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Abstract. Resources available over the Web are often used in combi-
nation to meet a specific need of a user. Since resource combinations
can be represented as graphs in terms of the relations among the re-
sources, locating desirable resource combinations can be formulated as
locating the corresponding graph. This paper describes a graph clustering
method based on structural similarity of fragments (currently connected
subgraphs are considered) in graph structured data. A fragment is char-
acterized based on the connectivity (degree) of a node in the fragment.
A fragment spectrum of a graph is created based on the frequency distri-
bution of fragments. Thus, the representation of a graph is transformed
into a fragment spectrum in terms of the properties of fragments in the
graph. Graphs are then clustered with respect to the transformed spectra
by applying a standard clustering method. We also devise a criterion to
determine the number of clusters by defining a pseudo-entropy of cluster.
Preliminary experiments with synthesized data were conducted and the
results are reported.

1 Introduction

1.1 Motivation

Huge number of (computing) resources are available over the Web these days.
Users may select some of the resources to perform their jobs by exploiting rela-
tions among the resources. For example, URLs are resources available over the
Web, and they are connected to each other by hyperlinks, as shown in the left
hand side of Fig. 1 (hyperlinks are depicted as dotted lines as directed edges).
Suppose that the pattern of with URL {K, M, A, B} are frequently observed in
a log file of web browsing. When a user follows or selects URL {K, M, A}, it is
likely that he/she may select URL B. Thus, by discovering the pattern shown in
the right hand side of Fig. 1, it will be possible to help users to select or locate
the resource by recommending the resource in the pattern. As another exam-
ple, web citation analysis is reported and compared with bibliographical citation
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Fig. 1. Example of resource selection (web browsing pattern)
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Fig. 2. Example of co-citation graph

analysis in [12]. Although URL G and H are not connected to each other directly,
they are both pointed to (or, cited) by F. Thus, G and H are co-cited by F, as
shown in the left hand side of Fig. 2. In terms of this kind of co-citation relation,
URLs are (implicitly) connected to each other as shown in the right hand side
of Fig. 2 (co-citation relations are depicted as thick lines as undirected edges).
Once co-citation graphs are constructed, various analysis can be conducted on
the graphs. For instance, URL H and A might be interesting because they have
large number of co-citation relation.

As illustrated in the above examples, since resource combinations can be
represented as graphs in terms of the relations among the resources, locating
desirable resource combinations can be formulated as locating the correspond-
ing graph. In our approach it is assumed that relations among resources are
specified externally such as hyperlinks or co-citation relations, and how to de-
fine relations among resources to construct appropriate graph structured data
is beyond the scope of this research. When a user tries to locate desirable re-
source combinations, ultimate goal of this research is to support the selection of
resource combinations in terms of graph structures over the resources.

1.2 Mining Graph-Structured Data

Various researches have been conducted to extract knowledge from the vast body
of unstructured Web data [2]. The majority of data mining methods widely used
are for data that does not have structure and is represented by attribute-value



pairs. Decision tree [14, 15], and induction rules [10, 3] relate attribute values
to target classes. Association rules often used in data mining also utilize this
attribute-value pair representation. However, the attribute-value pair represen-
tation is not suitable for representing a more general data structure, and there
are problems that need a more powerful representation. Most powerful represen-
tations that can handle relation and thus, structure, would be inductive logic
programming (ILP) [11] which uses the first-order predicate logic. It can repre-
sent general relationships embedded in data, and has a merit that domain knowl-
edge and acquired knowledge can be utilized as background knowledge. However,
in exchange for its rich expressibility, the time complexity causes problem [5].

Since structure is represented by proper relations and a graph can easily rep-
resent relations, knowledge discovery from graph structured data poses a general
problem for mining from structured data. Various researches such as AGM [6],
FSG [7], Subdue [4], have been conducted on mining from graph structured data.
Some examples amenable to a graph mining are finding typical web browsing
pattern, identifying typical substructure of chemical compounds, finding typi-
cal subsequences of DNA and discovering diagnostic rules from patient history
records.

We have applied our graph mining method called GBI [8] to extract typical
patterns from the hepatitis dataset provided by Chiba University Hospital in
the Active Mining project [9, 20]. GBI extracts connected subgraphs from graph
structured data by conducting greedy search without backtrack. Because of its
greedy search, it can handle large scale graph structured data. One drawback
of its search strategy is that search is incomplete in the sense that not all the
subgraphs are enumerated. One of the problems we encountered in the project
is that huge number of patterns (connected subgraphs in our approach) can be
extracted from large scale graph structured data by applying our graph min-
ing method. The number of extracted graphs will increase by applying other
complete graph mining methods and the problem will get more severe. Thus, al-
though patterns can be extracted from graph structured data by applying graph
mining methods, it gets very difficult to evaluate all the extracted patterns.

1.3 Clustering Graph-Structured Data

Although the number of graphs to be considered can be huge, some compo-
nents of graphs share structural properties. For example, chemical compound
derived from benzene ring (aromatic compounds) have similar chemical prop-
erties because they share the benzene ring. This motivates a research branch
called (quantitative) structure activity relationship in computational chemistry.
In QSAR, the relationship between the property or activity of chemical com-
pounds and their structure has been studied. As another example, starting from
the pioneering work in [19], many researches have been conducted to reveal that
a lot of many graphs or networks are categorized into a so called “small world”
network in terms of their structure [1]. Small world networks share the proper-
ties that, although nodes are densely connected locally with their neighbors, the



average path length between two nodes in the network is relatively short as a
whole due to some edges which connect distant nodes.

By assuming that graphs with similar structure share some properties, we
aim at clustering graph-structured data based on their structural similarity in
this research. When graphs are categorized into clusters, a small number of
graphs can be selected from each cluster as representatives. As in the research
on small world networks, we consider structural properties of graph in terms of
connectivity (degree) of nodes in the graph, and transform the representation of
graph into the corresponding spectrum. Transformation into the corresponding
spectrum acts as a kind of hash function. Thus, if a user can specify the desirable
resource combinations as a graph, our method can be utilized to discriminate
the graphs of resource combinations into the similar and dissimilar ones in terms
of the corresponding spectra. Graphs are then clustered with respect to the
transformed spectra by applying a standard clustering method. We also propose
a method based on our notion of pseudo-entropy of cluster to determine the
number of clusters in clustering. Preliminary experiments on synthetic data were
conducted and the results are reported in this paper.

As described in Section 1.2, this research is motivated by the application of
GBI, which can handle general graph data with both directed and undirected
edges. However, as a first step, only undirected graphs are considered in this
paper, and labels of nodes and edges are not dealt with yet. The graph structure
currently handled with corresponds to the example in Fig. 2. Since the labels are
not yet dealt with, two graphs in the right hand side of Fig. 2 are considered as
isomorphic, and are categorized into the same cluster. Thus, our current status
is very preliminary since the content of resource (e.g., textual information in a
URL) is not dealt with. However, filtering out graphs with respect to structure
can be utilized as preprocessing for more fine-grained and detailed analysis of
contents.

Various researches have been conducted on the similarity measure of graph
structured data and clustering of graph structured data. Among related works,
Topological Fragment Spectra (TFS) [17] has been proposed, which characterizes
the properties of chemical compounds in terms of fragments (subgraphs) within
the compounds. ANF [13] is proposed for the fast calculation of similarity for
large scale graph structured data. Our method is motivated by TFS, however,
it differs with respect to two aspects: 1) calculation of fragment spectra, and 2)
extension to clustering of spectra.

Organization This paper is organized as follows. Section 2 describes a
method for representing the properties of a graph as a spectrum of fragments
(subgraphs). Experiments on the calibration of the proposed fragment spectrum
are also reported. Section 3 describes the clustering of fragment spectra and a
method for determining the number of clusters. Preliminary experiments with
synthetic data are reported in Section 4. A short concluding remarks and future
directions are described in Section 5.



2 Fragment Spectrum of Graph

2.1 Preliminaries

A simple graph is denoted by G = (V, E) where V is a set of vertices and E ⊆
V ×V a set of (undirected) edges in G. For any vertices v, v′ ∈ V , if (v, v′) ∈ E,
v is said to be adjacent to v′. Let G = (V, E) be a graph. For a vertex v ∈ V , the
set of vertices adjacent to v is denoted by NG(v). |NG(v)|, the size of NG(v), is
called the degree of v with respect to G. |NG(v)| is also referred to as degreeG(v).
Let G = (V, E) and G′ = (V ′, E′) be two graphs. G is called a subgraph of G′

when V ⊆ V ′ and E ⊆ E′, and is denoted as G ⊆ G′.

2.2 Fragment Spectrum of Graph

Similarity measures of graph can be categorized into two approaches: direct
comparison based approach and fingerprint based approach [16]. In the former
approach, the similarity between two graphs is measured either by the maximum
common subgraphs or the maximum common edge subgraphs. The maximum
common subgraphs are identified in two graphs and the size (either number of
nodes or edges) of the subgraphs are used to measure the similarity. Although
the similarity can be measured directly on the graphs, exact identification of the
maximum common subgraphs can be very expensive in practice. On the other
hand, in the latter approach, a graph is represented as a bit string, each bit
indicates the presence or absence of a predefined substructure (which acts as a
key descriptor). The similarity between two graphs is measured by comparing
their corresponding bit strings. Although key descriptor selection needs to be
addressed in fingerprint based approach, we take this approach since it is rather
simple and easy in practical use.

We aims at capturing structural properties of a graph based on its fragments
in the graph and represents the graph as a fragment spectrum1. Currently a frag-
ment of a graph is defined as a connected subgraph in the graph. Hereafter, we
consider only connected subgraphs. Fig. 3 shows an example of the construction
of fragment spectrum in our approach. The score of a fragment in a graph G is
calculated by a function FScore, which is explained in Section 2.3. The graph in
Fig. 3 has 1 fragment with score 1, 3 fragments with score 5, 3 fragments with
score 6, etc. Based on the frequency of fragments with the same score, the frag-
ment spectrum for the graph is represented as a vector fs = (0, 0, 1, 4, 3, . . .),
where fs[i] represents the frequency (count) of fragments with score i. Con-
struction of fragment spectrum for a graph is shown in Fig. 4.

2.3 FScore function

A fragment F in a graph G is characterized as a score by a function called FScore
based on its connectivity. Each node v in a fragment F is scored based on its
degree and the score of F is calculated based on the scores of nodes in F . We
consider the following two “degree” for a node v ∈ F :
1 Following Topological Fragment Spectra (TFS) [17], we call a fragment spectrum.
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Fig. 3. Fragment spectrum of a graph

fragment spectrum( graph G )
fs: fragment spectrum of G
initialize fs to 0
forall fragment (connected subgraph) F ∈ G

fs[FScore(F, G)] := fs[FScore(F, G)] + 1
return fs

Fig. 4. Fragment spectrum construction

– degree sorely in the fragment

– degree within the original graph

The former follows the standard definition of degree in a graph, and focuses on
the connectivity sorely in the fragment. However, the degree in a fragment is
invariable to the graphs which contain the fragment. To reflect the difference
of the original graph, the latter considers the degree within the original graph,
hoping that the relationship of F to the remaining part of G works as a sort of
context of F within G.



Table 1. FScore function

degree of node
original graph fragment

sum FScore1 –

square sum FScore3 FScore2

In addition, the difference between the scores of nodes can be magnified using
polynomials of score. The score of a fragment is calculated based on the scores
of nodes in the fragment:

– sum of the scores of nodes
– square sum of the scores of nodes

FScore functions to calculate the score of a fragment is summarized in Table 1.
With the combination of “sum” and “fragment”, the fragments with the same
number of nodes and edges have the same score regardless their structure or
connectivity. Thus, since it does not reflect structural properties of graph, it is
not considered and thus is left blank (–) in Table 1.

The number of fragments in a graph G increases exponentially with respect to
its size (the number of nodes and edges). Thus, it becomes difficult to compare
spectra of graphs with different size since the overall shape of spectrum can
become very different. To make it easy to compare fragment spectra of graphs
with different size, although it is trivial, a normalized fragment spectrum is
defined by dividing each value (frequency of fragments) in the fragment spectrum
by the total number of fragments in the graph. Note that currently normalization
is considered only for the frequency of fragments. Normalization of scores is not
considered yet.

In summary, 6 FScore functions (3 variations in Table 1 and the correspond-
ing normalized ones (NFScore1, NFScore2, NFScore3)) are currently used.

2.4 Calibration of Fragment Spectrum

This section reports the experiments on the calibration of the proposed fragment
spectrum to verify that graphs with different structure can be differentiated with
respect to the corresponding fragment spectra. 4 types of graph structured data
are considered: line, ring, ring lattice and star. These types of graph structure
are prepared such that the average path length between two nodes, which corre-
sponds to the characteristic path length in small world networks [19], decreases
in the order of line, ring, ring lattice and star structure. To simplify the cali-
bration, relatively small scale graphs with these types are prepared, as shown in
Figs. 5, 6, 7 and 8.

For the graphs with the same number of nodes, a graph with line structure
and the one with ring structure differs only with one edge. Thus, these two
structures can be considered as very similar. Ring lattice structure in Fig.7



Fig. 5. Line Fig. 6. Ring

Fig. 7. Ring lattice Fig. 8. Star

corresponds to the β model in [18]. It is similar to ring structure but each
node is connected to k neighbors (here, k was set to 4). On the other hand, star
structure is different from these in terms of the connectivity, since a graph with
star structure has one “central” node which is connected to all the other nodes.
When each node corresponds to a scientific paper and the relations among nodes
are defined as co-citation relations (similar to the example in as in Fig. 2), the
central node corresponds to a sort of seminal paper.

Examples of fragment spectra for the graphs are shown in the appendix. For
instance, using NFScore 3 function in Section 2.3, spectra of graphs with star
structure in Fig. 8 have peak band elements (normalized frequencies) at the tail
of the spectra2, due to its structure and scoring method, as shown in Fig. 21.
Thus, if the maximal value of score is known for each graph or the spectrum is
normalized with respect to the score, a high-pass filter for fragment spectrum
might be useful to extract graphs with star structure among many graphs.

The graphs in Figs. 18, 19, 20 and 21 with 6 nodes are compared in Fig. 9.
Fragment spectra were created using NFScore 3 (normalized score function was
used to see the overall shape of spectra). The graph with ring structure has

2 As described in the appendix, horizontal axes (score of fragment) are aligned to the
maximal score in the rightmost graph in each figure.
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Fig. 9. Fragment spectra of graphs with 6 nodes using NFScore3 (upper left: line
(Fig. 5), upper right: ring (Fig. 6), lower left: ring lattice (Fig. 7)) lower right: star
(Fig. 8),

almost flat spectra (upper right in Fig. 9), because the frequency of fragments for
each score is almost the same. The graph with line structure and the one with ring
structure are quite similar in terms of the number of nodes or common subgraphs
(upper left). The spectrum of the former also includes flat components, but it also
includes another components with decreasing number of relative frequency. The
graph with ring lattice has only several elements with growing frequencies (lower
right) using NFScore3. The graph with star structure has a peak band (lower
left), since the central node has the large score (degree) and the other nodes has
a small score. Thus, since the scores of fragments differ only with respect to the
number of non-central nodes, fragments in a graph with star structure tend to
have almost similar scores.

From this result, it can be said that fragment spectra of graphs with different
structure also tend to have rather different shape or pattern. Thus, the score
functions can be used as a kind of hash functions to discriminate graphs with
different structure. However, graphs with different spectra can be considered as
different, but different graphs may come to the same spectrum when a hash
collision occurs, as in many hash functions. Thus, we do not claim that fragment
spectra of graphs are enough to differentiate graphs with different structures.
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Fig. 10. Similarity of spectra

3 Clustering Fragment Spectrum

After transforming the representation of graphs into the corresponding frag-
ment spectra by the method in Section 2, graphs are clustered with respect to
the transformed spectra by applying a standard clustering method. Among var-
ious clustering methods, we simply utilize K-means method with respect to the
similarity of fragment spectra. Our main contribution for clustering is to devise a
criterion to determine the number of clusters, since the number of clusters need
to be specified beforehand in many clustering methods. Inspired by the divide
and conquer strategy in decision tree construction algorithms [14, 15], we view
clustering of data as the division of the whole data into the specified number of
clusters. By defining a pseudo-entropy of cluster, the quality of cluster is mea-
sured as in the information gain ration in [15] before and after the division of
data into clusters.

3.1 Similarity of Fragment Spectra

A spectrum is conceived as a vector in a multi-dimensional space where each
dimension corresponds to a score of fragment and the value represents the fre-
quency or normalized frequency of fragments of the score. When comparing two
fragment spectra of different dimensions (scores), the one with smaller dimension
is padded with 0 for the larger dimensions. By regarding the spectra as vectors,
it might be possible to utilize similarity measures for vectors such as cosine simi-
larity. However, toward incorporating nominal attributes such as labels of nodes
and edges in future work, currently similarity is measured for each dimension
separately and averaged. Similarity in one dimension is calculated by projecting
the vector onto the corresponding dimension, and measured as the relative range
of the projection, as shown in Fig. 10. Our similarity measure of graphs Gi and
Gj in terms of their corresponding spectra is defined as:
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Sij =
1
M

M∑

m=1

(1 − |fsim − fsjm|
max fsm − min fsm

) (1)

fsim: mth coordinate value of fsi for graph Gi

maxfsm: maximal value for the mth coordinate for all spectra
min fsm: minimal value for the mth coordinate for all spectra
M : maximal dimension for all the spectra

3.2 Pseudo-Entropy of Cluster

A machine learning method C4.5 [15], which constructs a decision tree, selects
an attribute to divide the data based on the entropy of data before and after
the division. We apply this approach to determine the number of clusters by
defining a pseudo-entropy of data in clustering. Fig. 11 illustrates our notion of
pseudo-entropy of cluster. In the standard concept of entropy, concentrated data
has low entropy, and the scattered data has high entropy. However, we regard a
cluster with concentrated data as good, since it certainly forms a cluster of data,
but we also regard a cluster with scattered data as good, since it is difficult to
further divide them into (meaningful) sub-clusters. Thus, we would like to give
low pseudo-entropy to these clusters. On the other hand, if the data inside a
cluster is rather separated as shown, we regard it as bad, since it is possible to
further divide the cluster. Thus, we would like to give high pseudo-entropy to
this kind of cluster.

We define a pseudo-entropy of cluster Ck as PEnt(Ck) such that it has low
value either when data is evenly distributed in a cluster or when all the data
concentrate on a small portion in a cluster, as follows:

PEnt(Ck) = − 1
| Ck |2

|Ck|∑

i=1

|Ck|∑

j=1

(Sij log2 Sij + (1 − Sij) log2(1 − Sij)) (2)

PEnt(Ck): pseudo-entropy of cluster Ck

|Ck|: size (number) of data in cluster Ck

Sij∈[0,1]: similarity of fragment spectrum fsi and fsj



PEnt(Ck) is calculated based on the pair-wise comparison of data within the
cluster. Sij ∈ [0,1] corresponds to the similarity of two data (spectra of graphs
Gi and Gj) within the cluster, and Dij = 1 - Sij corresponds to the dissimilarity.

Intuitively, when comparing two graphs Gi and Gj , let’s consider an event
I where Gi and Gj are isomorphic. Also, let’s consider an event N where Gi

and Gj are not isomorphic. These two events are mutually exclusive. Since Sij

∈ [0,1], Dij ∈ [0,1], and Sij + Dij = 1, we treat Sij as the probability of
the event I and Dij = 1 - Sij as the probability of the event N . The value
−(Sij log2 Sij+(1−Sij) log2(1−Sij)) = −(Sij log2 Sij+Dij log2 Dij) corresponds
to the binary entropy function for a binary random variable, whose value is I
with probability Sij and N with probability Dij . Average of this value for all
the pair-wise comparison of data in a cluster is calculated in (2).

When all the data in a cluster are the same and concentrate on a single
point in multi-dimensional space, since Sij = 1 for all the pairs of data in the
cluster, the numerator of (2) becomes 0 and thus is minimized. Likewise, when
all the data in a cluster are completely dissimilar (Sij = 0) and scattered within
the cluster, the numerator also becomes 0. On the other hand, when the data
are partially similar and dissimilar each other (Sij = 0.5), the numerator is
maximized.

3.3 Information Gain Ratio for Cluster

Based on the difference of pseudo-entropy of cluster in (2) before (i.e., the whole
unclustered data) and after clustering, we define an information gain ratio of
cluster (IGRC) for the situation where the data are assigned to K clusters as:

IGRC =
PEnt(C) − ∑K

k=1
|Ck|
|C| PEnt(Ck)

−∑K
k=1

|Ck|
|C| log2

|Ck|
|C|

(3)

PEnt(Ck): pseudo-entropy of cluster Ck

PEnt(C): pseudo-entropy of the whole unclustered data

Note that when each data is assigned to a cluster with only the data, the
numerator of (3) is maximized since the entropy of each cluster is 0. Thus, to
penalize such an over-clustered situation, the difference is divided by the split
gain of clustering as in C4.5 [15].

Our criterion for the number of clusters is to select the number of clusters
which maximizes the value of IGRC. This criterion is used in the following
experiments in Section 4.

4 Preliminary Experiment

Preliminary experiments were conducted to evaluate the proposed method over
synthetic data. This section explains experimental settings and reports the re-
sults.



Fig. 13. Example of graphs in Exp.1

Fig. 14. Examples of graphs in Exp.2

4.1 Synthetic Data

Fig. 12. appended subgraphs

In experiments, synthetic data (graphs) were
created by preparing a predefined set of
graphs (which are called base graphs in
this paper)and appending the subgraphs in
Fig. 12. The synthesized graphs are called de-
rived graphs. The base graphs are prepared
with respect to 1) the number of nodes and
edges, and 2) configuration. Following two ex-
periments were conducted:

Exp.1 number of nodes and edges: graphs with different number of nodes and
edges but with similar configuration

Exp.2 configuration: graphs with dissimilar configuration but with the same
number of nodes and edges

Base graphs used in Exp.1 and Exp.2 are shown in Figs. 13 and 14, respectively.
The number of graphs (with the the base graphs and derived graphs) in Exp.1
was 18 and 61 in Exp.2. One drawback in the above setting is that, despite many
researches have been conducted, “the correct” measure of similarity/dissimilarity
of configuration of graphs is not known yet. Thus, when preparing graphs in
Exp.2, it is based on our subjective assessment.



Table 2. k with maximal IGRC

FScore function k with maximal IGRC
Exp.1 Exp.2

FScore1 9 2

FScore2 2,3 2

FScore3 8 17

NFScore1 3 2

NFScore2 2 2

NFScore3 3 2
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Fig. 15. IGRC in Exp.1 (with NFScore1)
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Fig. 16. IGRC in Exp.2 (with NFScore1)

4.2 Results

6 functions in Section 2 were used to create fragment spectra for the graphs
in Exp.1 and Exp.2. The spectra were then clustered by K-means by setting
K to the one with the maximal value of IGRC. If the structural properties of
graphs are to be reflected on the number of nodes/edges and the configuration,
we hypothesized that graphs should be categorized into clusters such that each
cluster includes only the graphs which share the same base graph. Thus, the
desirable value of K would be 3 and 4 for Exp.1 and Exp.2, respectively. The
number of clusters K with the maximal value of IGRC in the experiments is
summarized in Table 2. Changes of IGRC with NFScore1 for Exp.1 and Exp.2
are shown in Figs. 15 and 16, respectively.

In Exp.1, the desired value of K (K=3) was obtained with NFScore1 and
NFScore3. In addition, the graphs were clustered as intended, in the sense that
all the graphs which share the same base graph were categorized into the same
cluster. On the other hand, except for FScore3, K=2 gave the maximal value of
IGRC in Exp.2, and the hypothesized value (K=4) was not attained.

4.3 Discussions

From Table 2, it can be said that normalized score functions gave better cluster-
ing. The number of subgraphs in a graph G increases exponentially with respect
to its size (the number of nodes and edges). Thus, as the size of graph increases,



Fig. 17. Clustered graphs in Exp.2

the similarity of graphs which share the same base graph tends to decrease since
the difference in the frequency of fragments with the same score gets larger in
(1). This results in categorizing the graphs into different clusters. Normaliza-
tion contributed to reducing this effect. On the other hand, with FScore2 and
NFScore2 which calculate the degree of node within a (extracted) fragment, the
maximal value of IGRC was obtained at K=2 for both Exp.1 and Exp.2. Thus,
these functions were not effective for clustering graphs with respect to configu-
ration. This indicated that considering the degree of node in the context of the
original graph would be effective to reflect structural properties of fragment.

As described above, the value of IGRC was maximized at K=2 except for
FScore3 in Exp.2. Fig. 17 illustrates the clustered graphs with NFScore1. As
shown in Fig. 17, all the graphs which share the same base graph were assigned
into the same cluster and they were not mixed up between different clusters.
However, our criterion (maximization of IGRC) could not divide the clusters
into smaller ones. The graphs in the left hand side in Fig. 14 were categorized
into the same cluster. One possible conjecture is that a graph with ring structure
can be rewritten into the other corresponding graph by removing one edge and
adding it as another edge. If these graphs are considered as similar in terms of
rewriting operation of graph3, the desirable number of clusters can be considered
as 3. In the previous result, the value at K=3 has the similar value at K=2 with
NFScore1, albeit it was not the maximal. Still, the result of Exp.2 indicate that
much work need to be done to improve our clustering method with respect to
configuration.

3 A kind of edit distance measure is used in Subdue [4] for inexact graph matching.



5 Concluding Remarks

This paper has described a graph clustering method based on structural sim-
ilarity of fragments (currently connected subgraphs are considered) in graph
structured data. The representation of a graph is transformed into a fragment
spectrum, which represents the frequency distribution of fragments, in term of
the the connectivity of a node in the fragment. The graphs are then clustered
by applying a standard clustering method (K-means method) with respect to
the transformed fragment spectra. The quality of cluster is estimated based on
a pseudo-entropy of cluster in order to determine the number of clusters. Pre-
liminary experiments with synthesized graphs were conducted and the results
are reported. The results indicate that our method can cluster graph structure
data with respect to the number of nodes and edges, but much work need to
be done with respect to the configuration. Especially, the number of clusters
tends to be under-estimated by our criterion. Currently our method only deals
with superficial similarities in structure. We would like to extend our method to
incorporate the label of node and edge so that resource combinations over the
Web can be considered in terms of their contents.
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Appendix: Examples of Fragment Spectrum

Fragment spectra of graphs shown in Figs. 5, 6, 7 and 8. are shown in Figs. 18,
19, 20 and 21, respectively. For each type of graphs, horizontal axes (score of
fragment) are aligned to the maximal score in the rightmost graph in each figure.
To see the overall shape of spectra, normalized score functions are used to create
fragment spectra and thus the maximal value of vertical axis is set to 1.0. Since
the normalized frequency in NFScore1 is the same with the one in NFScore3
(except that x axis is rather stretched out since the score of each node is square
summed), NFScore2 and NFScore3 are used to create the spectra. Figs. 18, 19,
20 and 21 indicate that fragment spectra of graphs with the same structure
have similar shape or pattern and that fragment spectra of graphs with different
structure also tend to have rather different patterns in terms of the corresponding
spectra.
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Fig. 18. Spectra for graphs with line structure (with NFScore2)
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Fig. 19. Spectra for graphs with ring structure (with NFScore2)
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Fig. 20. Spectra for graphs with ring lattice structure (with NFScore3)
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Fig. 21. Spectra for graphs with star structure (with NFScore3)
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