
Fundamenta Informaticae 66 (2005) 53–82 53

IOS Press

A General Framework for Mining Frequent Subgraphs from
Labeled Graphs

Akihiro Inokuchi
�

Tokyo Research Laboratory

IBM Japan

1623-14, Shimotsuruma, Yamato, Kanagawa, 242-8502, Japan

inokuchi@jp.ibm.com

Takashi Washio and Hiroshi Motoda

The Institute of Scientific and Industrial Research

Osaka University

8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan

washio@ar.sanken.osaka-u.ac.jp

motoda@ar.sanken.osaka-u.ac.jp

Abstract. The derivation of frequent subgraphs from a dataset of labeled graphs has high compu-
tational complexity because the hard problems of isomorphism and subgraph isomorphism have to
be solved as part of this derivation. To deal with this computational complexity, all previous ap-
proaches have focused on one particular kind of graph. In this paper, we propose an approach to
conduct a complete search for various classes of frequent subgraphs in a massive dataset of labeled
graphs within a practical time. The power of our approach comes from the algebraic representa-
tion of graphs, its associated operations and well-organized bias constraints to limit the search space
efficiently. The performance has been evaluated using real world datasets, and the high scalabil-
ity and flexibility of our approach have been confirmed with respect to the amount of data and the
computation time.

Keywords: Data Mining, Graph Mining, Frequent Subgraph, Bias, Canonical Form, Subgraph
Isomorphism

�

Address for correspondence: Tokyo Research Laboratory, IBM Japan, 1623-14, Shimotsuruma, Yamato, Kanagawa, 242-
8502, Japan

54 A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs

1. Introduction

Graph mining algorithms that discover characteristic subgraph patterns embedded in a dataset of labeled
graphs have a broad range of applications. However it is hardto develop methods with practical run
times because the search for candidate frequent subgraphs has exponential complexity and includes the
subgraph isomorphism problem, which is known to be NP-complete.

To address these issues, various approaches to mine a complete set of frequent patterns from massive
datasets of labeled graphs or labeled trees have been proposed. Although each method can efficiently
discover the patterns, the subgraphs to be searched are limited within a specific class. For example,
MolFea efficiently mines frequent paths from labeled graphs[7]. TreeMiner [27] and FREQT [2] can
quickly discover all frequent patterns from ordered trees.However, they cannot mine more complex
substructures such as labeled subgraphs. On the other hand,the AGM algorithm [10, 12], FSG [17], and
gSpan [24] can mine frequent subgraphs from a set of labeled graphs. However, they cannot efficiently
discover frequent patterns of paths and trees, because their data structures and their search operations are
not dedicated to path and tree structure mining.

In this paper, we propose a generic and efficient framework tomine various classes of substructures.
By introducing a bias for each class of substructure,e.g., connected subgraphs, ordered subtrees, and
path structures, to the AGM algorithm, a complete search forthe frequent substructures of each class is
achieved. The bias includes restrictions on the search space of the frequent patterns, on the ambiguity of
the structural representation, and on the criteria used forsubgraph isomorphism checking. We call this
new frameworkBiased Apriori-based Graph Mining (B-AGM). We evaluate its performance in terms of
the required computation time for real world datasets of various sizes.

The rest of this paper is organized as follows. Section 2 defines the frequent subgraph pattern mining
problem, and describes the basic concepts of the Apriori-based Graph Mining algorithm used for mining
frequent patterns in a dataset consisting of labeled graphs. Section 3 defines some additional specific
biases to derive various types of patterns,e.g., general subgraphs, connected subgraphs, ordered subtrees
and path patterns. Section 4 provides an experimental evaluation of our algorithm on some real datasets
consisting of chemical compounds, Web access logs, and XML data. In Section 6, we discuss future
extension of our framework. We provide a discussion and somerelated work in Section 6, and finally
conclude in Section 7.

2. Problem Definitions and the AGM algorithm

We use the basic principles of the AGM algorithm in our extended framework. By applying some specific
biases to the algorithm, our B-AGM discovers frequent subgraphs of various classes. In this section, we
define the problem and explain the AGM algorithm. In the next section, we propose biases to enable
graph mining of various classes.

2.1. Problem Definition

The input for frequent subgraph mining is a set of labeled graphs in which each vertex and each edge have
a vertex label and an edge label respectively. The label of each vertex (edge) does not need to be unique,
and it is possible that the same label can be used for several vertices (edges). Each graph in the dataset
is represented as

� � ������� ��� � �	

, where

� � ������ � � � ����, � � ���� ���
��� ��� � � ��
�,

A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs 55

�� ��
 � ��	���
���� � � ��
�, �� ��
 � ��	���� ���

����� ���
 � ���
�, and
�	 � �� � ��
��� �

��

are sets of vertices, edges, vertex labels, edge labels, anda function to assign a label to a vertex or to

an edge, respectively. To the convenience of the description, the sets of vertices, edges, vertex labels, and
edge labels of the labeled graph

�
are represented as

� ��

,
���

,
�� ��

, and
�� ��

, respectively.
The number of vertices,

�� ��
�
, is called the “size” of the graph

�
.

A graph can be represented by using an “adjacency matrix”. For calculation efficiency, let�����	���

and�����	���� ���

 be natural numbers assigned to a vertex label

�	���
 and an edge label
�	���� ���

,

respectively. Given a labeled graph
�

, the
���	

-element
��� of an adjacency matrix�� of the graph
�

whose size is is represented as follows.

��� � ������	���� ���

� if
��� ���
 � ���
��

if
��� ���
 �� ���
 �

where
��	 � ������� � � � ��. The vertex corresponding to the

�
-th row (

�
-th column) of an adjacency

matrix is called the
�
-th vertex, and the graph structure of an adjacency matrix�� is represented as����
.

By choosing different assignments of rows and columns to vertices in a graph, multiple adjacency
matrix representations for a single graph can be obtained. To remove this ambiguity, we use a “canonical
form” of the adjacency matrices to represent a graph. To mathematically define the canonical form of a
graph and to deal efficiently with matrices, the code of an adjacency matrix is defined as follows. For an
undirected graph, the function���� of an adjacency matrix�� is defined as

�������
 �
��
��
���
�� � � �
�����
�����
which is a concatenation of the

���	

-element with
��� as shown in Figure 1. For a directed graph, it is

defined as �������
 � ������� � � � �� � �� � � � �
�
�
and

�� � ���� �� �

� �� �
��� � �� � � � �	 � �
�	 � �
�
�

where
� 	

. Furthermore, a function!"#�
including the vertex labels is defined as

!"#����
 � ������
�������
�

which is a concatenation of������
 and�������
, and

������
 � �����	��

 � � � �����	���

�

The canonical form of the adjacency matrices representing agraph is the unique matrix having the max-
imum (or minimum)!"#�

. The choice of the maximum or minimum!"#�
depends on a class of

substructure patterns to be mined, which is included in the definition of each bias. For example, when
connected subgraphs are mined, the maximum!"#�

is used to define the canonical form, while the
minimum!"#�

is used for subtree mining. Both are applicable to the conventional AGM algorithm.

56 A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs

� �

�
�� �

�
������

�	��
 �	���
 �	���
 � � � �	���

�	��
 �
��
�� � � �
���	���

�� �
��� � � �
����	���

��
��� � � � �
���
...

...
...

...
. . .

...�	���

��
���
��� � � � �
�
������

Figure 1. Order of Matrix Elements to Define a Function��	
 for an Undirected Graph.

� �

�

�
�

�

�� �

�
������

�	��
 �	���
 �	���
 � � � �	���

�	��
 �
��
�� � � �
���	���

�� �
��� � � �
����	���

��
��� � � � �
���
...

...
...

...
. . .

...�	���

��
���
��� � � � �
�
������

Figure 2. Order of Matrix Elements to Define a Function��	
 for a Directed Graph.

Adjacency matrices corresponding to an identical graph aremutually convertible using the following
“transformation matrix” (permutation matrix). When adjacency matrices�� and �� representing an
identical graph of size are given, each element��� of a transformation matrix�� is defined as follows.

��� � ��� the
�
-th vertex of

����
 corresponds to the
	
-th vertex of

����
��
otherwise

�

�� is expressed as�� � ��� ����.
Given graphs

�
and

��, if there is a function� � � ���
� � ��

that satisfies

1.
�� � � ���
� ���
 � � ��
� �	��
 � �	����

, and

2.
���� ���
 � ����
� �����
�����

 � ���
� �	���� ���

 � �	������
�����

.

�� is a “subgraph” of
�

, which is represented as
�� ��

. Additionally, if the function satisfies

3.
��� ���
 � ����
� �����
�����

 � ���

,

then
�� is an “induced subgraph” of

�
, which is represented as

�� �� �.
A “path” is a sequence of consecutive vertices and edges in a graph. Given an undirected graph

�
,

if a path exists between any two vertices of the graph, then
�

is called a “connected graph”. In the case
of a directed graph

�
,
�

is called a connected graph if a path exists between any two vertices in the
undirected graph obtained by ignoring the directions of theedges in

�
. An “unordered tree” is a directed

A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs 57

� �

�

�

�

�
�

�

�

�� ��
Figure 3. Examples of Labeled Graphs.

acyclic graph with a root vertex and where every other vertexhas one entering edge. An “ordered tree”
is a tree with a left-to-right ordering among the children ofeach vertex.

Given a set of labeled graphs
�#, the “support”��� ���
 of an induced subgraph pattern

�� is
defined as

��� ���
 � ����� � �#��� �� ���
��# � �

where�� stands for inclusion of an induced subgraph in a graph. When auser would like to derive all of
the frequent patterns that are contained as subgraphs, the support is defined as

��� ���
 � ����� � �#��� � ���
��# � �

There is an induced subgraph derivation and a general subgraph derivation for each class of structure
except for a subtree. These derivations are introduced independently of any bias for each class of struc-
ture which is defined in Section 3. By combining an induced or general subgraph derivation with a bias,
the B-AGM algorithm can mine the frequent induced subgraphsseparately from the frequent general
subgraphs. Any derived subgraph having support greater than or equal to the “minimum support” spec-
ified by a user is called a “frequent subgraph”. A frequent subgraph with vertices is called a frequent-subgraph. When a dataset which consists of labeled graphs and the minimum support are given as
input, the frequent subgraph mining problem is to derive allfrequent subgraphs in the dataset that have
support greater than or equal to the minimum support value [11].

For example, two labeled graphs as shown in Figure 3 are givenas an input dataset
�#, where the

numbers 1, 2, and 3 are assigned to�, 	, and!, respectively, and 1 is assigned to an edge label. The
canonical form of the graph

� in Figure 3 is expressed as

�
 �

�
�����

! ! 	 	 �! � � � � �! � � � � �
	 � � � � �
	 � � � � �
� � � � � �

�
�����
�

The!"#�
of �
 is represented as

!"#���

 � ���������������

58 A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs

�

�

�

�

�

�

�
�

�

� � �

�

� ��� � �

���

�� � �� ���

� �

�

�

�

� �

�

�

�

�

�

�

� � �

�

�

�

�

�

�

�

� �

�

� �

�

�
�

�

� �

�

��

�

�

��

��

Figure 4. Search Space to Mine Subgraphs in Data in Figure 3.

where the italic characters represent�����

. When the dataset
�# is given as input and the minimum

support is set to 100%, the search space for mining frequent induced subgraphs is as represented in
Figure 4, where each graph in a rectangle corresponds to a subgraph pattern which has support greater
than 0%. (In Figure 4, any pattern whose support is 0% is omitted due to space limitations.) A rectangle
for a subgraph pattern is linked to the rectangles of its induced subgraphs. The subgraph patterns above
the dashed line in Figure 4 are the frequent subgraphs. The support value of the subgraph� in Figure 4
is ��� ��
 � �� � ����

. The support value of the subgraph�� is ��� ���
 � ���
, and the subgraph is

not added to the set of frequent subgraphs.

2.2. Apriori-based Graph Mining Algorithm

In our previous work, we proposed an approach named AGM (Apriori-based Graph Mining) algorithm
in which the knowledge representation and the search operations are highly dedicated to the graph struc-
tured data mining [10, 12]. The AGM algorithm is so generic that it can discover not only connected
frequent subgraphs, but also disconnected frequent subgraphs. We use the basic concept of the AGM
algorithm as the framework for frequent subgraph mining. Byadding some additional biases, the AGM
framework can discover various types of subgraphs, such as connected subgraphs, subtree structures, and
path structures.

The AGM algorithm derives all frequent subgraphs in ascending order of the size of the graph based
on the anti-monotonic property of the support measure. Frequent subgraphs are derived stepwise from
the top in the lattice search space as depicted in Figure 4. Figure 5 is the outline of our AGM algorithm.
First, a

���
adjacency matrix representing a vertex is generated for every vertex, and they are substituted

for ! (Line 1). Next, the support for the each candidate frequent subgraph is calculated by scanning

A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs 59

the database (Lines 4 and 5). Next, the Generate-Candidate function generates the candidate frequent
subgraphs of size � � from the frequent-subgraphs in��, and they are substituted for!�� (Line
6). These steps are repeated until!� becomes empty. Finally, all of the frequent subgraphs are returned
(Line 9).

//
�# is a database consisting of labeled graphs.

// �� is a set of adjacency matrices of frequent-subgraphs

// !� is a set of adjacency matrices of candidate-subgraphs

// ������ is the minimum support.

0) Main(
�#�������)

�
1) ! ��

all adjacency matrices consisting of one element�;
2) � �

;

3) while(!� �� �
)
�

4) Count(
�#�!�);

5) �� � ��� � !� ���� �����

 ��������;
6) !�� �Generate-Candidate

���
;
7) � � �;
8) �
9) return����� � �� ��� is canonical�

10) �
Figure 5. Outline of the Apriori-based Graph Mining Algorithm.

2.2.1. Join Operation

The Generate-Candidate function referenced in Figure 5 consists of three parts: the join operation, the
subgraph-check operation, and the canonicalize operation. In the join operation, the adjacency matrices
of the candidate frequent subgraphs of size � � are generated by joining the two adjacency matrices
of the frequent-subgraphs in��. Given two adjacency matrices�� and�� representing the frequent
subgraphs, they are joinable if and only if all of the conditions to join are satisfied.!������� �� Let

� �����

 and
� �����

 be

�
�
�� � � � �
�� and
������ � � � ���� respectively,

where
� is the
�
-th vertex of

����
 and�� is the
�
-th vertex of

����
. �� and�� are identical ex-
cept for the-th row and the-th column,i.e.,

�� � 	 ���

�� � � ��� � 	 ��� ���� � � �
and

�	�
�
 � �	���
 for
� � �� � � � � � ��

60 A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs

�
�

�
� �

�

� �
�� �
�

�
�

�

��

� �
�

0 0 1
0 0 1
1 1 0

� � �
�
�
�

X	

0 0 0
0 0 0
0 0 0

� �

�
�

Y	

� � �

0 0 1 0
0 0 1 0
1 1 0 0
0 0 0 0

�
�
�

Z�

�
�

�

��

� �
�

� � �

0 0 1 0
0 0 1 0
1 1 0 1
0 0 1 0

�
�
�

Figure 6. Example of Join Operation.

!������� ���� is the canonical form of
����
.!������� �� !"#����
 � !"#����
 is fulfilled.1

If �� and�� are joinable, their join operation is defined as follows.

��� � �
��
���
 �
�� � ������� ���� �

�
�� �

�	�
�
 � �	��
 for
� � �� � � � � � �� �	�
�
 � �	��
� and

�	���
 � �	���
�
These matrices�� and�� are called the “first generator matrix” and the “second generator matrix” of���, respectively. The two elements

���� and
���� of

��� are not determined by�� and��. For
the undirected graph, the possible graph structures for

�����
 are those where there is a labeled edge
or where there is no edge between-th vertex and

� � �
-th vertex. For these undirected graphs, the���� �� �

adjacency matrices under

���� � ���� are then generated, where
��� �

is the number of
edge labels, while the

���� �� �
�
adjacency matrices are generated for directed graphs. The adjacency

matrix generated under the above conditions is called a “normal form”.
Figure 6 shows an example of the join operation when there is only one edge label in the undirected

graphs and�����
 ����	
 ����!

. Since�� and�� are joinable, the two adjacency matrices��� are generated, where the difference is the pair consisting of the

����

-element and the

����

-

element. In the two matrices, each pair consists of 0s or 1s.

2.2.2. Subgraph-Check Operation

For the necessary condition of
�����
 being a frequent subgraph, all induced subgraphs of

�����

must be frequent subgraphs according to the anti-monotonicproperty of the support. This condition
reduces the candidates. When the subgraph-check operationfor a graph of size � � is done, it can be
assumed that one of transformation matrices from every normal form matrix to its canonical form matrix
whose size is less than � � is known, since the complete search was done in the previous steps.

1In the case that the canonical form is defined as the unique matrix having theminimum����, the condition 3 is
�������� � �������� .

A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs 61

0) Normalize(
��) �

1)
� � �

;

2) while(
� �� � �)�

3) if(
�� is a normal form and can become the first generator matrix)

�
4)

�� � � ��� ��� ��;
5)

� � � � �
;

6) �else
�

7)
�� � ��� ����;

8)
� � � � ��

9) �
10) �
11) return

��;
12) �

Figure 7. Normalization Algorithm.

An adjacency matrix
�� of an induced subgraph of size is obtained by removing the elements in the�

-th row and the
�
-th column (

� � � � � �) of
���. Then

�� is transformed into the normal form by
applying the algorithm shown in Figure 7. This is necessary because the AGM algorithm generates only
normal form matrices, and support of

�� is easily checked by using the normal form matrices obtained
in the earlier steps. Let the upper left

� � �
submatrix of the adjacency matrix

�� be
��, the matrix

to transform
�� into the canonical form be�� and the unit matrix of size be ��. The transformation

matrices� �� and�� in Figure 7 are generated as follows.

� �� � 	�� 0

0 ����� �
and �� �

�
��
���� 0 0

0 0
�

0 ����� 0

�
�� �

Line 4 in Figure 7 is the operation to transform
�� into its canonical form, and Line 7 changes the�� � �
-th vertex into the-th vertex and the

	
-th vertex into the

�	 � �
-th vertex (
	 � �� � � �� � � � �).

2.2.3. Canonicalization Operation

After generating the matrices of candidate subgraphs, a database is accessed to calculate their supports.
However, since multiple normal form matrices can representthe same graph, the canonical form of each
of these matrices must be identified to collect all supports of the subgraph.

When the canonical form of�� and its associated transformation matrix are searched for,it can be
assumed that one of the transformation matrices from each normal form matrix into its canonical form
matrix of size � � is known, because of the stepwise extension of the graph sizein the search. Let the
transformation matrix of���� to its normal form be� ��� where���� is the adjacency matrix obtained
by removing the elements in the

�
-th row and

�
-th column of��. Also let the matrix to transform the

62 A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs

normalized matrix
�� ���
����� ��� into its canonical form be����. The transformation matrices���

and� �� for �� are generated by using the following equations from���� and� ���.
��� � 	���� 0

0
�� �

and �
�� �

�
��
��� 0 0

0 0
�

0 ���� 0

�
�� 	� ��� 0

0
�� �

A canonical form for�� is given by��� � ��� ������			 ��!"#����
�����
��� ��

�����

� (1)

The matrix to transform�� into its canonical form is represented as� �����, which makes Equation (1) the
maximum. If the transformation matrix��� which transforms�� through a

�� �����
��� �� �����
 into the
canonical form has already been found, the canonical form of�� is provided as���� �� �����
��� �� �����
���,
and thus the calculations for all of the

�
s in Equation (1) are not required. It should be noted, however,

that the canonical form might not be found by the above methodin some cases where the canonical form
and its transformation matrix must be searched for in accordance with the permutations. The principles
of this canonical-form finding method are described in detail in the literature [12].

2.2.4. Counting the Frequency of Each Candidate

After all of the canonical forms of the candidate subgraphs are obtained, the database is accessed, and
the frequency of each candidate subgraph is calculated. It is known that subgraph isomorphism [8] is
NP-complete, and ordered subtree isomorphism matching andsubtree isomorphism matching require"��! ��� �

time and space where
�! �

and
�� �

are the sizes of the two graphs for isomorphism [14].

�

�

�

�

�

�

�� �

�

�

	
�

�

�

�

�

���

Figure 8. Graph Data and Candidate Subgraphs.

We now explain the counting in the case of frequent induced subgraph derivation. Let the canonical
form of the candidate-subgraph be��, its first generator matrix be���, and the graph in the database
of size
 be

��. For example, let
��,

�����
, and
����
 be the graphs in Figure 8 (a), (b), and (c)

respectively. The canonical forms of Figure 8 (b) and (c) areexpressed as

��� � �	 �
	 � �
� � � �

and �� �
�
�
	 � �

	 � � �
� � � �
� � � �

�
��

A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs 63

�
�

�
�

�
�

�
�

�
�

��
�
��
�
��
�
��
�
��
�

��� ��
�
��
�
��
�
��
�
��
�

��
�

��
�

��
�

��
�
��
�

�
�

��
�

��
�

��
�

Figure 9. Search Tree for�� and�������.

�
�

�
�

�
�

�
�

�
�

��
�
��
�
��
�
��
�
��
�

���
�
���
�
���
�
���
�
���
�

��� ��
�
��
�
��
�
��
�
��
�

���
�
���
�
���
�
���
�
���
�

��
�

��
�

��
�

��
�
��
�

���
�
���
�
���
�

���
�

���
�

	 �����������

�
�

��
�

��
�

��
�

���
�

���
�

���
�

Figure 10. Search Tree for�� and�����.

where � �
and����	
 � �����

. The numbers assigned to the vertices in Figure 8 are vertex IDs.
If the brute force method checks whether

�� includes the graph
�����
 by a depth first search in the

ascending order of the vertex IDs when
�����
 is the candidate subgraph, it turns out that the graph�� includes the graph

�����
, and the correspondences of the vertices between
�� and

�����

are 2=I and 3=II, where 2=I shows that vertex whose ID is 2 is mapped to I. The search tree for this case
is shown in Figure 9. When

����
 is the candidate subgraph, it turns out that graph
����
 is included,

and the correspondences of the vertices are 2=I, 3=II, and 6=III, as shown in Figure 10. In this case,
the search in the part on the left side of the path root-I2-II3in Figure 10 is not necessary since this part
has already been checked in Figure 9. Therefore, if the correspondence relation of the vertex of

�� and�����
 is recorded,
��’s inclusion of a graph structure which has��� as the first generator matrix

can be efficiently checked.

We use this method as the default method to count the frequency. However, this method is imple-
mented so that it can be overwritten. As mentioned later, themethod is modified to compare B-AGM
with other tree mining methods.

64 A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs

2.3. Completeness of Search of Frequent Subgraphs

The completeness of the search of frequent subgraphs in thisjoin operation is proven as follows:

Theorem 2.1. Given a canonical form matrix��� of an undirected graph and its!"#�����
 ��������
�����	�
�

�����	�
��

��������

�� � � �
����
��� � � �
����. Then

�����	�
�

 � �����	�
��

� or�����	�
�

 � �����	�
��

 and
�� � � �
���� �
��� � � �
�����
holds. Similarly,

�����	�
�

 � �����	�
��

� or�����	�
�

 � �����	�
��

 and ������ � � � �� � ��� � � � �����
holds for a directed graph, where� � ������ .

Proof:
Consider a matrix� ��� obtained by permutation of the-th and

� � �
-th rows and columns of the
matrix���.!"#��� ���

� �������
�����	�
��

�����	�
�

��������

��� � � �
�����
�� � � �
����
�����
Accordingly,!"#��� ���
 � !"#�����
 when�����	�
�

 �����	�
��

� or�����	�
�

 � �����	�
��

 and
�� � � �
����
��� � � �
������
On the other hand,

��� ���
 � �����
, because the graph represented by an adjacency matrix is
invariant over the permutation of rows and columns. This contradicts the assumption that��� is a
canonical form matrix. The same argument applies to the directed graph. ��

Theorem 2.2. The first generator matrix��� of a canonical form matrix�� is also a canonical form
matrix.

Proof:
If �� is a canonical form matrix, but��� is not, then the matrices� �� and its first generator matrix� ��� meeting the following conditions must exist:

����� ���
 � �������
� or����� ���
 � �������
 and ������ ���
 � ��������
�
where ��� ��
 � ����
 and

��� ���
 � �����
�

A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs 65

In the latter condition, the labels of the vertices corresponding to the last rows and columns of� �� and��
are identical,i.e., �����	�
��

 � �����	�
�

, because

��� ��
 � ����
. Accordingly, the following
relation satisfied: !"#��� ��
 � ����� ���
�����	�
��

������ ���

��� � � �
������ !"#����
 � �������
�����	�
�

��������

�� � � �
�����
This contradicts the assumption that�� is a canonical form matrix. Thus,��� is a canonical form
matrix. ��

Theorem 2.3. Given�� � �
all frequent subgraphs of size�and��� � ��� �����
 � ��, and�� is

the canonical form�, for a given�� � ��� then let��� ���
 � ��� �����
 � �� �������� shares its
first generator matrix��� with �� � and!"#����
 � !"#����
�, ��� � ���������� ���
,�������
 � �������� is derived by the join operation between�� and�� � ��� ���
�, and���� � ��������������
. Then���� includes all���s in����.
Proof:
Each�� � ��� meets Condition 2. The codes of�� and�� for undirected graphs are represented as
follows from Condition 1:!"#����
 � �������
�����	�
�

��������

�� � � �
�����!"#����
 � �������
�����	���

��������
��� � � �������
Hence, Condition 3 can be rewritten as follows (#1):�����	�
�

 � �����	���

� or�����	�
�

 � �����	���

 and
�� � � �
���� � ��� � � �������
Also, the label

�	���
 and the element values
��� � � ������ of

��� corresponds to
�	���
 and��� � � ������, respectively. These constraints on!"#�

s are identical with those of Theorem 2.1 when��� is considered as���. The elements
���� and

���� in
��� take any values in������
 �

������	
���	 � ��� (#2).
����
 and

����
 are frequent. Through the join operations of any�� and
��s satisfying these constraints, all canonical form matrices���s representing frequent subgraphs and
having its first generator matrix�� are derived in�������
. The corresponding discussion applies to
the case of directed graphs. From this observation and the fact that the join operations are applied to all��s in���, we conclude that every canonical form matrix��� where the first generator matrix is one
of ��s in ��� is completely derived in����. On the other hand, every canonical form matrix���
has the first generator matrix�� which is a canonical form from Theorem 2.1. Since��� is complete,
every��� has the first generator matrix�� in ���. Therefore,���� includes the complete set of���s in����. ��

After deriving ����, complete pruning of infrequent
���s and frequency counts of

���s in the
objective data are used to derive��� and���� as described later. At the level � �

, all complete
sets of�, �� and�� are derived, since all frequent single vertices and their

���
matrix notions are

completely enumerated at the initial search. Accordingly,the complete�� and��� are found in every
step from Theorem 2.3.

66 A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs

3. Extension to Mine Various Classes of Structures

The original AGM performs the complete mining of the frequent subgraphs. However, the variation of
AGM that we introduce here contains a bias to derive only the frequent induced subgraphs [10, 12]. An
induced subgraph of a graph

�
has a subset of the vertices of

�
and the same edges between pairs of

vertices as in
�

. To limit the search of the frequent subgraphs within this class, the following bias has
been applied in the past work. When counting the frequency ofeach candidate frequent subgraph, the
AGM algorithm checks whether it is contained in each graph ina database as an induced subgraph.

In the following subsections, we propose further biases that allow for the graph mining of various
classes based on the AGM framework as depicted in Figure 11. We call this frameworkB-AGM(Biased-
Apriori based Graph Mining). A bias for a specific class of thegraph structure consists of the dedicated
definitions of the canonical form and the join operation. By choosing an appropriate bias on the platform
of the AGM framework, the complete mining for the frequent subgraphs of the objective class we are
seeking for is defined.

�����

����	�
��	������

��
��	��	�����

��������
��	
�

������

���������

����	�
����

������	������

��

�����

���������������

��
�
���������
�

��
��������
������

��
�
����������
 	������������

�������������

���������

����	�
��������������

���

�������

����

�����

���������

����	�
������

���� �
�	�

����

���

����	�
������

����

���������

Figure 11. B-AGM Framework.

3.1. Bias for Connected Subgraph Derivation

For calculation efficiency, the B-AGM algorithm with this bias mines all of the frequent connected sub-
graphs and some semi-connected subgraphs which consist of aconnected subgraph and an isolated ver-
tex. The semi-connected graphs are not added to the output ofthe frequent subgraphs2.
Canonical Form
The definition of canonical form is altered from the original. Given the upper left

� � �
submatrix of the

adjacency matrix�� as�� (
� � � �), the following set�

��

of adjacency matrices representing an

identical graph
�

is defined.

�
��
 � ��� �����
 is connected for

� � �� � � � � � ��� � ����
��
2B-AGM with this bias is available from http://www.alphaworks.ibm.com/tech/fsm.

A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs 67

The adjacency matrix!� with the largest!"#�
in �

��

is called the canonical form.

!� ��� !"#��!�
 � ���
�������!"#����
�

Join Operation
The original Conditions 1 and 2 are retained, and the following Conditions 3 and 4 are introduced.!������� �� ����
 is a connected graph.!������� �� ����
 is not a connected graph, otherwise!"#����
 � !"#����
.
Each frequent subgraph of

����
 has a flag to represent whether or not it is connected. The flag is
determined from the flags of its first and second generator matrices. If both flags are connected, then the
flag of a graph which is made from the first and second matrices becomes connected.

If the second generator matrix corresponds to an disconnected graph,!"#����
 � !"#����

does not have to be satisfied to join the adjacency matrices. For example, let�����

and����	

be 1

and 2, respectively, in Figure 12. The canonical form of
����
 in Figure 12 is!"#����
 � ������,

and it is generated by joining two adjacency matrices, such as !"#����
 � ���
and!"#����
 ����

. Therefore, the condition that the second generator matrixcorresponds to an disconnected graph is
needed3.

�
�

�
�

�

0 1
1 0

� �
�
�

X�

0 0
0 0

� �
�
�

Y�

� � �
0 1 0
1 0 1
0 1 0

�
�
�

Z�

�
�

Figure 12. Example of Join Operation Bias for Connected Subgraph Derivation.

The completeness of the search by this join operation is proven. However, due to the space limitation,
only the points to be altered in the aforementioned proof forthe standard join operation are explained.
Theorem 2.1 is altered as follows.

Theorem 3.1. Given a canonical form matrix��� of an undirected graph and its!"#�����
 ��������
�����	�
�

�����	�
��

��������

�� � � �
����
��� � � �
����. For��� repre-
senting a connected graph,

1. �����	�
�

 � �����	�
��

 or

2. �����	�
�

 � �����	�
��

 and
�� � � �
���� �
��� � � �
�����, or

3. �����	�
�

 �����	�
��

, �����	�

 � �����	�
��

,
��� � � � � �
����� ��
, and
���� �� �,

3In the case of the conventional AGM algorithm which finds not only connected subgraphs but also disconnected subgraph, the
canonical form of��	
� in Figure 12 becomes�����	
� � ���

.

68 A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs

and for��� representing a disconnected graph,
���� � � for all
� � �� � � � �

holds.

A similar alternation is made for directed graphs. This theorem is similarly proven by the reduction
to absurdity. Theorem 2.2 holds, since��� of �� represents a connected graph, and the identical
definition of the canonical form applies to the adjacency matrix of a connected graph. Theorem 2.3 also
holds since Condition 3 and 4 alter the constraints of (#1) inthe manner consistent with Theorem 3.1.

3.2. Bias for Ordered Subtree Derivation

The B-AGM algorithm with this bias efficiently mines all frequent ordered subtrees included in a forest
in the same way as the connected subgraph derivation.
Canonical Form
When the total order of the rows and columns of the adjacency matrix �� representing an ordered tree����
matches the preorder numbers assigned to the vertices in theordered tree, the matrix is defined as
the canonical form of

����
 as shown in Figure 13. More strictly, let the set of the total order numbers
of the columns and rows of�� be� � �� �� � � � � � �. When

����
 is an ordered tree, let the set of the
preorder numbers assigned to the vertices of

����
be�
� �	 �	 � � � � � �. When

����
 consists of an
ordered tree and an isolated vertex, let the set of the preorder numbers

� � � � � �assigned to the vertices
of the ordered tree and the last assigned to the isolated vertex in

����
 be�
� �	 �	 � � � � � �. Then,�� is the canonical form adjacency matrix of

����
 if an identity mapping
	 � �#��

between� and
� exists. Under this identity mapping,!"#����
 is represented as!"#����
 � �����	�

 � � � �����	�
�

�������
�

Since the identity mapping�# is unique, the total order numbers assigned to the vertices in
����

uniquely specifies��. Under this definition, the AGM algorithm can search only canonical form matri-
ces. This greatly enhances the search efficiency [27, 2].

A

AC C

A B

�

�

� �

� �
��	
��	� ���	����

convertible

Figure 13. ���� of Ordered Tree.

Join Operation
The original Conditions 1 and 2 are retained, and the following Conditions 3 and 4 are introduced.!������� �� ����
 is disconnected, otherwise�������
 � �������
.!������� �� ����
 is a connected graph.
The Condition 3 related to���� for this bias is different from the conditions for the standard and the

A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs 69

connected subgraph derivation in terms of the part of the code and the direction of the inequality used
in the condition. The difference comes from the definition ofthe canonical form for the ordered tree.
The rows and the columns of the adjacency matrix are ordered by following the left and depth first
preorder numbering in the ordered tree. Accordingly, the matrix having the last row and the last column
representing a vertex located at a deeper level has a small���� under a given first generator matrix���.
For example,�� of a graph

� having the third vertex at depth 3 has a small���� than�� of
�� having

the third vertex at depth 2. Because the graph
�� resulting from the join operation of two graphs having

their final vertices at different depths is uniquely determined independent from the labels of the vertices,
redundants joins are avoided by introducing the condition�������
 �������
. When�� and��
represent graphs whose last vertices are at the same depth,i.e., �������
 � �������
, the join operation
for the graphs result in two candidates depending on the order of the join of�� and �� as depicted
in Figure 15. Since these candidates represent different ordered trees, the join operations in the both
orders should be admitted when�������
 � �������
. Thus,�������
 � �������
 in the Condition
3 should be applied to the case where

����
 and
����
 are both connected graphs. When

����
 is not
connected, the analysis of Section 3.1 is used.

�
�

�
�

�
�

�

� �
�

�G �G �G

��
�
�

	

�

�
 �

�
� �

�
�

�
�

�

��
��
��
�

�

�

��
��
�

�

�

�
����
����
����
����

�� ��
�

�

�

!

"
$$

%
$$

%
%%

$

&'

()(*+ , -./012 33456 7 89:;<=>?>>??@A B CDEFGH
Figure 14. Examples of Join Operation for Ordered Subtree having Different Depth.

The completeness for the search by this join operation is nowproven. Theorem 2.1 is altered as
follows.

Theorem 3.2. Given a canonical form matrix��� of an ordered tree or an ordered tree with an isolated
vertex and its!"#�����
 ��������
�����	�
�

�����	�
��

��������

�� � � �
����
��� � � �
�����
Then,

1.
�� � � �
���� �
��� � � �
�����, or

2.
��� � � � � �
����� � � and
���� �� �
holds.

70 A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs

� �

�

�

�

�

�

� �

�

�� �� ��

�
�
�

�

�

�
�
�

�

�

�

���

���

���

��

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�

����

����

����

����

��

�
�
�

�

�

�
�
�

�

�

�

���

���

���

��

����� � ������ ����� � �������������� � ������

Figure 15. Examples of Join Operation for Ordered Subtree having Identical Depth.

Theorem 2.2 is also easily proven by the reduction to absurdity. Theorem 2.3 also holds since Con-
dition 3 and 4 alter the constraints of (#1) in a manner consistent with Theorem 3.2.

3.3. Bias for Path Derivation

This bias derives frequent subgraphs included as paths thathave no loops or branches. The definition of
a canonical form is identical with that of the connected graph.
Join Operation
The original Conditions 1 and 2 are retained, and the following Conditions 3, 4 and 5 are introduced.!������� �� ����
 is a connected graph.!������� �� ����
 is not a connected graph, otherwise!"#����
 � !"#����
.!������� �� When

����
 is connected,
���� and

���� of
��� are set to zero to prevent making a

pattern which has loops or branches.
The completeness of the search by this join operation is proven in almost identical manner with

Section 3.1 except the part (#2) in the proof of Theorem 2.3.
���� and

���� in
��� are always zero

to avoid the generation of loops and branches. These constraints do not break the completeness of the
search as far as only frequent paths are searched. Hence, thesearch by this join operation is complete.

4. Experiments

An IBM PC 300PL with Windows 2000 was used for the experiments. The test machine has a Pentium
III-667 MHz CPU and 192MB of main memory installed.

4.1. Mining Connected Subgraphs

Molecular structure data of carcinogenic compounds was analyzed. This data was provided from a
Predictive Toxicology Evaluation database [23], and contains information on 340 chemical compounds.

A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs 71

There are 24 types of atoms making up these 340 chemical compounds. Since the atoms have different
states, the total number of atom types is 66. There are four types of atomic bonds corresponding to edges
in a graph. The molecular compounds contained an average of 27 atoms, with the largest compound
having 214.

Figure 16 shows the results for the computation times for various minimum support values. It
includes the results of B-AGM for both connected subgraphs and connected induced subgraphs and
FSG [18]4 and gSpan [24]5 for connected subgraphs. When the minimum support decreases, the compu-
tation time increases because the number of discovered patterns increases. The performance of B-AGM
is better than FSG and is comparable with gSpan for general connected subgraph derivation.

Figure 17 shows two examples derived in the connected induced subgraph derivation. The subgraph
of (a) is contained in 6 chemical compounds with carcinogenic activity and 19 compounds without such
activity. In contrast, the graph of (b) is contained in 17 compounds with carcinogenic activity and 4
inactive compounds. The first molecular substructure does not exhibit significant activity, whereas the
second one exhibits quite high activity.

Figure 16. Minimum Support vs. Computation Time.

���������	
�

������������������������

���������	��

������������������������

�

�
�
��

��
���

���

��� ���

���

���

������ �!�� �"���� �!��

���

��#
��#

�
 ���
���

��� ���

���

Figure 17. Discovered Frequent Connected Subgraphs.

4The experiments were done on a Linux PC with dual AMD Athlon MP1800+ and 2GB main memory.
5The experiments were done on a Linux PC with a Pentium III 500 MHz processor and 448MB main memory.

72 A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs

4.2. Mining Ordered Subtrees

4.2.1. Web browsing data

Zaki presented experimental results of substructure discovery from a set of logs files over one month at
the RPI computer science department Web site [27]. After thepreprocessing, the dataset had 595,691
user browsing subtrees with 13,361 unique labels (Web pages). We used the same data provided by Zaki
in our experiment and recalculated with the same machine to compare our approach with TreeMiner.
TreeMiner can find frequent patterns embedded in a dataset ofordered trees. It is defined that pattern
� discovered by TreeMiner is embedded in tree data# if and only if two vertices in a branch in� are
on the same path from the root to a leaf in#. For example in Figure 18, an ordered tree in the right is
embedded in the data. We used the same definition in the comparison of the results to obtain equivalent
results. The function to count the frequency is changed in B-AGM to adjust to the definition of frequent
patterns of TreeMiner. Figure 19 shows the computation times for various minimum support values. As
shown in Figure 19, B-AGM is comparable to TreeMiner.

A

BA A

A

AA B

R

A B

R

B

�

�

� � � �

�

� � �	

�

� �

PatternData

Figure 18. Examples (1) of Ordered Tree Data and a Pattern.

�

��

���

����

�
 � � �
������� ������� ���

��
��
 !
"!#
�$
!#
�%
&'
%�
(

)�**+��*�
,-./+

Figure 19. Minimum Support vs. Computation Time.

A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs 73

4.2.2. Semi-structured data

Asai et al. presented experimental results of substructurediscovery from a collection of Web pages
gathered from the Internet [2]. The data was collected from the online bibliographic archive Citeseer,
and was parsed to create DOM trees. After the preprocessing,the tree for the data had 196,247 vertices
with 7,125 unique labels (tags). We used the same data provided by Asai in our experiment. Since
FREQT can find frequent patterns embedded inoneordered tree, the definition of support of FREQT is
slightly different from that defined in Section 2. Given an ordered tree#, the support��� ��

of a pattern
� is defined as a ratio of the number of occurrences of the root of� to the total number of vertices in#. For example, given the ordered data tree# in Figure 20, the��� ��
 � ����

, because the root of the
pattern� occurs at nodes 2 and 7 in the tree data that contains a total of10 nodes. We used the same
support definition as in FREQT in our comparison of the results to obtain equivalent results.

Figure 21 shows the results of computation times and the numbers of derived frequent patterns for
various minimum support values. FREQT was implemented in JAVA and our B-AGM is implemented
in C++. This experiment was done in the same computational environment. As shown in Figure 21,
B-AGM is comparable to or faster than FREQT.

A

BA A

A

AA B

A

A B

R

B

�

�

� � � �

�

� � �	

�

� �

PatternData
Figure 20. Examples (2) of Ordered Tree Data and a Pattern.

Figure 21. Minimum Support vs. Computation Time and the Number of Derived Frequent Patterns.

74 A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs

4.3. Mining Path Patterns

The Developmental Therapeutics Program’s AIDS Antiviral Screening has checked tens of thousands of
compounds for evidence of anti-HIV activity [9]. Availabledata are screening results and chemical struc-
tural data on compounds that are not covered by any confidentiality agreements. The dataset contains
the structures of 42,687 chemical compounds and the relatedscreening data. The data is categorized into
one of the three classes: active (CA), moderately active (CM) and inactive (CI). There are 422 CA com-
pounds, 1,081 CM compounds, and 41,184 CI compounds in the dataset. Kramer et al. applied MolFea to
41,768 of these compounds to discover the characteristic path patterns (called fragments) [16]6. MolFea
can mine path patterns with a minimum support for one class inthe data and a maximum support for
another class in the data based on the search algorithm in theversion space. For the first task, MolFea
mined fragments that were contained in CA compounds more than 13 times which corresponds to the
minimum support on the CA dataset is 3% and in CI less than 516 times corresponding to the maximum
support of 1.282%. The total computation time was about five hours and twenty minutes, and more than
1,600 fragments were discovered. For the second task, it also mined fragments that were contained in
more than 13 CA compounds and in less than 8 CM compounds (0.75%). The total computation time
was about 34 minutes, and more than 680 fragments were discovered in this case.

We compared the performance of B-AGM to derive paths with MolFea on this HIV dataset. Because
our framework cannot apply the minimum support and the maximum support simultaneously, the mining
equivalent to that of MolFea is conducted in two steps. First, our approach finds all frequent subgraphs
having supports greater than or equal to the minimum supportin the data having a class. Second, the
patterns less than or equal to the maximum support for another class are deleted. For the first task, we
set the minimum support for the CA dataset and the maximum support for CI to 3% (13 compounds) and
1.265% (521 compounds), respectively, which were decided on the same criteria as used for MolFea.
The B-AGM algorithm took around 12 minutes to derive a set of path patterns which is almost identical
with that MolFea found. Under the identical conditions withthe second task of MolFea, our approach
took around one minute, and identical patterns were obtained. Our algorithm mines all of the fragments
under the minimum and maximum support constraints more efficiently than MolFea.

4.4. Usefulness of Discovered Subgraph Patterns

To evaluate the ability of the B-AGM algorithm to discover characteristic patterns in wider classes not
limited to paths, we also mined characteristic connected subgraphs by applying B-AGM with a con-
nected subgraph derivation bias to CA and CI compounds of theHIV dataset. Figure 22 shows the
results for the computation times and the numbers of discovered patterns for various minimum support
and maximum support values based on the same criteria used for MolFea. When the minimum support
decreases, the computation time increases because the number of discovered patterns increases. Most of
the computation time was required to find all frequent connected subgraphs whose supports are greater
than or equal to the specified minimum support threshold. Forexample, when the minimum support for
the CA dataset and the maximum support for CI were set to 16 compounds and 699 compounds, respec-
tively, the B-AGM algorithm took 3 hours to find all of the frequent patterns from the CA compounds
and thirty minutes to delete the patterns which do not have the maximum support for CI compounds. Fi-
gure 23 is one of the discovered patterns which has the maximum chi-squared value in a test introduced

6The experiments were done on a Linux PC with a Pentium III 600 MHz processor

A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs 75

by Brin [4]. It is contained in 64 CA compounds including azidothymidine depicted in Figure 24 and in
16 CI compounds.

�

��

���

����

�����

������

�������

������ ������ ������� ������� 	���

� 	������ ����	��

����������������������������

�
��
��
�
�
�
�
�
�
!
"
#$
$
�
%
�

�

��

���

����

�����

������

&
�
'
(
)$
#$
�
�
%
*�
'
�
+�
�
�,

-�. /�01�0�2���0�3
4���������5��0

Figure 22. Computation Time and the Number of Discovered Patterns.

6

6

7 7

6
6

6

7

7

Figure 23. A Discovered Pattern having a Maximal Chi-squared Value.

���

�

�

�
�

� ��

�

�
�

��

�

�

��

��

Figure 24. Molecular Structure of Azidothymidine (AZT).

76 A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs

���������	

�
�
�
�����������

���

���

���

���

�����
��

��	�����

���
�����

���
���

������������

��

����

��

Figure 25. Mechanism of HIV Infection (1).

���������	

�
�
�
�����������

��	�����

���
�����

���

�����
��

���

���

��

��

��

Figure 26. Mechanism of HIV Infection (2).

Figures 25 and 26 show the mechanism of HIV Infection. When viruses invade from the outside,
the immune system works to eliminate them in the human body. The CD4 cells play a central role in
the immune system. HIV invades the CD4 cells, and destroys them. After infection by HIV, within the
CD4 cell, the RNA of HIV is replicated into DNA by reverse transcriptase, and is included in the host
chromosome. After the inclusion, the DNA is activated to produce new HIV as shown in Figure 25.
Medical treatment is difficult because of HIV’s capability of hiding in the host chromosome, but since
the reverse transcriptase of HIV is unnecessary for the hostcell, the reverse transcriptase has become the
target in the development of anti-HIV medicines [1]. Azidothymidine (AZT) depicted in Figure 24 is
known to be an anti-HIV medicine. The reasons why AZT can inhibit the growth of the DNA chain are
that

� the structure of ATZ is similar to Thymine as depicted in Figure 27, and

A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs 77

� AZT does not have a hydroxyl group (-OH) at its 3’ end as shown in Figure 24.

The reverse transcriptase reads the sequence of the HIV’s RNA and transcribes it into a DNA sequence
consisting of Adenine, Thymine, Guanine, and Cytosine. Since AZT is similar to Thymine, it binds
to the reverse transcriptase and is added to the DNA chain during extension as shown in Figure 26. In
addition, the RNA of HIV is replicated into the DNA by the reverse transcriptase from the 5’ end to the
3’ end indicated in Figure 27. Since there is no hydroxyl group at the 3’ end of AZT, it stops the further
production of the DNA. B-AGM was able to discover the significant subgraph pattern shown in Figure 23,
which is included in many CA compounds but fewer CI compoundswithout using this background
knowledge. The compounds including this substructure are promising candidates for developing new
anti-HIV medicines.

���

�
�

��

� ��

��

�

�

��

5’

3’

Figure 27. Molecular Structure of Thymine.

5. Future Extension

Since the bias of B-AGM has high generality, it can be appliedto mine frequent patterns from a set
of unordered trees by introducing the following bias for theunordered subtree derivation. We plan to
expand our B-AGM by adding the bias for the unordered subtreederivation, and to compare with other
existing methods [22, 3].
Canonical Form
From an unordered tree

�
, we can generate many order trees

�� by reordering children of one node
in the unordered tree. Let an adjacency matrix of the orderedtree

�� be��. Let the set of the total
order numbers of the columns and rows of�� be � � �� �� � � � � � �. When

����
 is an ordered
tree without an isolated vertex, let the set of the preorder numbers of assigned to the vertices of

����

be �

� �	 �	 � � � � � �. When
����
 consists of an ordered tree and an isolated vertex, let the set

of the preorder numbers
� � � � � � assigned to the vertices of the ordered tree and the last assigned

to the isolated vertex in
����
 be �

� �	 �	 � � � � � �. Let �
��

be a set of the adjacency matrices
representing the identical unordered tree

�
. The adjacency matrix!� whose!"#�

is the smallest in
�
��

is called the canonical form.

!� ��� !"#��!�
 � ���
�������!"#����
�7

7The canonical form must be the minimum���� among the adjacency matrices representing an identical graph according
to the definition of the condition 3.

78 A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs

�

�� �

�

�� �
����

����	�
	�������

����

�

� � �

�

� � �

�
�
�
�
�

�

�

�
�
�
�
�

�

�

����

����

����

����

�

�

�

�

����

�
�
�
�
�

�

�

�
�
�
�
�

�

�

����

����

����

����

�

�

�

�

����

���������� ����������

������

������

Figure 28. Tree Representation.

For example, the trees in Figure 28 are not isomorphic as ordered trees, but they are isomorphic as
unordered trees. Since the!"#�

of the adjacency matrix corresponding to the left tree is at aminimum
for the matrices that represent the same tree, the matrix is the canonical form. The conditions of the join
operation for this bias are the same as those for the ordered tree bias. The completeness of the search by
this join operation is proven similarly to the bias for the ordered subtree derivation.

6. Discussion and Related Work

Heuristic-based approaches,e.g., SUBDUE [5] and GBI [26, 20] have been introduced to alleviate the
complexity issue. SUBDUE derives characteristic patternsbased on Minimum Description Length of
subgraphs. The latest version of GBI derives characteristic patterns in a dataset by chunking pair of
connected vertices having various types of high scores [19]. The advantage of these methods is their
ability to search for typical patterns under various criteria in a rapid manner. However, their greedy
search may miss some important patterns.

In contrast, MolFea [7], TreeMiner [27], and FREQT [2] use complete search strategies similarly
to the AGM algorithm. They require"�
 memory to store the trees or paths, where is the number
of vertices in the tree. Although our approach requires"��
 memory for the storage, other methods
which focused on one particular class of graph cannot be applied to mine more complex substructures.
Our proposed method can conduct a complete search of variousclasses of frequent subgraphs. As shown
in Section 4, the AGM algorithm with a bias for the ordered subtree or path derivation can derive the
complete result within a practical time period for each class of problem, where the relative performance
is better than or comparable to the other approaches.

In addition, the B-AGM algorithm with a bias for the connected subgraph derivation can efficiently
discover all of the frequent subgraph patterns, with relative performance better than FSG [17] and com-
parable to gSpan [24]. The first reason for the efficiency of B-AGM is that it can quickly generate
adjacency matrices of candidate frequent subgraphs through the join operation finding a common sub-
structure shared by two graph patterns under the adjacency matrix representation. If a well-defined data
structure such as an adjacency matrix or the DFS canonical code of gSpan is not used, exponential time

A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs 79

is needed to find the common substructures from two graphs. Infact, B-AGM can find one of the com-
mon structures in"��
 from two adjacency matrices of size. Although gSpan does not generate any
candidates, it can find one of common substructures in"�� � �
 if it generates them, where� and� are
the numbers of vertices and edges in a graph pattern, respectively. In addition, B-AGM and gSpan can
find it in "��

by using the implementation used in [12, 24]. On the other hand, the first version of FSG
needs exponential time to find the common subgraphs [17], because it has to do subgraph isomorphism
matching between a pattern with� edges and subgraphs with� � �edges of another pattern.

The second reason is frequency counting. The B-AGM algorithm stores a set of the correspondences
of the vertices between a subgraph pattern and each graph in adatabase, as mentioned in Section 2.2.4.
Figure 29 shows the computation times under various minimumsupport thresholds for cases where the
B-AGM algorithm stores the correspondences of the verticesand does not store the relations8. The latter
counting method is referred to Naive Counting in Figure 29. The computation times of the former count-
ing method are smaller than those of the latter counting method. Accordingly, the B-AGM algorithm can
quickly count support values. A drawback of the B-AGM algorithm is that it requires memory to store
the relations as shown in Figure 30 while no memory is required in the latter counting method. However,
the required memory space for moderate amounts of data remains small. These features of the B-AGM
algorithm result in high efficiency since the load of the subgraph isomorphism matching required to count
the frequency of each pattern is quite small. FSG needs more computation time for the subgraph isomor-
phism matching required in the join operation, because of the code representation of graphs without an
algebraic background. The gSpan algorithm uses an efficientdepth-first search based on DFS canonical
codes for graphs. Although it can also be extended to mine directed subgraphs, subtrees, and paths, it
is not easily extended to mine general subgraphs including unconnected subgraphs [25]. Table 1 sum-
marizes the combinations of the given datasets, the objective classes of substructures, and the applicable
approaches. This shows that our B-AGM can be applied to various problems.

�

��

���

����

�����

� � � � � � � � � 	 ��

���

������ ���

��
��
��
���
��
��
��
 !
��
"

#$%&'

#$%&'()*+,-.���

Figure 29. Computation Times to Count Support.

8The B-AGM algorithm with a bias for the connected subgraph derivation was used in Figures 29, 30. The derived subgraphs
are induced subgraphs of each graph data.

80 A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs

���

���

����

����

����

����

����

� � � � � � � � � 	 ��

���

������ ���

��
��
��
��
��
��
 !

"#
��$%�&#'��()*+"

Figure 30. Required Memory Space to Store Correspondences of Vertices.

Table 1. Summary of Graph Mining Methods.

Dataset Substructure Class Approach

Graph General subgraph AGM, B-AGM

Graph Connected subgraph FSG, B-AGM, gSpan

Tree Tree [22], UNOT [3], B-AGM, gSpan

Ordered tree Ordered tree FREQT, TreeMiner,B-AGM, gSpan

Graph Path MolFea, B-AGM, gSpan

WARMR [6] and FARMER [21] for the complete search of the structures that belong to a more
general class than the graph have been proposed. They tried to mine characteristic patterns in the form of
first order predicates using PROGOL, which is a system used ininductive logic programming (ILP). They
combined ILP principles with a levelwise search technique to improve the search efficiency. However,
their results include some predicates having different forms but equivalent in the sense of

,
-subsumption,

and the class of the substructures to be searched was limitedto connected structures.

7. Conclusion

We proposed a generic framework for the data mining of graph structures. By introducing additional
biases, our approach can easily derive various types of frequent substructures. We evaluated its perfor-
mance in terms of the required computation time for some realworld datasets. The wide coverage for
various problem classes and the computational efficiency were confirmed and our method appears to
outperform or be comparable with other approaches.

A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs 81

Acknowledgement

We would like to thank Prof. Luc De Raedt of the University of Freiburg, Prof. Stefan Kramer of
the Technical University of Munich, Prof. Mohammed Zaki of Rensselaer Polytechnic Institute, Prof.
Takashi Okada of Kwansei University, Prof. Hiroki Arimura and Dr. Tatsuya Asai of Kyushu University,
and Shannon Jacobs of IBM Japan HRS for their help and advice.

References

[1] Alberts, B., Bray, D., Johnson, A., Lewis, J., Raff, M., Roberts, M., and Walter, P.: Essential Cell Biology:
An Introduction to the Molecular Biology of the Cell,Garland Science Publishing, 1998.

[2] Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., and Arikawa, S.: Efficient Substructure Discovery
from Large Semi-Structured Data,Proc. of the 2nd SIAM International Conference on Data Mining, pp. 158–
174, 2002.

[3] Asai, T., Arimura, H., Uno, U., and Nakano, S.: Discovering Frequent Substructures in Large Unordered
Trees,Proc. of the 6th International Conference on Discovery Science, pp. 47–61. 2003.

[4] Brin, S., Motwani, R., and Silverstein, C: Beyond marketbaskets: Generalizing association rules to correla-
tions,Proc. of the SIGMOD International Conference on Managementof Data, pp. 265–276. 1997.

[5] Cook, D. and Holder, L.: Substructure Discovery Using Minimum Description Length and Background
Knowledge,Journal of Artificial Intelligence Research, Vol. 1, pp. 231–255, 1994.

[6] Dehaspe, L., Toivonen, H., and King, R.: Finding Frequent Substructures in Chemical Compounds,Proc. of
the 4th International Conference on Knowledge Discovery and Data Mining, pp. 30–36, 1998.

[7] De Raedt, L. and Kramer, S.: The Levelwise Version Space Algorithm and its Application to Molecular
Fragment Finding,Proc. of the 17th Joint Conference on Artificial Intelligence, pp. 853–859, 2001.

[8] Garey, M. and Johnson, D.:Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H.
Freeman, 1979.

[9] AIDS Antiviral Screen, http://dtp.nci.nih.gov/docs/aids/aidsdata.html

[10] Inokuchi, A., Washio, T., and Motoda, H.: An Apriori-based Algorithm for Mining Frequent Substructures
from Graph Data,Proc. of the 4th European Conference on Principles of Data Mining and Knowledge Dis-
covery, pp. 13–23, 2000.

[11] Inokuchi, A., Washio, T., Nishimura, Y., and Motoda, H.: A Fast Algorithm for Mining Frequent Connected
Graph,IBM Research Report, RT0448, 2002.

[12] Inokuchi, A., Washio, T., and Motoda, H.: Complete Mining of Frequent Patterns from Graphs: Mining
Graph Data,Machine Learning, Vol.50, pp. 321-354, 2003.

[13] Inokuchi, A., Washio, T., and Motoda, H.: A General Framework for Mining Frequent Patterns in Structures,
IBM Research Report, RT0513, 2003.

[14] Kilpelainen, P. and Mannila, H.: Ordered and UnorderedTree Inclusion,SIAM Journal on Computing,
Vol.24, pp. 340–356, 1995.

[15] Kramer, S., and De Raedt, L.: Feature Construction withVersion Space for Biochemical Applications,Proc.
of the 18th International Conference on Machine Learning, pp. 258–265, 2001.

82 A. Inokuchi et al. / A General Framework for Mining Frequent Subgraphs from Labeled Graphs

[16] Kramer, S., De Raedt, L., and Helma, C.: Molecular Feature Mining in HIV data,Proc. of the 7th Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 136–143, 2001.

[17] Kuramochi, M. and Karypis, G.: Frequent Subgraph Discovery,Proc. of the 1st International Conference on
Data Mining, pp. 313–320, 2001.

[18] Kuramochi, M. and Karypis, G.: An Efficient Algorithm for Discovering Frequent Subgraphs,Technical
Report, 02-026, 2002.

[19] Matsuda, T., Horiuchi, T., Motoda, H., and Washio, T.: Extension of Graph-Based Induction for General
Graph Structured Data,Proc. of the 4th Pacific-Asia Conf. on Knowledge Discovery and Data Mining,
pp. 420–431, 2000.

[20] Motoda, H. and Yoshida, K.: Machine Learning Techniques to Make Computers Easier to Use,Proc. of the
15th International Joint Conference on Artificial Intelligence, Vol. 2, pp. 1622–1631, 1997.

[21] Nijiissen, S. and Kok, J.: Faster Association Rules forMultiple Relations,Proc. of the 17th International
Joint Conference on Artificial Intelligence, pp. 891–896, 2001.

[22] Nijiissen, S. and Kok, J.: Efficient Discovery of Frequent Unordered TreesProc. of the 1st First International
Workshop on Mining Graphs, Trees and Sequences, 2003.

[23] http://oldwww.comlab.ox.ac.uk/oucl/groups/ machlearn/PTE

[24] Yan, X. and Han, J.: gSpan: Graph-Based Substructure Pattern Mining,Proc. of the 2nd International Con-
ference on Data Mining, pp. 721–724, 2002.

[25] Yan, X. and Han, J.: CloseGraph: Mining Closed FrequentGraph Patterns,Proc. of the 9th International
Conference on Knowledge Discovery and Data Mining, pp. 527–532, 2003.

[26] Yoshida, K. and Motoda, H.: CLIP: Concept Learning fromInference Patterns,Artificial Intelligence, Vol. 75,
No. 1 pp. 63–92, 1995.

[27] Zaki, M.: Efficiently Mining Frequent Trees in a Forest,Proc. of the 8th International Conference on Knowl-
edge Discovery and Data Mining, pp. 71–80, 2002.

