6

7 8

5

1

1
7

2

2

9

3

3 4

2

1
3

4

5

6

7 8

5

1

1
7

2

2

9

3

3 4

2

1
3

4

5

6

7 8

5

1

1
7

2

2

9

3

3 4

2

4

5

6

7 8

5

1

1
7

2

2

9

3

3 41
3

2

Class A
Class A

Class B
Class C

Graph data

class A class B

class C class A class B class C

Y N

1
3

2

4

6
6

3
2

4

3
2

4

3
6

1

4

Y N Y N

Y N
Y N

Decision tree

Figure 4. Decision tree for classifying graph-structured data

matrix are fixed, corresponding higher elements of the code are also fixed and are not affected by the
order of elements of lower ranks. This reduces the search space of

∏N
i=1(pi!) to

∑N
i=1(pi!).

However, there is still a problem of combinatorial explosion for a case where there are many nodes
of the same labels and the same degrees of node such as the case of chemical compounds because the
value of pi becomes large. What we can do is to make the best of already determined nodes of higher
ranks. Assume that the order of the nodes vi ∈ V (G)(i = 1, 2, . . . , N) is already determined in a graph
G. Consider finding the order of the nodes ui ∈ V (G)(i = 1, 2, . . . , k) of the same group that gives the
maximum code value. The node that comes to vN+1 is the one in ui(i = 1, . . . , k) that has an edge to the
node v1 because the highest element that vN+1 can make is a1N+1 and the node that makes this element
non-zero, that is, the node that is linked to v1 gives the maximum code. If there are more than one node
or no node at all that has an edge to vN+1, the one that has an edge to v2 comes to vN+1. Repeating this
process determines which node comes to vN+1. If no node can be determined after the last comparison
at vN , permutation within the group is needed. Thus, the computational complexity in the worst case is
still exponential. Our past experience indicates that computation required for canonical labeling is less
than 10% of the total computation time in GBI [16].

3. Decision Tree Graph-Based Induction (DT-GBI)

3.1. Decision Tree for Graph-structured Data

We formulate the construction of a decision tree for graph-structured data by defining attributes and
attribute-values as follows:

• attribute: a pattern/subgraph in graph-structured data

• value for an attribute: existence/non-existence of the pattern in a graph

Since the value for an attribute is either yes (the classifying pattern exists) or no (the classifying pattern
does not exist), the constructed decision tree is represented as a binary tree. Data (graphs) are divided
into two groups, namely, the one with the pattern and the other without the pattern. The above process
is summarized in Figure 4. One remaining question is how to determine classifying patterns which are
used as attributes for graph-structured data. Our approach is described in the next subsection.

Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications 1009

DT-GBI(D)
Create a node DT for D
if termination condition reached

return DT
else

P := GBI(D) (with the number of chunking specified)
Select a pair p from P
Divide D into Dy (with p) and Dn (without p)
Chunk the pair p into one node c
Dyc := contracted data of Dy

for Di := Dyc, Dn

DTi := DT-GBI(Di)
Augment DT by attaching DTi as its child along yes(no) branch

return DT

Figure 5. Algorithm of DT-GBI

3.2. Feature Construction by GBI

In our Decision Tree Graph-Based Induction (DT-GBI) method, typical patterns are extracted using B-
GBI and used as attributes for classifying graph-structured data. When constructing a decision tree, all
the pairs in data are enumerated and one pair is selected. The data (graphs) are divided into two groups,
namely, the one with the pair and the other without the pair as described above. The selected pair is
then chunked in the former graphs and these graphs are rewritten by replacing all the occurrences of the
selected pair with a new node. This process is recursively applied at each node of a decision tree and
a decision tree is constructed while attributes (pairs) for classification task are created on the fly. The
algorithm of DT-GBI is summarized in Figure 5. As shown in Figure 5, the number of chunking applied
at one node is specified as a parameter. For instance, when it is set to 10, chunking is applied 10 times
to construct a set of pairs P , which consists of all the pairs constructed from each chunking (the 1st
chunking to the 10th chunking). Note that the pair p selected from P is not necessarily constructed by
the last chunking (e.g., the 10th chunking). If it is at the 6-th chunking that is smaller than 10, the state
is retracted to that stage and all the chunks constructed after the 6-th stage are discarded.

Each time when an attribute (pair) is selected to divide the data, the pair is chunked into a larger node
in size. Thus, although initial pairs consist of two nodes and the edge between them, attributes useful for
classification task are gradually grown up into larger pair (subgraphs) by applying chunking recursively.
In this sense the proposed DT-GBI method can be conceived as a method for feature construction, since
features, namely attributes (pairs) useful for classification task, are constructed during the application of
DT-GBI.

Note that the criterion for chunking and the criterion for selecting a classifying pair can be different.
In the following experiments, frequency is used as the evaluation function for chunking, and information
gain is used as the evaluation function for selecting a classifying pair2.

2We did not use information gain ratio because DT-GBI constructs a binary tree.

1010 Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications

a a b

c d d

a a c

b d c

b b
a

d a

b b a

c c

class A

class A class C

class B

b

c d d

c

b d c

b b

d

b b a

c c

class A

class A class C

class B

a�a a�a

a�a

a�a

b

c d
class A

a�a�d b b

class A
a�a�d

c

b d c

a�a

class B

a�a

a�a

a�a�da�a

Y N
a�a

class Ca�a�d

NY

class Bclass A

a�a

Figure 6. Example of decision tree construction by DT-GBI

1

0
0
0

0

1
1
0

0

1
0
0

0

1
0
0

0

0
0
1

1

0
0
0

0

0
0
1

0

0
1
1

0

0
1
0

1

0
1
0

0

1
0
0

1

1
0
1

1

1
1
0

1 (class A)

2 (class B)
3 (class A)
4 (class C)

Graph a�a a�b a�c a�d b�a b�b b�c b�d c�b c�c d�a d�b d�c

Figure 7. Attribute-value pairs at the first step

3.3. Working example of DT-GBI

Suppose DT-GBI receives a set of 4 graphs in the upper left-hand side of Figure 6. The number of
chunking applied at each node is set to 1 to simplify the working of DT-GBI in this example. By
enumerating all the pairs in these graphs, 13 kinds of pairs are extracted from the data. These pairs
are: a→a, a→b, a→c, a→d, b→a, b→b, b→c, b→d, c→b, c→c, d→a, d→b, d→c. The existence/non-
existence of the pairs in each graph is converted into the ordinary table representation of attribute-value
pairs, as shown in Figure 7. For instance, for the pair a→a, graph 1, graph 2 and graph 3 have the pair
but graph 4 does not have it. This is shown in the first column in Figure 7.

Next, the pair with the highest evaluation for classification (i.e., information gain) is selected and
used to divide the data into two groups at the root node. In this example, the pair “a→a” is selected. The
selected pair is then chunked in graph 1, graph 2 and graph 3 and these graphs are rewritten. On the other
hand, graph 4 is left as it is.

The above process is applied recursively at each node to grow up the decision tree while constructing
the attributes (pairs) useful for classification task at the same time. Pairs in graph 1, graph 2 and graph
3 are enumerated and the attribute-value tables are constructed as shown in Figure 8. After selecting the
pair “(a→a)→d”, the graphs are separated into two partitions, each of which contains graphs of a single
class. The constructed decision tree is shown in the lower right-hand side of Figure 6.

Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications 1011

0
0

1

1
0

0

…
…

…

0
0

1

1
0

1

0
1

0

1
1

0

1 (class A)
2 (class B)

3 (class A)

Graph b�a d�ca�a�b a�a�c a�a�d b�a�a

Figure 8. Attribute-value pairs at the second step

3.4. Pruning Decision Tree

Recursive partitioning of data until each subset in the partition contains data of a single class often
results in overfitting to the training data and thus degrades the predictive accuracy of decision trees. To
avoid overfitting, in our previous approach [27] a very naive prepruning method was used by setting the
termination condition in DT-GBI in Figure 5 to whether the number of graphs in D is equal to or less
than 10. A more sophisticated postpruning method, is used in C4.5 [24] (which is called “pessimistic
pruning”) by growing an overfitted tree first and then pruning it to improve predictive accuracy based on
the confidence interval for binomial distribution. To improve predictive accuracy, pessimistic pruning
used in C4.5 is incorporated into the DT-GBI by adding a step for postpruning in Figure 5.

3.5. Classification using the Constructed Decision Tree

Unseen new graph data must be classified once the decision tree has been constructed. Here again, the
problem of subgraph isomorphism arises to test if the input graph contains the subgraph specified in the
test node of the tree. To alleviate this problem and to be consistent with the GBI basic principle, we also
apply pairwise chunking to generate candidates of subgraphs. However, assuming that both the training
and test data come from the same underlying distribution, no search is performed to decide which pair
to chunk next. We remember the order of chunking during the construction of the decision tree and use
this order to chunk each test data and check if one of the canonical labels of constructed chunks is equal
to the canonical label of the test node. Since there is no search, the increase in computation time at the
classification stage is negligible.

4. Application to Promoter Dataset

(C4.5, LVO)
Prediction error

16.0%

16.0%
21.7%
26.4%
44.3%

aacgtcgattagccgat
gtccatggtcaagtccg
tccaggtgcagtcagtc

aacgtcgattagccgat
gtccatggtcaagtccg
tccaggtgcagtcagtc

Original data

Shift randomly by
≤ 1 element
≤ 2 elements
≤ 3 elements
≤ 5 elements

Figure 9. Change of error rate by shifting the sequence in the
promoter dataset

DT-GBI was tested using a DNA dataset in
the UCI Machine Learning Repository[1].
A promoter is a genetic region which initi-
ates the first step in the expression of an ad-
jacent gene (transcription). The promoter
dataset consists of strings that represent nu-
cleotides (one of A, G, T, or C). The input
features are 57 sequential DNA nucleotides
and the total number of instances is 106 in-
cluding 53 positive instances (sample pro-
moter sequence) and 53 negative instances

1012 Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications

(non-promoter sequence). This dataset was explained and analyzed in [26]. The data is so prepared that
each sequence of nucleotides is aligned at a reference point, which makes it possible to assign the n-th
attribute to the n-th nucleotide in the attribute-value representation. In a sense, this dataset is encoded
using domain knowledge. This is confirmed by the following experiment. Running C4.5[24] with a stan-
dard setting gives a prediction error of 16.0% by leaving one out cross validation. Randomly shifting the
sequence by 3 elements gives 21.7% and by 5 elements 44.3%. If the data is not properly aligned, stan-
dard classifiers such as C4.5 that use attribute-value representation do not solve this problem, as shown
in Figure 9.

･････
a t g c a t ･

5

2

3

4

9

1

2

74

1
6

3

1

2

1

3

1

2

5
10..

..

..

8..

.

Figure 10. Conversion of DNA Sequence Data to a
graph

One of the advantages of graph representation is
that it does not require the data to be aligned at a
reference point. In our approach, each sequence is
converted to a graph representation assuming that an
element interacts up to 10 elements (See Figure 10)3.
Each sequence thus results in a graph with 57 nodes
and 515 edges. Note that a sequence is represented
as a directed graph since it is known from the domain
knowledge that the influence between nucleotides is
directed.

A decision tree was constructed in either of the
following two ways: 1) apply chunking nr times only
at the root node and only once at other nodes of a
decision tree, 2) apply chunking ne times at every
node of a decision tree. Note that nr and ne are defined as the maximum depth in Figure 3. Thus,
there is more chunking taking place during the search when the beam width is larger for a fixed value
of nr and ne. The pair (subgraph) that is selected for each node of the decision tree is the one which
maximizes the information gain among all the pairs that are enumerated. Pessimistic pruning described in
subsection 3.4 was conducted by setting the confidence level to 25% after the decision tree is constructed.
The beam width b is another parameter to be optimized. The parameters in the application of DT-GBI
are summarized in Table 1.

In order to see how these parameters affect the performance of the decision tree constructed by DT-
GBI and optimize their values, the whole dataset was divided into training, validation and test data. The
final prediction error rate was evaluated by the average of 10 runs of 10 fold cross-validation (a total of
100 decision trees) using the optimized parameters. For one randomly chosen 9 folds data (90% of all
data) of the 10-fold cross-validation of each run, we performed 9-fold cross-validation using one fold
as validation data. Thus, we constructed a total of 90 decision trees for one set of parameter values and
took the average for the error estimation. Intuitively the larger nr, ne and b, the better the results are
because the search space increases. Further, ne should give better performance than nr. All the results
indicated that the errors level off at some value of these parameters. Thus the optimal value for each
parameter is the smallest value at which the error becomes minimum. All the experiments in this paper
were conducted on the same PC (CPU: Athlon XP2100+(1.73GHz), Memory: 3GB, OS: RedHat Linux
8.03).

3We do not have domain knowledge about the interaction and there is nothing to justify this. We could have connected all the
nucleotides and constructed a complete graph.

Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications 1013

Table 1. parameters in the application of DT-GBI

nr apply chunking nr times at the root node and only once at the other nodes of a decision tree

ne apply chunking ne times at every node of a decision tree

b beam width

0

2

4

6

8

10

12

14

0 2 4 6 8 10
Number of chunking at a node

E
rr

or
 r

at
e

(%
)

n_r

n_e

Figure 11. Effect of chunking (b=1)

The first experiment focused on the ef-
fect of the number of chunking at each node
of a decision tree and thus b was set to
1. The parameter nr and ne were changed
from 1 to 10 in both 1) and 2). Figure 11
shows the result of experiments. In this fig-
ure the dotted line indicates the error rate
for 1) and the solid line for 2). The best er-
ror rate was 8.62% when nr = 5 for 1) and
7.02% when ne = 4 for 2). As mentioned
above, the decrease of error rate levels off
when the number of chunking increases for
both 1) and 2). The result reveals that there is an appropriate size for an optimal subgraph at each node
and nr and ne must be large enough to find subgraphs of that size. Further increasing nr and ne would
not affect the result.

The second experiment focused on the effect of beam width b, changing its value from 1 to 15.
The number of chunking was fixed at the best number which was determined by the first experiment in
Figure 11, namely, nr = 5 for 1) and ne = 4 for 2). The result is summarized in Figure 12. The best error
rate was 4.15% when b = 12 for 1) (nr = 5) and 3.83% when b = 10 for 2) (ne = 4). Note that the error
rate does not necessarily decrease monotonically as the beam width increases. This is because the search
space is not necessarily monotonic although it certainly increases as the beam width increases. However,
we confirmed that the error rate for the training data always monotonically decreases as the beam width
increases. These properties hold for all the experiments in section 5, too.

0

2

4

6

8

10

12

14

0 5 10 15
GBI beam width

E
rr

or
 r

at
e

(%
)

n_r

n_e

Figure 12. Effect of beam width (nr=5, ne=4)

Setting these parameters to the above
best values for the validation data, the
true prediction error is estimated by tak-
ing the average of 10 runs of 10-fold cross-
validation using all the data. The final er-
ror rate is 4.06% for 1) nr=5, b=12, and
3.77% for 2)ne=4, b=10. Figure 13 and
Figure 14 shows examples of the decision
trees. Each of them is taken from the 10 de-
cision trees of the best run of the 10 runs of
10-fold cross-validation. The numbers for
n (non-promoter)and p (promoter) in the
nodes show how the data are split when all

1014 Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications

g→a→g→a
n=53, p=53

a→a→a→a
n=32, p=53

Y

N

g→t→t
n=32, p=31

1

1

t→g→c
n=32, p=13

N

N

N

Y

Y

Y

9

1 8

11

1

1 7

t→a→a→a
n=14, p=10

21 1

Y N

Non-promoter
n=21, p=0

Promoter
n=0, p=22

Promoter
n=0, p=18

Promoter
n=0, p=6

Non-promoter
n=14, p=4

Non-promoter
n=18, p=3

Figure 13. One of the ten trees from the best run (nr

= 5, b = 12)

a→a→t→t
n=53, p=53

g→a→g→a
n=53, p=35

Y

N

g→a→a→a→c
n=32, p=35

1

1

a→g→c→g→c
n=20, p=35

g→c→t→g
n=11, p=33

t→t→t
n=9, p=2

N

N

N

N N

Y

Y

Y Y

Y
3

1 1

18

1 1

1 7 1

31 11

1

1

2

a→a→a
n=7, p=3

9 1

Y N

Promoter
n=0, p=22

Non-promoter
n=21, p=0

Non-promoter
n=12, p=0

Non-promoter
n=9, p=0

Promoter
n=0, p=2

Non-promoter
n=7, p=0

Promoter
n=0, p=3

Promoter
n=4, p=30

Figure 14. One of the ten trees from the best run (
ne = 4, b = 10)

Table 2. Contingency table with the number of instances (promoter vs. non-promoter)

Predicted Class
Actual deci. tree in Fig. 13 (nr) deci. tree in Fig. 14 (ne) Overall (ne)
Class promoter non-

promoter
promoter non-

promoter
promoter non-

promoter

promoter 5 1 5 1 506 24

non-promoter 1 5 0 6 16 514

106 instances are fed in the tree. The contingency tables of these decision trees for test data in cross
validation as well as the overall contingency table (ne only), which is calculated by summing up the
contingency tables for the 100 decision trees, are shown Table 2.

The computation time depends on the values of the parameters as well as the data characteristics
(graph size and connectivity). It is almost linear to the parameter values and roughly quadratic to the
graph size. The average time for a single run to construct a decision tree is 99 sec. for ne=4 and
b=10. The time for classification is 0.75 sec. and is negligibly small because of the reason described in
Subsection 3.5.

The result reported in [26] is 3.8% (they also used 10-fold cross validation) which is obtained by the
M-of-N expression rules extracted from KBANN (Knowledge Based Artificial Neural Network). The
obtained M-of-N rules are complicated and not easy to interpret. Since KBANN uses domain knowl-
edge to configure the initial artificial neural network, it is worth mentioning that DT-GBI that uses very
little domain knowledge induced a decision tree with comparable predictive accuracy. Comparing the
decision trees in Figures 13 and 14, the trees are not stable. Both gives a similar predictive accuracy
but the patterns in the test nodes are not the same. According to [26], there are many pieces of domain
knowledge and the rule conditions are expressed by the various combinations of these pieces. Among

Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications 1015

these many pieces of knowledge, the pattern (a → a → a → a) in the second node in Figure 13 and
the one (a → a → t → t) in the root node in Figure 14 match their domain knowledge, but the others
do not match. We have assumed that two nucleotides that are apart more than 10 nodes are not directly
correlated. Thus, the extracted patterns have no direct edges longer than 9. It is interesting to note that
the first node in Figure 13 relates two pairs (g → a) that are 7 nodes apart as a discriminatory pattern.
Indeed, all the sequences having this pattern are concluded to be non-promoter from the data. In theory
it is not self-evident from the constructed tree whether a substring (chunk) in a test node includes a pre-
viously learned chunk or constructed by the chunking at this stage, but in practice the former holds for
most of the cases. At each node, the number of actual chunking is maximum ne and the pair that gives
the largest information gain is selected. From the result it is not clear whether the DT-GBI can extract
the domain knowledge or not. The data size is too small to make any strong claims.

[15, 16] report another approach to construct a decision tree for the promoter dataset. B-GBI is
used as a preprocessor to extract patterns (subgraphs) and these patterns are passed to C4.5 as attributes
to construct a decision tree. In [16] they varied the number of folds and found that the best error rate
decreases as the number of folds becomes larger, resulting in the minimum error rate of 2.8% in Leave
One Out. The corresponding best error rate for 10 fold cross validation is 6.3% using the patterns
extracted by B-GBI with b = 2. In contrast the best prediction error rate of DT-GBI is 3.77% when ne

= 4, b = 10. This is much better than 6.3% above and comparable to 3.8 % obtained by KBANN using
M-of-N expression [26].

5. Application to Hepatitis Dataset

Viral hepatitis is a very critical illness. If it is left without undergoing a suitable medical treatment, a
patient may suffer from cirrhosis and fatal hepatoma. The progress speed of the condition is slow and
subjective symptoms are not noticed easily, hence, in many cases, it has already become very severe
when they are noticed. Although periodic inspection and proper treatment are important in order to
prevent this situation, there are problems of expensive cost and physical burden on a patient. Although
there is an alternative much cheaper method of inspection (blood test and urinalysis), the amount of data
becomes enormous since the progress speed of condition is slow.

The hepatitis dataset provided by Chiba University Hospital contains long time-series data (from
1982 to 2001) on laboratory examination of 771 patients of hepatitis B and C. The data can be split
into two categories. The first category includes administrative information such as patient’s information
(age and date of birth), pathological classification of the disease, date of biopsy and its result, and the
effectiveness of interferon therapy. The second category includes a temporal record of blood test and
urinalysis. It contains the result of 983 types of both in- and out-hospital examinations.

First, effect of parameters nr, ne and b on the prediction accuracy was investigated for each experi-
ment using validation dataset as in the promoter case in section 4, but only for the first run of the 10 runs
of 10-fold cross-validation. It was confirmed that for all the experiments chunking parameters nr and ne

can be set to 20, but the beam width b was found experiment dependent, and the narrowest beam width
that brings to the lowest error rate was used. The pessimistic pruning was used with the same confidence
level (25%) as in the promoter case. The prediction accuracy was evaluated by taking the average of 10
runs of 10-fold cross-validation. Thus, 100 decision trees were constructed in total.

In the following subsections, both the average error rate and examples of decision trees are shown

1016 Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications

in each experiment together with examples of extracted patterns. Two decision trees were selected out
of the 100 decision trees in each experiment: one from the 10 trees constructed in the best run with the
lowest error rate of the 10 runs of 10-fold cross validation, and the other from the 10 trees in the worst run
with the highest error rate. In addition, the contingency tables of the selected decision trees for test data
in cross validation are shown as well as the overall contingency table, which is calculated by summing
up the contingency tables for the 100 decision trees in each experiment.

5.1. Data Preprocessing

5.1.1. Cleansing and Conversion to Table

In numeric attributes, letters and symbols such as H, L, or + are deleted. Values in nominal attributes
are left as they are. When converting the given data into an attribute-value table, both a patient ID
(MID) and a date of inspection are used as search keys and an inspection item is defined as an attribute.
Since all patients do not necessarily take all inspections, there are many missing values after this data
conversion. No attempt is made to estimate these values and those missing values are not represented in
graph-structured data in the following experiments. In future, it is necessary to consider the estimation
of missing values.

5.1.2. Averaging and Discretization

This step is necessary due to the following two reasons: 1) obvious change in inspection across suc-
cessive visits may not be found because the progress of hepatitis is slow, and 2) the date of visit is not
synchronized across different patients. In this step, the numeric attributes are averaged and the most
frequent value is used for nominal attributes over some interval. Further, for some inspections (GOT,
GPT, TTT, and ZTT), standard deviations are calculated over six months and added as new attributes.

When we represent an inspection result as a node label, the number of node labels become too large
and this lowers the efficiency of DT-GBI because frequent and discriminative patterns cannot be extracted
properly. Therefore, we reduced the number of node labels by discretizing attribute values. For general
numerical values, the normal ranges are specified and values are discretized into three (“L” for low, “N”
for normal, and “H” for high). Based on the range and the advice from the domain experts, the standard
deviations of GOT and GPT are discretized into five (“1” for the smallest deviation, “2”,“3”,“4”,“5” for
the largest deviation), while the standard deviations of TTT and ZTT are discretized into three (“1” for
the smallest deviation,“2”,“3” for the largest deviation). Figure 15 illustrates the mentioned four steps of
data conversion.

5.1.3. Limiting Data Range

In our analysis it is assumed that each patient has one class label, which is determined at some inspection
date. The longer the interval between the date when the class label is determined and the date of blood
inspection is, the less reliable the correlation between them is. We consider that the pathological condi-
tions remain the same for some duration and conduct the analysis for the data which lies in the range.
Furthermore, although the original dataset contains hundreds of examinations, feature selection was con-
ducted with the expert to reduce the number of attributes. The duration and attributes used depend on the
objective of the analysis and are described in the following results.

Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications 1017

……………………

2H1HLLN19821111

3H2HLLN19820912

2H1HLLN19820714

1H1HLLN19820515

GPT_SDGPTGOT_SDGOTD-BILCHEALBdate

……………………

2H1HLLN19821111

3H2HLLN19820912

2H1HLLN19820714

1H1HLLN19820515

GPT_SDGPTGOT_SDGOTD-BILCHEALBdate

…………………………

…MEQ/ML6.5HCVテイリヨウ(プロ-ブ)1199509112

…(3+)HCV5'NCR RT-PCR1199410032

…PMOL/DL692-5ASカツセイ1199206112

…………………………

…サイケンズミデス(-)0.214CMV.IGM(ELISA)1198701141

…(2+)0.729CMV.IGG(ELISA)1198701141

…U/ML8CA19-91198507111

…Comment
Judge
result

UnitResult value…Name of examination
Object to
examine

Date of
examination

MID

……………………

3VH1HHVLN19821111

3VH2HNVLH19820912

2H1HHVLH19820714

1H1HNVLN19820515

GPT_SDGPTGOT_SDGOTD-BILCHEALBdate

cleansing � conversion to table
� averaging � discretization

･･･

･･･

mid 1
mid 2

mid 3

Figure 15. Averaging and discretization of inspection data

F2198308191 add to F2.txt

…………………

H2HNVLN19830311

VH2HNVLH19830110

VH1HHVLN19821111

…………………

GPTGOT_SDGOTD-BILCHEALBdate

H

H

1

VL

N

N

H

H

2

… …

H

N

2

H

ALB

GPT

GOT-SD

GOT

D-BIL

CHE

ALB

GOT

D-BIL

CHE

GOT_SD

ALB

D-BIL

GOT

GOT_SD

GPT
2 months

later
2 months

later

4 months
later

VH
GPT

VHVL

CHE

N

VL

Figure 16. An example of converted graph-structured data

5.1.4. Conversion to Graph-Structured Data

When analyzing data by DT-GBI, it is necessary to convert the data to graph structure. One patient
record is mapped into one directed graph. Assumption is made that there is no direct correlation between
two sets of pathological tests that are more than a predefined interval (here, two years) apart. Hence,
direct time correlation is considered only within this interval. Figure 16 shows an example of converted
graph-structured data. In this figure, a star-shaped subgraph represents values of a set of pathological
examination in a two-month interval. The center node of the subgraph is a hypothetical node for the
interval. An edge pointing to a hypothetical node represents an examination. The node connected to the
edge represents the value (preprocessed result) of the examination. The edge linking two hypothetical

1018 Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications

Table 3. Size of graphs (fibrosis stage)

stage of fibrosis F0 F1 F2 F3 F4 Total
No. of graphs 4 125 53 37 43 262
Avg. No. of nodes 303 304 308 293 300 303
Max. No. of nodes 349 441 420 414 429 441
Min. No. of nodes 254 152 184 182 162 152

nodes represents time difference.

5.1.5. Class Label Setting

In the first and second experiments, we set the result (progress of fibrosis) of the first biopsy as class. In
the third experiment, we set the subtype (B or C) as class. In the fourth experiment, the effectiveness of
interferon therapy was used as class label.

5.2. Classifying Patients with Fibrosis Stages

For the analysis in subsection 5.2 and subsection 5.3, the average was taken for two-month interval. As
for the duration of data considered, data in the range from 500 days before to 500 days after the first
biopsy were extracted for the analysis of the biopsy result. When biopsy was operated for several times
on the same patient, the treatment (e.g., interferon therapy) after a biopsy may influence the result of
blood inspection and lower the reliability of data. Thus, the date of first biopsy and the result of each
patient are searched from the biopsy data file. In case that the result of the second biopsy or after differs
from the result of the first one, the result from the first biopsy is defined as the class of that patient for
the entire 1,000-day time-series.

Fibrosis stages are categorized into five stages: F0 (normal), F1, F2, F3, and F4 (severe = cirrhosis).
We constructed decision trees which distinguish the patients at F4 stage from the patients at the other
stages. In the following two experiments, we used 32 attributes. They are: ALB, CHE, D-BIL, GOT,
GOT SD, GPT, GPT SD, HBC-AB, HBE-AB, HBE-AG, HBS-AB, HBS-AG, HCT, HCV-AB, HCV-
RNA, HGB, I-BIL, ICG-15, MCH, MCHC, MCV, PLT, PT, RBC, T-BIL, T-CHO, TP, TTT, TTT SD,
WBC, ZTT, and ZTT SD. Table 3 shows the size of graphs after the data conversion.

As shown in Table 3, the number of instances (graphs) in cirrhosis (F4) stage is 43 while the number
of instances (graphs) in non-cirrhosis stages (F0 + F1 + F2 + F3) is 219. Imbalance in the number
of instances may cause a biased decision tree. In order to relax this problem, we limited the number
of instances to the 2:3 (cirrhosis:non-cirrhosis) ratio which is the same as in [29]. Thus, we used all
instances from F4 stage for cirrhosis class (represented as LC) and select 65 instances from the other
stages for non-cirrhosis class(represented as non-LC), 108 instances in all. How we selected these 108
instances is described below.

Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications 1019

Table 4. Average error rate (%) (fibrosis stage)

run of F4 vs.{F0,F1} F4 vs.{F2,F3}
10 CV nr=20 ne=20 nr=20 ne=20

1 14.81 11.11 27.78 25.00
2 13.89 11.11 26.85 25.93
3 15.74 12.03 25.00 19.44
4 16.67 15.74 27.78 26.68
5 16.67 12.96 25.00 22.22
6 15.74 14.81 23.15 21.30
7 12.96 9.26 29.63 25.93
8 17.59 15.74 25.93 22.22
9 12.96 11.11 27.78 21.30
10 12.96 11.1 27.78 25.00

average 15.00 12.50 26.67 23.52
Standard 1.65 2.12 1.80 2.39
Deviation

5.2.1. Experiment 1: F4 stage vs {F0+F1} stages

All 4 instances in F0 and 61 instances in F1 stage were used for non-cirrhosis class in this experiment.
The beam width b was set to 15. The overall result is summarized in the left half of Table 4. The average
error rate was 15.00% for nr=20 and 12.50% for ne=20. As can be predicted, the error is always smaller
for ne than for nr if their values are the same. Figures 17 and 18 show one of the decision trees each from
the best run with the lowest error rate (run 7) and from the worst run with the highest error rate (run 8) for
ne=20, respectively. Comparing these two decision trees, we notice that three patterns that appeared at
the upper levels of each tree are identical. The contingency tables for these decision trees and the overall
one are shown in Table 5. It is important not to diagnose non-LC patients as LC patients to prevent
unnecessary treatment, but it is more important to classify LC patient correctly because F4 (cirrhosis)
stage might lead to hepatoma. Table 5 reveals that although the number of misclassified instances for
LC (F4) and non-LC ({F0+F1}) are almost the same, the error rate for LC is larger than that for non-LC
because the class distribution of LC and non-LC is imbalanced (note that the number of instances is 65
for LC and 108 for non-LC). The results are not favorable in this regards. Predicting minority class is
more difficult than predicting majority class. This tendency holds for the remaining experiments. By
regarding LC (F4) as positive and non-LC ({F0+F1}) as negative, decision trees constructed by DT-GBI
tended to have more false negative than false positive.

1020 Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications

LC

Pattern
111

Pattern
112

Y N

Pattern
113

Pattern
114

Pattern
115

Pattern
116

non-LC

NY

LC

non-LCLC non-LC LC

NY NY

NY NY

= Pattern 121

= Pattern 123

= Pattern 122

Figure 17. One of the ten trees from the best run in
exp.1 (ne=20)

LC

Pattern
121

Pattern
122

Y N

Pattern
123

Pattern
124

Pattern
125

Pattern
126

LC

NY

non-LC

non-LCLC LC non-LC

NY NY

NY NY

= Pattern 111

= Pattern 112

= Pattern 113

Figure 18. One of the ten trees from the worst cycle
in exp.1 (ne=20)

Table 5. Contingency table with the number of instances (F4 vs. {F0+F1})

Predicted Class
Actual decision tree in Figure 17 decision tree in Figure 18 Overall
Class LC non-LC LC non-LC LC non-LC

LC 3 1 4 1 364 66

non-LC 1 5 4 3 69 581

LC = F4, non-LC = {F0+F1}

5.2.2. Experiment 2: F4 stage vs {F3+F2} stages

In this experiment, we used all instances in F3 and 28 instances in F2 stage for non-cirrhosis class. The
beam width b was set to 14 in experiment 2. The overall result is summarized in the right-hand side of
Table 4. The average error rate was 26.67% for nr=20 and 23.52% for ne=20. Figures 21 and 22 show

N

N

L

H

1

N

N

1

N N

GPT

TTT_SD

I-BIL

D-BIL

ALB

T-CHO

MCHC

HCT

TTT_SD

T-CHO

8 months
later Info. gain = 0.2595

LC (total) = 18
non-LC (total) = 0

Figure 19. Pattern 111 = Pattern 121 (if exist then
LC)

N N

NN

I-BILALB

D-BIL
2 months

later
Info. gain = 0.0004

LC (total) = 16
non-LC (total) = 40

D-BIL

Figure 20. Pattern 112 = Pattern 122

Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications 1021

LC

Pattern
211

Pattern
212

Y N

Pattern
213

LC

NY

non-LC

NY

LC

Pattern
214

Pattern
215

LCnon-LC

NY NY

= Pattern 221

= Pattern 222

Figure 21. One of the ten trees from the best run in
exp.2 (ne=20)

LC

Pattern
221

Pattern
222

Y N

Pattern
223

LC

NY

non-LC

NY

LC

Pattern
224

Pattern
225

non-LCLC

NY NY

= Pattern 211

= Pattern 212

Figure 22. One of the ten trees from the worst run in
exp.2 (ne=20)

Table 6. Contingency table with the number of instances (F4 vs. {F3+F2})

Predicted Class
Actual decision tree in Figure 21 decision tree in Figure 22 Overall
Class LC non-LC LC non-LC LC non-LC

LC 3 1 2 2 282 148

non-LC 2 5 3 4 106 544

LC = F4, non-LC = {F3+F2}

examples of decision trees each from the best run with the lowest error rate (run 3) and the worst run with
the highest error rate (run 4) for ne=20, respectively. Comparing these two decision trees, we notice that
two patterns that appeared at the upper levels of each tree are identical. The contingency tables for these
decision trees and the overall one are shown in Table 6. Since the overall error rate in experiment 2 was
larger than that of experiment 1, the number of misclassified instances increased. By regarding LC (F4)
as positive and non-LC ({F3+F2}) as negative as described in experiment 1, decision trees constructed
by DT-GBI tended to have more false negative than false positive for predicting the stage of fibrosis.
This tendency was more prominent in experiment 2 compared with experiment 1.

5.2.3. Discussion for the analysis of Fibrosis Stages

The average prediction error rate in the first experiment is better than that in the second experiment,
as the difference in characteristics between data in F4 stage and data in {F0+F1} stages is intuitively
larger than that between data in F4 stage and data in {F3+F2}. The averaged error rate of 12.50% in
experiment 1 is fairly comparable to that of 11.8% obtained by the decision tree reported in [29]. In their
analysis, a node in the decision tree is a time series data of an inspection of a patient. Distance between
two time series data for the same inspection with different patients is calculated by the dynamic time
warp method. Two data are similar if their distance is below a threshold. The problem is reduced to

1022 Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications

H H

H

1

1

1

N

TTT_SD

ZTT_SD

D-BILT-BIL

HCT

TTT-SD

4 months
later

1

N

TTT-SD
H 1

H 1

GPT TTT_SD

ZTT_SDD-BIL

2 months
later

4 months
later

HCT

GPT

Info. gain = 0.1191
LC (total) = 9
non-LC (total) = 0

Figure 23. Pattern 211 = Pattern 221 (if exist then
LC)

N H

H

H

H
GPT

I-BILT-CHO

GOT

N H

1

1

H
ZTT_SD

D-BIL

I-BILT-CHO

TTT_SD

N

N

L

1

H

H

1 H

ZTT_SD

GPT

D-BIL

I-BIL

HCT

MCHC
T-CHO

TTT_SD

D-BIL

10 months
later

8 months
later

Info. gain = 0.1166
LC (total) = 7
non-LC (total) = 0

Figure 24. Pattern 212 = Pattern 222

･･･1NNNNNLL19951103

･･･1NLNLNLL19950904

･･･1NNNLNNL19950706

･･･1NNNNHNL19950507

･･･1NNNNNNL19950308

･･･1NNNLNNL19950107

･･･1NNNNNNL19941108

･･･1NNNNHLL19940909

･･･1NNNNHNL19940711

･･･1NNNNHNL19940512

･･･1NNNNNNL19940313

･･･1NNNNHLL19940112

･･･NNNNHNL19931113

･･･1NNNNHLL19930914

･･･NNNNHLL19930716

･･･1NNNNHNL19930517

･･･TTT_SDT-CHOMCHCI-BILHCTGPTD-BILALBdate

Figure 25. Data of No.203 patient

finding which inspection data of which patient with what value for threshold to use as a test at each node.
While their method is unable to treat inter-correlation among inspections it can treat intra-correlation of
individual inspection with respect to time without discretization.

Patterns shown in Figures 19, 20, 23 and 24 are sufficiently discriminative since all of them are used
at the nodes in the upper part of all decision trees. The certainty of these patterns is ensured as, for almost
all patients, they appear after the biopsy. These patterns include inspection items and their values that
are typical of cirrhosis. These patterns may appear only once or several times in one patient. Figure 25
shows the data of a patient for whom pattern 111 exists. As we made no attempt to estimate missing
values, the pattern was not counted even if the value of only one attribute is missing. At data in the
Figure 25, pattern 111 would have been counted four if the value of TTT SD in the fourth line had been
“1” instead of missing.

The computation time has increased considerably compared with the promoter experiment because
the graph size is larger and the time is roughly quadratic to the graph size. The average time for a single
run to construct a decision tree is 2,698 sec. for ne=20 and b=15. The time for classification is 1.04 sec.

Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications 1023

Table 7. Size of graphs (hepatitis type)

hepatitis type Type B Type C Total

No. of graphs 77 185 262

Avg. No. of nodes 238 286 272

Max. No. of nodes 375 377 377

Min. No. of nodes 150 167 150

Table 8. Average error rates (%) (hepatitis
type)

run of Type B vs. Type C
10 CV nr=20 ne=20

1 21.76 18.65
2 21.24 19.69
3 21.24 19.17
4 23.32 20.73
5 25.39 22.80
6 25.39 23.32
7 22.28 18.65
8 24.87 19.17
9 22.80 19.69
10 23.83 21.24

Average 23.21 20.31

Standard 1.53 1.57
Deviation

which is still kept small because of the reason described in Subsection 3.5.

5.3. Classifying Patients with Types (B or C)

There are two types of hepatitis recorded in the dataset: B and C. We constructed decision trees which
distinguish between patients of type B and type C. As in subsection 5.2, the examination records from
500 days before to 500 days after the first biopsy were used and average was taken for two-month interval.
Among the 32 attributes used in subsection 5.2, the attributes of antigen and antibody (HBC-AB, HBE-
AB, HBE-AG, HBS-AB, HBS-AG, HCV-AB, HCV-RNA) were not included as they obviously indicate
the type of hepatitis. Thus, we used the following 25 attributes: ALB, CHE, D-BIL, GOT, GOT SD,
GPT, GPT SD, HCT, HGB, I-BIL, ICG-15, MCH, MCHC, MCV, PLT, PT, RBC, T-BIL, T-CHO, TP,
TTT, TTT SD, WBC, ZTT, and ZTT SD. Table 7 shows the size of graphs after the data conversion. To
keep the number of instances at 2:3 ratio [29], we used all of 77 instances in type B as “Type B” class
and 116 instances in type C as “Type C” class. Hence, there are 193 instances in all. The beam width b
was set to 5 in this experiment (Experiment 3).

The overall result is summarized in Table 8. The average error rate was 23.21% for nr=20 and
20.31% for ne=20. The average computation time for constructing a single tree is 1,463 sec. for ne = 20
and b = 5. The reduction from experiments 1 and 2 comes from the reduction of b. The error result is
better than the approach in [10]. Their unpublished recent result is 26.2%4. In their analysis notion of

4Personal communication

1024 Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications

type B

Pattern
311

Pattern
312

Y N

Pattern
314

type B

NY

type C

NY

type Btype C

Pattern
313

NY

= Pattern 321

= Pattern 322

Figure 26. One of the ten trees from the best run in
exp.3 (ne=20)

type B

Pattern
321

Pattern
322

Y N

Pattern
324

type B

NY

type C

NY

type Ctype B

Pattern
325

Pattern
326

type Ctype B

Pattern
323

= Pattern 311

= Pattern 312

NY

NY NY

Figure 27. One of the ten trees from the worst run in
exp.3 (ne=20)

Table 9. Contingency table with the number of instances (hepatitis type)

Predicted Class
Actual decision tree in Figure 26 decision tree in Figure 27 Overall
Class Type B Type C Type B Type C Type B Type C

Type B 6 2 7 1 559 211

Type C 0 11 4 7 181 979

episode is introduced and the time series data is temporally abstracted within an episode using the state
and the trend symbols. Thus, the abstracted data in the form of attribute-value representation is amenable
to a standard rule learner. The problem is that the length of episode must be carefully determined so
that the global behavior is captured by a small set of predefined concepts. Figure 26 and Figure 27
show samples of decision trees from the best run with the lowest error rate (run 1) and the worst run
with the highest error rate (run 6) for ne = 20, respectively. Comparing these two decision trees, two

H

CHE

14 months
later

N

D-BIL Info. gain = 0.2431
type B (total) = 38
type C (total) = 3

Figure 28. Pattern 311 = Pattern 321 (if exist then
Type B)

H

CHE

8 months
later

11

TTT_SD TTT_SD

Info. gain = 0.0240
type B (total) = 31
type C (total) = 108

Figure 29. Pattern 312 = Pattern 322

Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications 1025

VH

2

H

5

N

HALB

D-BIL

GOT
GOT-SD

GPT

GPT_SD

UH

4

VH

5

N

HALB

D-BIL

GOT
GOT-SD

GPT

GPT_SD

UH

3

VH

5

N

HALB

D-BIL

GOT
GOT-SD

GPT

･･･

GPT_SD
2 weeks

later
2 weeks

later

12 weeks
later 10 weeks

later

Figure 30. An example of graph-structured data for the analysis of interferon therapy

patterns (shown in Figures 28 and 29) were identical and used at the upper level nodes. There patterns
also appeared at almost all the decision trees and thus are considered sufficiently discriminative. The
contingency tables for these decision trees and the overall one are shown in Table 9. Since the hepatitis C
tends to become chronic and can eventually lead to hepatoma, it is more valuable to classify the patient
of type C correctly. The results are favorable in this regards because the minority class is type B in this
experiment. Thus, by regarding type B as negative and type C as positive, decision trees constructed by
DT-GBI tended to have more false positive than false negative for predicting the hepatitis type.

5.4. Classifying Interferon Therapy

An interferon is a medicine to get rid of the hepatitis virus and it is said that the smaller the amount of
virus is, the more effective interferon therapy is. Unfortunately, the dataset provided by Chiba University
Hospital does not contain the examination record for the amount of virus since it is expensive. However,
it is believed that experts (medical doctors) decide when to administer an interferon by estimating the
amount of virus from the results of other pathological examinations. Response to interferon therapy was
judged by a medical doctor for each patient, which was used as the class label for interferon therapy.
The class labels specified by the doctor for interferon therapy are summarized in Table 10. Note that the
following experiments (Experiment 4) were conducted for the patients with label R (38 patients) and N
(56 patients). Medical records for other patients were not used.

To analyze the effectiveness of interferon therapy, we hypothesized that the amount of virus in a
patient was almost stable for a certain duration just before the interferon injection in the dataset. Data in
the range of 90 days to 1 day before the administration of interferon were extracted for each patient and
average was taken for two-week interval. Furthermore, we hypothesized that each pathological condition
in the extracted data could directly affect the pathological condition just before the administration. To
represent this dependency, each subgraph was directly linked to the last subgraph in each patient. An
example of converted graph-structured data is shown in Figure 30.

As in subsection 5.2 and subsection 5.3, feature selection was conducted to reduce the number of
attributes. Since the objective of this analysis is to predict the effectiveness of interferon therapy without
referring to the amount of virus, the attributes of antigen and antibody (HBC-AB, HBE-AB, HBE-AG,
HBS-AB, HBS-AG, HCV-AB, HCV-RNA) were not included. Thus, as in subsection 5.3 we used the
following 25 attributes: ALB, CHE, D-BIL, GOT, GOT SD, GPT, GPT SD, HCT, HGB, I-BIL, ICG-
15, MCH, MCHC, MCV, PLT, PT, RBC, T-BIL, T-CHO, TP, TTT, TTT SD, WBC, ZTT, and ZTT SD.
Table 11 shows the size of graphs after the data conversion. The beam width b was set to 3 in experiment
4.

1026 Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications

Table 10. class label for interferon therapy

label

R virus disappeared (Response)

N virus existed (Non-response)

? no clue for virus activity

R? R (not fully confirmed)

N? N (not fully confirmed)

?? missing

Table 11. Size of graphs (interferon therapy)

effectiveness of R N Total
interferon therapy

No. of graphs 38 56 94

Avg. No. of nodes 77 74 75

Max. No. of nodes 123 121 123

Min. No. of nodes 41 33 33

Table 12. Average error rate (%) (interferon ther-
apy)

run of ne=20
10 CV

1 18.75
2 23.96
3 20.83
4 20.83
5 21.88
6 22.92
7 26.04
8 23.96
9 23.96
10 22.92

Average 22.60

Standard 1.90
Deviation

The results are summarized in Table 12 and the overall average error rate was 22.60%. In this
experiment we did not run the cases for nr=20 because it is known that nr gives no better results from the
previous experiments. The average computation time for constructing a single tree is 110 sec. Figures 31
and 32 show examples of decision trees each from the best run with the lowest error rate (run 1) and
the worst run with the highest error rate (run 7) respectively. Patterns at the upper nodes in these trees
are shown in Figures 33, 34 and 35. Although the structure of decision tree in Figure 31 is simple, its
prediction accuracy was actually good (error rate=10%). Note that the error for each run in Table 12 is
the average error of 10 decision trees of 10-fold cross-validation, and Figure 31 corresponds to the one
with the lowest error among the 10. Furthermore, since the pattern shown in Figure 33 was used at the
root node of many decision trees, it is considered as sufficiently discriminative for classifying patients
for whom interferon therapy was effective (with class label R).

The contingency tables for these decision trees and the overall one are shown in Table 13. By
regarding the class label R (Response) as positive and the class label N (Non-response) as negative, the
decision trees constructed by DT-GBI tended to have more false negative for predicting the effectiveness
of interferon therapy. As in experiments 1 and 2, minority class is more difficult to predict. The patients
with class label N are mostly classified correctly as “N”, which will contribute to reducing the fruitless
interferon therapy of patients, but some of the patients with class label R are also classified as “N”, which
may lead to miss the opportunity of curing patients with interferon therapy.

Unfortunately, only a few patterns contain time interval edges in the constructed decision trees, so
we were unable to investigate how the change or stability of blood test will affect the effectiveness of
interferon therapy. Figure 36 is an example of a decision tree with time interval edges for the analysis of

Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications 1027

Response

Pattern
411

Pattern
412

Y N

NY
Non-

responseResponse

= Pattern 421

Figure 31. One of the ten trees from the best run

Response

Pattern
421

Pattern
422

Y N

NY
Non-

responseResponse

= Pattern 411

Figure 32. One of the ten trees from the worst run

Table 13. Contingency table with the number of instances (interferon therapy)

Predicted Class
Actual decision tree in Figure31 decision tree in Figure32 Overall
Class R N R N R N

R 3 1 2 2 250 130

N 0 6 4 2 83 477

interferon therapy and some patterns in this tree are shown in Figures 37 and 38.

6. Conclusion

This paper has proposed a method called DT-GBI, which constructs a classifier (decision tree) for graph-
structured data by GBI. Substructures useful for classification task are constructed on the fly by applying
repeated chunking in GBI during the construction process of a decision tree. A beam search is very
effective in increasing the predictive accuracy. DT-GBI was evaluated against a DNA dataset from UCI
repository and applied to analyze a real-world hepatitis dataset as a part of evidence-based medicine.
The results of the promoter dataset show that DT-GBI is comparable to other method that uses domain
knowledge in modeling the classifier. Four experiments were conducted on the hepatitis dataset and both

N N

N

H

N
GOT

I-BIL

RBCHGB

HCT

Figure 33. Pattern 411 = Pat-
tern 421 (if exist then R)

N

N

L

N

H

1

N 1

HGB

MCV

ZTT_SD
TTT_SD

MCHC

D-BIL

T-CHO

RBC

N

I-BIL

H

CHE

N

HCT

N

TP

Figure 34. Pattern 412 (if ex-
ist then R, if not exist then N)

N

N

1

N

H

VH

N 1

HCT

CHE

GPT

ZTT_SD

TTT_SD

T-CHO

RBC

HGB

N

I-BIL

Figure 35. Pattern 422 (if ex-
ist then R, if not exist then N)

1028 Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications

Response

Pattern
431

Pattern
432

Y N

Pattern
433

Non-
response

NY

NY
Pattern

434

Response

Non-
response

Response

NY

Figure 36. Example of decision tree with time interval edge in exp.4

N

N

N

N

1

N 1
HCT

T-BIL

ZTT_SD
TTT_SD

T-CHO

MCHC

HGB

N

TP

N

I-BIL

N

ALB

N

RBC N

N

N

N

N

1

N 1

HCT

T-BIL

ZTT_SD

TTT_SD

TP

RBC

MCH

HGB

N

T-CHO

N

I-BIL

N

ALB

N

MCHC4 weeks
later

Figure 37. Pattern 431 (if exist then R)

N

N

N

N

H

1

N 1

HCT

MCV

ZTT_SD

TTT_SD

TP

T-CHO

RBC

HGB

N

I-BIL

N

ALB

Figure 38. Pattern 432 (if exist then R, if not exist
then N)

constructed decision trees and their predictive accuracies were reported. DT-GBI was able to extract
discriminative patterns that reflect both intra-correlation of individual inspection and inter-correlation
among inspections at different time points and use them as attributes for classification. Some of the
extracted patterns match medical experts’ experience. The obtained prediction error rate results are
thought satisfactory by the domain experts in spite of the various noises that are embedded in the data.
We thus believe that DT-GBI is a useful tool for practicing evidence-based medicine.

General finding is that the decision trees constructed by DT-GBI tended to misclassify more instances
with minority class than with the majority class. Incorporating cost-sensitive learning might be effective
to take into account the imbalance in class distribution and different penalties for misclassification error.

Immediate future work includes to incorporate more sophisticated method for determining the num-
ber of cycles to call GBI at each node to improve prediction accuracy. Utilizing the rate of change of
information gain by successive chunking is a possible way to automatically determine the number. Effec-
tiveness of DT-GBI against the hepatitis data set with another way of preparing data should be examined,
e.g., estimating missing values, randomly selecting instances from non-cirrhosis class both for training
and testing, etc. The validity of extracted patterns is now being carefully evaluated and discussed by the
domain experts (medical doctors). It is also necessary to experimentally compare DT-GBI with other
methods, especially with ILP based ones such as TILDE and S-CART.

Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications 1029

Acknowledgment

This work was partially supported by the grant-in-aid for scientific research on priority area “Active
Mining” (No. 13131101, No. 13131206) funded by the Japanese Ministry of Education, Culture, Sport,
Science and Technology. The authors are grateful to the Chiba University Hospital for providing the
hepatitis dataset.

References

[1] Blake, C. L., Keogh, E., Merz, C.: UCI Repository of Machine Leaning Database, 1998,
Http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[2] Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision tree, Artificial Intelligence,
101, 1998, 285–297.

[3] Blockeel, H., Sebag, M.: Scalability and efficiency in multi-relational data mining, ACM SIGKDD Explo-
rations Newsletter, 5(1), 2003, 17–30.

[4] Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J.: Classification and Regression Trees, Wadsworth &
Brooks/Cole Advanced Books & Software, 1984.

[5] Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J.: The CN2 Induction Algorithm, Machine Learning,
3, 1989, 261–283.

[6] Cook, D. J., Holder, L. B.: Graph-Based Data Mining, IEEE Intelligent Systems, 15(2), 2000, 32–41.

[7] Džeroski, S.: Relational Data Mining Applications: An Overview, Relational Data Mining, 2001, 63–102.

[8] Fortin, S.: The graph isomorphism problem, 1996.

[9] Hirano, S., Tsumoto, S.: Mining Similar Temporal Patterns in Long Time-series Data and Its Application to
Medicine, Proceedings of 2002 IEEE International Conference on Data Mining (ICDM 2002), December
2002.

[10] Ho, T. B., Nguyen, T. D., Kawasaki, S., Le, S., Nguyen, D. D., Yokoi, H., Takabayashi, K.: Mining Hepatitis
Data with Temporal Abstraction, Proc. of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, August 2003.

[11] Inokuchi, A., Washio, T., Motoda, H.: An Apriori-Based Algorithm for Mining Frequent Substructures from
Graph Data, Proc. of the 4th European Conference on Principles of Data Mining and Knowledge Discovery,
2000.

[12] Inokuchi, A., Washio, T., Motoda, H.: Complete Mining of Frequent Patterns from Graphs: Mining Graph
Data, Machine Learning, 50(3), 2003, 321–354.

[13] Kramer, S., Windmer, G.: Inducing Classification and Regression Trees in First Order Logic, Relational
Data Mining, 2001, 140–159.

[14] Matsuda, T., Horiuchi, T., Motoda, H., Washio, T.: Extension of Graph-Based Induction for General Graph
Structured Data, Knowledge Discovery and Data Mining: Current Issues and New Applications (Springer
Verlag LNAI 1805), 2000.

[15] Matsuda, T., Yoshida, T., Motoda, H., Washio, T.: Knowledge Discovery from Structured Data by Beam-
wise Graph-Based Induction, Proc. of the 7th Pacific Rim International Confernce on Artificial Intelligence
(Springer Verlag LNAI2417), 2002.

1030 Warodom Geamsakul et al. / Constructing a Decision Tree for Graph-Structured Data and its Applications

[16] Matsuda, T., Yoshida, T., Motoda, H., Washio, T.: Mining Patterns from Structured Data by Beam-wise
Graph-Based Induction, Proc. of The Fifth International Conference on Discovery Science, 2002.

[17] Michalski, R. S.: Learning Flexible Concepts: Fundamental Ideas and a Method Based on Two-Tiered Rep-
resentaion, In Machine Learning, An Artificial Intelligence Approiach, 3, 1990, 63–102.

[18] Muggleton, S.: Inductive Logic Programming: Issues, results and challenge of Learning Language in Logic,
Artificial Intelligence, 114, 1999, 283–296.

[19] Muggleton, S., de Raedt, L.: Inductive Logic Programming: Theory and Methods, Journal of Logic Pro-
gramming, 19(20), 1994, 629–679.

[20] Nédellec, C., Adé, H., Bergadano, F., Tausend, B.: Declarative bias in ILP, Advances in Inductive Logic
Programming, 1996, 82–103.

[21] Ohsaki, M., Sato, Y., Kitaguchi, S., Yamaguchi, T.: A Rule Discovery Support System, Project “Realization
of Active Mining in the Era of Information Flood” Report, March 2003.

[22] Page, D., Srinivasan, A.: ILP: A Short Look Back and a Longer Forward, Journal of Machine Learning
Research, 4, 2003, 415–430.

[23] Quinlan, J. R.: Induction of decision trees, Machine Learning, 1, 1986, 81–106.

[24] Quinlan, J. R.: C4.5:Programs For Machine Learning, Morgan Kaufmann Publishers, 1993.

[25] Read, R. C., Corneil, D. G.: The graph isomorphism disease, Journal of Graph Theory, 1, 1977, 339–363.

[26] Towell, G. G., Shavlik, J. W.: Extracting Refined Rules from Knowledge-Based Neural Networks, Machine
Learning, 13, 1993, 71–101.

[27] Warodom, G., Matsuda, T., Yoshida, T., Motoda, H., Washio, T.: Classifier Construction by Graph-Based
Induction for Graph-Structured Data, Proc. of the 7th Pacific-Asia Conference on Knowledge Discovery and
Data Mining (Springer Verlag LNAI2637), 2003.

[28] Warodom, G., Matsuda, T., Yoshida, T., Motoda, H., Washio, T.: Performance Evaluation of Decision
Tree Graph-Based Induction, Proc. of the International Conference on Discovery Science (Springer Ver-
lag LNAI2843), 2003.

[29] Yamada, Y., Suzuki, E., Yokoi, H., Takabayashi, K.: Decision-tree Induction from Time-series Data Based
on a Standard-example Split Test, Proc. of the 12th International Conference on Machine Learning, August
2003.

[30] Yoshida, K., Motoda, H.: CLIP : Concept Learning from Inference Pattern, Journal of Artificial Intelligence,
75(1), 1995, 63–92.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

