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Abstract. We investigate how well different information diffusion models can
explain observation data by learning their parameters and discuss which model is
better suited to which topic. We use two models (AsIC, AsLT), each of which is
an extension of the well known Independent Cascade (IC) and Linear Threshold
(LT) models and incorporates asynchronous time delay. The model parameters
are learned by maximizing the likelihood of observation, and the model selec-
tion is performed by choosing the one with better predictive accuracy. We first
show by using four real networks that the proposed learning algorithm correctly
learns the model parameters both accurately and stably, and the proposed selec-
tion method identifies the correct diffusion model from which the data are gen-
erated. We next apply these methods to behavioral analysis of topic propagation
using the real blog propagation data, and show that although the relative propa-
gation speed of topics that are derived from the learned parameter values is rather
insensitive to the model selected, there is a clear indication as to which topic bet-
ter follows which model. The correspondence between the topic and the model
selected is well interpretable.

1 Introduction

The growth of Internet has enabled to form various kinds of large-scale social networks,
through which a variety of information including innovation, hot topics and even ma-
licious rumors can be propagated in the form of so-called ”word-of-mouth” communi-
cations. Social networks are now recognized as an important medium for the spread of
information, and a considerable number of studies have been made [1–5]. Widely used
information diffusion models in these studies are the independent cascade (IC) [6–8]
and the linear threshold (LT) [9, 10]. They have been used to solve such problems as
the influence maximization problem [7, 11].
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These two models focus on different information diffusion aspects. The IC model
is sender-centered and each active node independently influences its inactive neighbors
with given diffusion probabilities. The LT model is receiver-centered and a node is
influenced by its active neighbors if their total weight exceeds the threshold for the node.
Which model is more appropriate depends on the situation and selecting the appropriate
one is not easy. First of all, we need to know how different model behaves differently
and how well or badly explain the observation data. Both models have parameters that
need be specified in advance: diffusion probabilities for the IC model, and weights for
the LT model. However, their true values are not known in practice. This poses yet
another problem of estimating them from a set of information diffusion results that are
observed as time-sequences of influenced (activated) nodes.

This falls in a well defined parameter estimation problem in machine learning
framework. Given a generative model with some parameters and the observed data,
it is possible to calculate the likelihood that the data are generated and the parameters
can be estimated by maximizing the likelihood. This approach has a thorough theoret-
ical background. In general, the way the parameters are estimated depends on how the
generative model is given. To the best of our knowledge, we are the first to follow this
line of research. We addressed this problem for the IC model [12] and its variant that
incorporates asynchronous time delay (referred to as the AsIC model) [13]. Gruhl et.al.
also challenged the same problem of estimating the parameters and proposed an EM-
like algorithm, but they did not formalize the likelihood and it is not clear what is being
optimized in deriving the parameter update formulas. Goyal et.al attacked this problem
from a different angle [14]. They employed a variant of the LT model and estimated the
parameter values by four different methods, all of which are directly computed from the
frequency of the events in the observed data. Their approach is efficient, but it is more
likely ad hoc and lacks in theoretical evidence. Bakshy et.al [15] addressed the problem
of diffusion of user-created content (asset) and used the maximum likelihood method
to estimate the rate of asset adoption. However, they only modeled the rate of adoption
and did not consider the diffusion model itself. Their focus is on data analysis.

In this paper, we first propose a method of learning the parameter values of a variant
of the LT model that incorporates asynchronous time delay, similarly to the AsIC model,
under the maximum likelihood framework. We refer to this diffusion model as the AsLT
model. The model is similar to the one used in [14] but different in that we explicitly
model the delay of node activation after the activation condition has been satisfied. Next
we propose a method of model selection based on the predictive accuracy, using the two
models: AsIC and AsLT.

It is indispensable to be able to cope with asynchronous time delay to do realistic
analyses of information diffusion because, in the real world, information propagates
along the continuous time axis, and time-delays can occur during the propagation asyn-
chronously. In fact, the time stamps of the observed data are not equally spaced. Thus,
the proposed learning method has to estimate not only the weight parameters but also
the time-delay parameters from the observed data. Incorporating time-delay makes the
time-sequence observation data structural, which makes the analyses of diffusion pro-
cess difficult because there is no way of knowing which node has activated which other
node from the observation data sequence. Knowing the optimal parameter values does
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not mean that the observation follows the model. We have to decide which model better
explains the observation. We solve this problem by comparing the predictive accuracy
of each model. We use a variant of hold-out method applied to a set of sequential data,
which is similar to the leave-one-out method applied to a multiple time sequence data.
Extensive experiments have been performed to evaluate the effectiveness of the pro-
posed method using both artificially generated data and real observation data. Experi-
ments that used artificial data using four real network structures showed that the method
can correctly 1) learn the parameters and 2) select the model by which the data have
been generated. Experiments that used real diffusion data of topic propagation showed
that 1) both AsIC and AsLT models well capture the global characteristics of topic
propagations but 2) the predictive accuracy of each model is different for each topic and
some topics have clear indication as to which model each better follows.

2 Information Diffusion Models

We first present the asynchronous independent cascade (AsIC) model introduced in
[13], and then define the asynchronous linear threshold (AsLT) model. We mathemati-
cally model the spread of information through a directed network G = (V, E) without
self-links, where V and E (⊂ V × V) stand for the sets of all the nodes and links, re-
spectively. For each node v in the network G, we denote F(v) as a set of child nodes of
v, i.e., F(v) = {w; (v,w) ∈ E}. Similarly, we denote B(v) as a set of parent nodes of v,
i.e., B(v) = {u; (u, v) ∈ E}. We call nodes active if they have been influenced with the
information. In the following models, we assume that nodes can switch their states only
from inactive to active, but not the other way around, and that, given an initial active
node set S , only the nodes in S are active at an initial time.

2.1 Asynchronous Independent Cascade Model

We first recall the definition of the IC model according to [7], and then introduce the
AsIC model. In the IC model, we specify a real value κu,v with 0 < κu,v < 1 for each
link (u, v) in advance. Here κu,v is referred to as the diffusion probability through link
(u, v). The diffusion process unfolds in discrete time-steps t ≥ 0, and proceeds from a
given initial active set S in the following way. When a node u becomes active at time-
step t, it is given a single chance to activate each currently inactive child node v, and
succeeds with probability κu,v. If u succeeds, then v will become active at time-step t+1.
If multiple parent nodes of v become active at time-step t, then their activation attempts
are sequenced in an arbitrary order, but all performed at time-step t. Whether or not u
succeeds, it cannot make any further attempts to activate v in subsequent rounds. The
process terminates if no more activations are possible.

In the AsIC model, we specify real values ru,v with ru,v > 0 in advance for each
link (u, v) ∈ E in addition to κu,v, where ru,v is referred to as the time-delay parameter
through link (u, v). The diffusion process unfolds in continuous-time t, and proceeds
from a given initial active set S in the following way. Suppose that a node u becomes
active at time t. Then, u is given a single chance to activate each currently inactive child
node v. We choose a delay-time δ from the exponential distribution with parameter
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ru,v
1. If v has not been activated before time t + δ, then u attempts to activate v, and

succeeds with probability κu,v. If u succeeds, then v will become active at time t + δ.
Under the continuous time framework, it is unlikely that v is activated simultaneously
by its multiple parent nodes exactly at time t + δ. So we ignore this possibility. The
process terminates if no more activations are possible.

2.2 Asynchronous Linear Threshold Model

Similarly to the above, we first define the LT model. In this model, for every node v ∈ V ,
we specify a weight (ωu,v > 0) from its parent node u in advance such that

∑
u∈B(v) ωu,v ≤

1. The diffusion process from a given initial active set S proceeds according to the
following randomized rule. First, for any node v ∈ V , a threshold θv is chosen uniformly
at random from the interval [0, 1]. At time-step t, an inactive node v is influenced by
each of its active parent nodes, u, according to weight ωu,v. If the total weight from
active parent nodes of v is no less than θv, that is,

∑
u∈Bt(v) ωu,v ≥ θv, then v will become

active at time-step t + 1. Here, Bt(v) stands for the set of all the parent nodes of v that
are active at time-step t. The process terminates if no more activations are possible.

Next, we define the AsLT model. In the AsLT model, in addition to the weight
set {ωu,v}, we specify real values rv with rv > 0 in advance for each node v ∈ V .
We refer to rv as the time-delay parameter on node v. Note that rv depends only on
v unlike ru,v of the AsIC model, which means that it is the node v’s decision when to
receive the information once the activation condition has been satisfied2. The diffusion
process unfolds in continuous-time t, and proceeds from a given initial active set S in
the following way. Suppose that the total weight from active parent nodes of v became
no less than θv at time t for the first time. Then, v will become active at time t+δ, where
we choose a delay-time δ from the exponential distribution with parameter rv. Further,
note that even if some other non-active parent nodes of v has become active during the
time period between t and t + δ, the activation time of v, t + δ, still remains the same.
The other diffusion mechanisms are the same as the LT model.

3 Learning Algorithms

We define the time-delay parameter vector r and the diffusion parameter vector κ by
r = (ru,v)(u,v)∈E and κ = (κu,v)(u,v)∈E for the AsIC model and the parameter vectors ω
and r by ω = (ωu,v)(u,v)∈E and r = (rv)v∈V for the AsLT model. We next consider an
observed data set of M independent information diffusion results, {Dm; m = 1, · · · , M}.
Here, each Dm is a set of pairs of active nodes and their activation times in the mth
diffusion result, Dm = {(u, tm,u), (v, tm,v), · · · }. For each Dm, we denote the observed
initial time by tm = min{tm,v; (v, tm,v) ∈ Dm}, and the observed final time by Tm ≥
max{tm,v; (v, tm,v) ∈ Dm}. Note that Tm is not necessarily equal to the final activation
time. Hereafter, we express our observation data by DM = {(Dm, Tm); m = 1, · · · , M}.
For any t ∈ [tm, Tm], we set Cm(t) = {v; (v, tm,v) ∈ Dm, tm,v < t}. Namely, Cm(t) is the set

1 Similar formulation can be derived for other distributions such as power-law and Weibull.
2 It is also possible to adopt the same edge time-delay model as in the AsIC model, in which

case, for example, rv in Equation (2) in Section 3 is replaced with ru,v.
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of active nodes before time t in the mth diffusion result. For convenience sake, we use
Cm as referring to the set of all the active nodes in the mth diffusion result. Moreover,
we define a set of non-active nodes with at least one active parent node for each by
∂Cm = {v; (u, v) ∈ E, u ∈ Cm, v � Cm}. For each node v ∈ Cm ∪ ∂Cm, we define the
following subset of parent nodes, each of which has a chance to activate v.

Bm,v =

{
B(v) ∩Cm(tm,v) if v ∈ Cm(tm,v),
B(v) ∩Cm if v ∈ ∂Cm.

Note that the underlying model behind the observed data is not available in real-
ity. Thus, we investigate how the model affects the information diffusion results, and
consider selecting a model which better explains the given observed data from the can-
didates, i.e., AsIC and AsLT models. To this end, we first have to estimate the values
of r and κ for the AsIC model, and the values of r and ω for the AsLT model for the
givenDM . For the former, we adopt the method proposed in [13], which is only briefly
explained here. For the latter, we propose a novel method of estimating those values.

3.1 Learning Parameters of AsIC Model

To estimate the values of r and κ fromDM for the AsIC model, We derived the following
likelihood functionL(r, κ;DM) to use as the objective function [13],

L(r, κ;DM) =
M∏

m=1

∏
v∈Cm

⎛⎜⎜⎜⎜⎜⎜⎝hm,v

∏
w∈F(v)\Cm

gm,v,w

⎞⎟⎟⎟⎟⎟⎟⎠ , (1)

where hm,v is the probability density that the node v such that v ∈ Dm with tm,v > 0 for
the mth diffusion result is activated at time tm,v, and gm,v,w is the probability that a node
w is not activated by a node v within the observed time period [tm, Tm] when there is a
link (v,w) ∈ E and v ∈ Cm for the mth diffusion result. Then, we derived an iterative
algorithm to stably obtain the values of r and κ that maximize equation (1). Please refer
to [13] for more details. Hereafter, we refer to this method as the AsIC model based
method.

3.2 Learning Parameters of AsLT Model

Likelihood function To estimate the values of r and ω fromDM for the AsLT model,
we first derive the likelihood functionL(r,ω;DM) with respect to r andω in a rigorous
way to use as the objective function. For the sake of technical convenience, we introduce
a slack weight ωv,v for each node v ∈ V such that ωv,v +

∑
u∈B(v) ωu,v = 1. Here note that

we can regard each weight ω∗,v as a multinomial probability since a threshold θv is
chosen uniformly at random from the interval [0, 1] for each node v.

Suppose that a node v became active at time tm,v for the mth result. Then, we know
that the total weight from active parent nodes of v became no less than θv at the time
when one of them, u ∈ Bm,v, became first active. However, in case of |Bm,v| > 1, there is
no way of exactly knowing the actual nodes due to the asynchronous time-delay. Sup-
pose that a node v was actually activated when a node ζ ∈ Bm,v became activated. Then
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θv is between
∑

u∈B(v)∩Cm(tm,ζ ) ωu,v and ωζ,v +
∑

u∈B(v)∩Cm(tm,ζ ) ωu,v. Namely, the probability
that θv is chosen from this range is ωζ,v. Here note that such events with respect to dif-
ferent active parent nodes are mutually disjoint. Thus, the probability density that the
node v is activated at time tm,v, denoted by hm,v, can be expressed as

hm,v =
∑

u∈Bm,v

ωu,vrv exp(−rv(tm,v − tm,u)). (2)

Here we define hm,v = 1 if tm,v = tm.
Next, we consider any node w ∈ V belonging to ∂Cm = {w; (v,w) ∈ E ∧ v ∈

Cm(Tm) ∧ w � Cm(Tm)} for the mth result. Let gm,v denote the probability that the node
v is not activated within the observed time period [tm, Tm]. We can calculate gm,v as

gm,v = 1 −
∑

u∈Bm,v

ωu,v

∫ Tm

tm,u
rv exp(−rv(t − tm,u))dt = 1 −

∑
u∈Bm,v

ωu,v(1 −exp(−rv(Tm − tm,u)))

= ωv,v +
∑

u∈B(v)\Bm,v

ωu,v +
∑

u∈Bm,v

ωu,v exp(−rv(Tm − tm,u)). (3)

Therefore, by using Equations (2) and (3), and the independence properties, we can
define the likelihood functionL(r,ω;DM) with respect to r and ω by

L(r,ω;DM) =
M∏

m=1

⎛⎜⎜⎜⎜⎜⎜⎝∏
v∈Cm

hm,v

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ ∏

v∈∂Cm

gm,v

⎞⎟⎟⎟⎟⎟⎟⎠ . (4)

Thus, our problem is to obtain the time-delay parameter vector r and the diffusion pa-
rameter vector ω, which together maximize Equation (4).

Learning Algorithm For the above learning problem, we can derive an estimation
method based on the Expectation-Maximization algorithm in order to stably obtain its
solutions. Hereafter, we refer to this proposed method as the AsLT model based method.
By the following formulas, we define φm,u,v for each v ∈ Cm and u ∈ Bm,v, ϕm,u,v for each
v ∈ ∂Cm and u ∈ {v} ∪ B(v) \ Bm,v, and ψm,u,v for each v ∈ ∂Cm and u ∈ Bm,v, respectively.

φm,u,v = ωu,vrv exp(−rv(tm,v − tm,u)) / hm,v, ϕm,u,v = ωu,v / gm,v,

ψm,u,v = ωu,v exp(−rv(Tm − tm,u)) / gm,v.

Let r̄ = (r̄v) and ω̄ = (ω̄u,v) be the current estimates of r and ω, respectively. Similarly,
let φ̄m,u,v, ϕ̄m,u,v, and ψ̄m,u,v denote the values of φm,u,v, ϕm,u,v, and ψm,u,v calculated by
using r̄ and ω̄, respectively.

From equations (2), (3), (4), we can transformL(r,ω;DM) as follows:

logL(r,ω;DM) = Q(r,ω; r̄, ω̄) − H(r,ω; r̄, ω̄), (5)

where Q(r,ω; r̄, ω̄) is defined by

Q(r,ω; r̄, ω̄) =
M∑

m=1

⎛⎜⎜⎜⎜⎜⎜⎝∑
v∈Cm

Q(1)
m,v +

∑
v∈∂Cm

Q(2)
m,v

⎞⎟⎟⎟⎟⎟⎟⎠ , (6)
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Q(1)
m,v =

∑
u∈Bm,v

φ̄m,u,v log(ωu,vrv exp(−rv(tm,v − tm,u)))

Q(2)
m,v =

∑
u∈{v}∪B(v)\Bm,v

ϕ̄m,u,v log(ωu,v) +
∑

u∈Bm,v

ψ̄m,u,v log(ωu,v exp(−rv(Tm − tm,u))).

It is easy to see that Q(r,ω; r̄, ω̄) is convex with respect to r and ω, and H(r, κ; r̄, ω̄) is
defined by

H(r,ω; r̄, ω̄) =
M∑

m=1

⎛⎜⎜⎜⎜⎜⎜⎝∑
v∈Cm

H(1)
m,v +

∑
v∈∂Cm

H(2)
m,v

⎞⎟⎟⎟⎟⎟⎟⎠ , (7)

H(1)
m,v =

∑
u∈Bm,v

φ̄m,u,v log(φm,u,v),

H(2)
m,v =

∑
u∈{v}∪B(v)\Cm

ϕ̄m,u,v log(ϕm,u,v) +
∑

u∈Bm,v

ψ̄m,u,v log(ψm,u,v).

Since H(r,ω; r̄, ω̄) is maximized at r = r̄ andω = ω̄ from equation (7), we can increase
the value of L(r,ω;DM) by maximizing Q(r,ω; r̄, ω̄) (see equation (5)).

Thus, we obtain the following update formulas of our estimation method as the
solution which maximizes Q(r,ω; r̄, ω̄) with respect to r :

rv =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

m∈M(1)
v

∑
u∈Bm,v

φ̄m,u,v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

m∈M(1)
v

∑
u∈Bm,v

φ̄m,u,v(tm,v − tm,u) +
∑

m∈M(2)
v

∑
u∈Bm,v

ψ̄m,u,v(Tm − tm,u)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
−1

whereM(1)
v andM(2)

v are defined by

M(1)
v = {m ∈ {1, · · · , M}; v ∈ Cm}, M(2)

v = {m ∈ {1, · · · , M}; v ∈ ∂Cm}.
As for ω, we have to take the constraints ωv,v +

∑
u∈B(v) ωu,v = 1 into account for each

v, which can easily be made using the Lagrange multipliers method, and we obtain the
following update formulas of our estimation method:

ωu,v ∝
∑

m∈M(1)
u,v

φ̄m,u,v +
∑

m∈M(2)
u,v

ϕ̄m,u,v +
∑

m∈M(3)
u,v

ψ̄m,u,v, ωv,v ∝
∑

m∈M(2)
v

ϕ̄m,v,v

whereM(1)
u,v,M(2)

u,v andM(3)
u,v are defined by

M(1)
u,v = {m ∈ {1, · · · , M}; v ∈ Cm, u ∈ Bm,v},

M(2)
u,v = {m ∈ {1, · · · , M}; v ∈ ∂Cm, u ∈ B(v) \ Bm,v},

M(3)
u,v = {m ∈ {1, · · · , M}; v ∈ ∂Cm, u ∈ Bm,v}.

The actual values are obtained after normalization. Recall that we can regard our es-
timation method as a kind of the EM algorithm. It should be noted that each time the
iteration proceeds the value of the likelihood function never decreases and the iterative
algorithm is guaranteed to converge.
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3.3 Model Selection

Next, we describe our model selection method. We select the model based on predic-
tive accuracy. Here, note that we cannot use an information theoretic criterion such as
AIC (Akaike Information Criterion) or MDL (Minimum Description Length) because
we need to select one from models with completely different probability distributions.
Moreover, for both models, it is quite difficult to efficiently calculate the exact activation
probability of each node more than two information diffusion cascading steps ahead. In
oder to avoid these difficulties, we propose a method based on a hold-out strategy, which
attempts to predict the activation probabilities at one step later.

For simplicity, we assume that for each Dm, the initial observation time tm is zero,
i.e., tm = 0 for m = 1, · · · , M. Then, we introduce a set of observation periods

I = {[0, τn); n = 1, · · · ,N},
where N is the number of observation data we want to predict sequentially and each τn

has the following property: There exists some (v, tm,v) ∈ Dm such that 0 < τn < tm,v. Let
Dm;τn denote the observation data in the period [0, τn) for the mth diffusion result, i.e.,

Dm;τn = {(v, tm,v) ∈ Dm; tm,v < τn}.
We also set DM;τn = {(Dm;τn , τn); m = 1, · · · , M}. Let Θ denote the set of parameters
for either the AsIC or the AsLT models, i.e., Θ = (r, κ) or Θ = (r,ω). We can estimate
the values of Θ from the observation data DM;τn by using the learning algorithms in
Sections 3.1 and 3.2. Let Θ̂τn denote the estimated values of Θ. Then, we can calculate
the activation probability qτn

(v, t) of node v at time t (≥ τn) using Θ̂τn .
For each τn, we select the node v(τn) and the time tm(τn),v(τn) by

tm(τn),v(τn) = min

⎧⎪⎪⎨⎪⎪⎩tm,v; (v, tm,v) ∈
M⋃

m=1

(Dm \ Dm;τn )

⎫⎪⎪⎬⎪⎪⎭ .
Note that v(τn) is the first active node in t ≥ τn. We evaluate the predictive performance
for the node v(τn) at time tm(τn),v(τn). Approximating the empirical distribution by

pτn
(v, t) = δv,v(τn) δ(t − tm(τn),v(τn))

with respect to (v(τn), tm(τn),v(τn)), we employ the Kullback-Leibler (KL) divergence

KL(pτn
|| qτn

) = −
∑
v∈V

∫ ∞
τn

pτn
(v, t) log

qτn
(v, t)

pτn
(v, t)

dt,

where δv,w and δ(t) stand for Kronecker’s delta and Dirac’s delta function, respectively.
Then, we can easily show

KL(pτn
|| qτn

) = − log hm(τn),v(τn). (8)

By averaging the above KL divergence with respect to I, we propose the following
model selection criterion E (see Equation (8)):

E(X; D1 ∪ · · · ∪ DM) = − 1
N

N∑
n=1

log hm(τn),v(τn), (9)
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whereX expresses the information diffusion model (i.e., the AsIC or the AsLT models).
In our experiments, we adopted

I = {[0, tm,v); (v, tm,v) ∈ D1 ∪ · · · ∪ DM , tm,v ≥ τ0},
where τ0 is the median time of all the observed activation time points.

3.4 Behavioral Analysis

Thus far, we assumed thatΘ can vary with respect to nodes and links but is independent
of the topic of information diffused. However, they may be sensitive to the topic. We
follow [13] and place a constraint that Θ depends only on topics but not on nodes and
links of the network G, and assign a different m to a different topic. Therefore, we set
rm,u,v = rm and κm,u,v = κm for any link (u, v) ∈ E in case of the AsIC model and
rm,v = rm and ωm,u,v = qm|B(v)|−1 for any node v ∈ V and link (u, v) ∈ E in case of the
AsLT model. Here note that 0 < qm < 1 and ωv,v = 1 − qm. Without this constraint, we
only have one piece of observation for each (m, u, v) and there is no way to learn Θ.

Using each pair of the estimated parameters, (rm, qm) for the AsLT model and
(rm, κm) for the AsIC model, we can discuss which model is more appropriate for each
topic, and analyze the behavior of people with respect to the topics of information by
simply plotting them as a point in 2-dimensional space.

4 Performance Evaluation by Artificial Data

Our goal here is to evaluate the parameter learning and model selection methods to see
how accurately it can detect the true model that generated the data, using topological
structure of four large real networks. Here, we assumed the true model by which the
data are generated to be either AsLT or AsIC.

4.1 Data Sets

We employed four datasets of large real networks (all bidirectionally connected). The
first one is a trackback network of Japanese blogs used in [8] and has 12, 047 nodes and
79, 920 directed links (the blog network). The second one is a network of people derived
from the “list of people” within Japanese Wikipedia, also used in [8], and has 9, 481
nodes and 245, 044 directed links (the Wikipedia network). The third one is a network
derived from the Enron Email Dataset [16] by extracting the senders and the recipients
and linking those that had bidirectional communications. It has 4, 254 nodes and 44, 314
directed links (the Enron network). The fourth one is a coauthorship network used in
[17] and has 12, 357 nodes and 38, 896 directed links (the coauthorship network).

Here, according to [13], we assumed the simplest case where the parameter values
are uniform across all links and nodes, i.e., ωu,v = q|B(v)|−1, rv = r for AsLT, and
ru,v = r, κu,v = κ for AsIC. Under this assumption there is no need for the observation
sequence data to pass through every link or node at least once. This drastically reduces
the amount of data necessary to learn the parameters. Then, our task is to estimate the
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Table 1: Parameter estimation error of the
learning method for four networks.

Network Blog Wiki Enron Coauthor
DM(AsLT ) r 0.248 0.253 0.200 0.244

q 0.080 0.078 0.077 0.089
DM(AsIC) r 0.114 0.026 0.029 0.167

κ 0.020 0.013 0.002 0.054

Table 2: Accuracy of the model selection
method for four networks.

Network Blog Wiki Enron Coauthor
DM(AsLT ) 79 86 99 76

(28.2) (54.0) (47.7) (19.0)
DM(AsIC) 92 100 100 93

(370.2) (920.8) (1500.6) (383.5)

values of these parameters from data. The true value of q was set to 0.9 for every net-
work to achieve reasonably long diffusion results, and the true value of r was set to 1.0.
According to [7], we set κ to a value smaller than 1/d̄, where d̄ is the mean out-degree of
a network. Thus, the true value of κ was set to 0.2 for the coauthorship network, 0.1 for
the blog and Enron networks, and 0.02 for the Wikipedia network. Using these values,
two sets of data were generated for each network, one for the true AsLT model and the
other for the true AsIC model, denoted byDM(AsLT ) andDM(AsIC), respectively. For
each of these, sequences of data were generated, each starting from a randomly selected
initial active node and having at least 10 nodes. In our experiments, we set M = 100 and
evaluated our model selection method in the framework of behavioral analysis. Parame-
ter updating is terminated when either the iteration number reaches its maximum (set to
100) or the following condition is first satisfied: |r(s+1)− r(s)|+ |q(s+1)−q(s)| ≤ 10−6

for AsLT, |r(s + 1) − r(s)| + |κ(s + 1) − κ(s)| ≤ 10−6 for AsIC. In most of the cases, the
latter inequality is satisfied in less than 100 iterations. The converged values are rather
insensitive to the initial values, and we confirmed that the parameter updating algorithm
stably converges to the correct values. In actual computation, the learned values for τn

is used as the initial values for τn+1 for efficiency purpose.

4.2 Learning Results

Table 1 shows the error in the estimated parameters for four networks by the proposed
learning method. In this evaluation we treated each sequence as a separate observation
and learned the parameters from each, repeated this M (=100) times and took the av-
erage. More specifically, the parameters of AsLT were estimated fromDM(AsLT ), and
those of AsIC fromDM(AsIC). Even though each pair of the parameters for individual
models was estimated by using only one sequence data, we can see that the estimated
values were reasonably close to the true one. This confirms that our proposed learning
methods work well. The results indicate that the estimation performance on AsIC is
substantially better than that on AsLT. We consider that this performance difference is
attributed to the average sequence length, as discussed later.

4.3 Model Selection Results

The average KL divergence given by equation (9) is the measure for the goodness of
the model X, given the data Dm. The smaller its value is, the better the model explains
the data in terms of predictability. Thus, we can estimate the true model from which Dm

is generated to be AsLT if E(AsLT ; Dm) < E(AsIC; Dm), and vice versa.
Table 2 summarizes the number of sequences for which the model selection method

correctly identified the true model. The number within the parentheses is the average
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Fig. 1: Relation between the length of sequence and the the accuracy of model selection for
DM(AsLT ).
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Fig. 2: Relation between the length of sequence and the the accuracy of model selection for
DM(AsIC).

length of the sequences in each dataset. From these results, we can say that the proposed
method achieved a good accuracy, 90.6% on average. Especially, for the Enron network,
its estimation was almost perfect. To analyze the performance of the proposed method
more deeply, we investigated the relation between the length of sequence and the model
selection result. It is shown in Fig. 1 forDM(AsLT ), where the horizontal axis denotes
the length of sequence in each dataset and the vertical axis is the difference of the
average KL divergence defined by J(AsLT ; AsIC) = E(AsIC; Dm) − E(AsLT ; Dm).
Thus, J(AsLT ; AsIC) > 0 means that the proposed method correctly estimated the
true model for the dataset Dm(AsLT ) because it means E(AsLT ; Dm) is smaller than
E(AsIC; Dm). From these figures, we can see that there is a correlation between the
length of sequence and the estimation accuracy, and that the misselection occurs only in
short sequences for every network. We notice that the overall accuracy becomes 95.5%
when considering only the sequences that contain no less than 20 nodes. This means
that the proposed model selection method is highly reliable for a long sequence and its
accuracy could asymptotically approach to 100% as the sequence gets longer. Figure 2
is the results for DM(AsIC), where J(AsIC; AsLT ) = E(AsLT ; Dm) − E(AsIC; Dm).
The results are better than forDM(AsLT ). In particular, Wikipedia and Blog networks
have no misselection. We note that the plots are shifted to the right for all networks,
meaning that the data sequences are longer for DM(AsIC) than for DM(AsLT ). The
better accuracy is attributed to this.

5 Behavioral Analysis of Real World Blog Data

We analyzed the behavior of topics in a real world blog data. Here, again, we assumed
the true model behind the data to be either AsLT or AsIC. Then, we first applied our
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Fig. 3: Results for the Doblog database.

learning method to behavioral analysis based on the method described in Section 3.4,
assuming two possibilities, i.e. the true model being either AsLT or AsIC for all the
topics, and investigated how each topic spreads throughout the network by comparing
the learned parameter values. Next, we estimated the true model of each data sequence
for each topic by applying the model selection method described in Section 3.3.

5.1 Data Sets

We used the real blogroll network used in [13], which was generated from the database
of a blog-hosting service in Japan called Doblog 3. In the network, bloggers are con-
nected to each other and we assume that topics propagate from blogger x to another
blogger y when there is a blogroll link from y to x. In addition, according to [18], it is
assumed that a topic is represented as a URL which can be tracked down from blog to
blog. We used the propagation sequences of 172 URLs for this analysis, each of which
has at least 10 time steps. Please refer to [13] for more details.

5.2 Behavioral Analysis

We ran the experiments for each identified URL and obtained the parameters q and r for
the AsLT model based method and κ and r for the AsIC model based method. Figures
3a and 3b are the plots of the results for the major URLs (topics) by the AsLT and AsIC
methods, respectively. The horizontal axis is the diffusion parameter q for the AsLT
method and κ for the AsIC method, while the vertical axis is the delay parameter r for
both. The latter axis is normalized such that r = 1 corresponds to a delay of one day,
meaning r = 0.1 corresponds to a delay of 10 days. In these figures, we used five kinds
of markers other than dots, to represent five different typical URLs: the circle (◦) stands
for a URL that corresponds to the musical baton which is a kind of telephone game on
the Internet (the musical baton), the square (�) for a URL that corresponds to articles
about a missing child (the missing child), the cross (×) for a URL that corresponds
to articles about fortune telling (the fortune telling), the diamond (�) for a URL of a
certain charity site (the charity), and the plus (+) for a URL of a site for flirtatious

3 Doblog(http://www.doblog.com/), provided by NTT Data Corp. and Hotto Link, Inc.
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tendency test (the flirtation). All the other topics are denoted by dots (·), which means
they are a mixture of many topics.

The results indicates that in general both the AsLT and AsIC models capture rea-
sonably well the characteristic properties of topics in a similar way. For example, it
captures the urgency of the missing child, which propagates quickly. Musical baton
which actually became the latest craze on the Internet also propagates quickly. In con-
trast non-emergency topics such as the flirtation and the charity propagate very slowly.
Unfortunately, this highlights the people’s low interest level of the charity activity in
the real world. We further note that the dependency of topics on the parameter r is al-
most the same for both AsLT and AsIC, but that on the parameters q and κ is slightly
different, e.g., relative difference of musical baton, missing child and charity. Although
q and κ are different parameters but both are the measures that represent how easily the
diffusion takes place. We showed in [13] that the influential nodes are very sensitive to
the model used and this can be attributed to the differences of these parameter values.

5.3 Model Selection

In the analysis of previous subsection, we assumed that each topic follows the same
diffusion model. However, in reality this is not true and each topic should propagate
following more closely to either one of the AsLT and AsIC models. Thus, in this sub-
section, we attempt to estimate the underlying behavior model of each topic by applying
the model selection method to individual sequence as described in section 4. Namely,
we regard that each observation consists of only one observed data sequence, i.e., D1,
and calculate its KL divergences by equation (9) for the both models, and compare the
goodness.

Table 3 and Fig. 4 summarize the results. From these results, we can see that most of
the diffusion behaviors on this blog network follows the AsIC model. It is interesting to
note that the model estimated for the musical baton is not identical to that for the missing
child although their diffusion patterns are very similar in the previous analysis. The
missing child strictly follows the AsIC model. This is attributed to its greater urgency.
On the other, musical baton seems to follow more closely to AsLT. This is because the
longer sequence results in a better accuracy and the models selected in longer sequences
are all AsLT in Fig. 4 although the numbers are almost tie (4 vs. 5) in Table 3. This
can be interpreted that people follow their friends in this game. Likewise, it is easy to
imagine that one would align oneself with the opinions of those around when requested
to raise funds. This explains that charity follows AsLT. The flirtation clearly follows
AsLT. This is probably because the information of this kind of play site easily diffuses
within close friends. Note that there exists one dot at near the top center in Fig. 4,
showing the greatest tendency to follow AsLT. This dot represents a typical circle site
that distributes one’s original news article on personal events.

6 Discussion

We now have ways to compare the diffusion process with respect to two models (the
AsLT model and the AsIC model) for the same observed dataset. Being able to learn the
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Table 3: Results of model selection for
the Doblog dataset.

Topic Total AsLT AsIC
Musical baton 9 5 4
Missing child 7 0 7
Fortune telling 28 4 24

Charity 6 5 1
Flirtation 7 7 0

Others 115 11 104 101 102
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Fig. 4: The relation between the KL difference
and sequence length for the Doblog database.

parameters of these models enable us to analyze the diffusion process more precisely.
Comparing the results bring us deeper insights into the relation between models and
information diffusion processes.

We note that the formulation in Sections 2 and 3 allows the parameters to depend
on links and nodes, but the analysis we showed in Section 4 is for the simplest case
where the parameters are uniform across the whole network. Actually, if all the param-
eters are node and link dependent, the number of the parameters becomes so huge and
it is not practical (almost impossible) to estimate them accurately because the amount
of observation data needed is prohibitively huge and there is always a problem of over-
fitting. However, this can be alleviated. In a more realistic setting we can divide E into
subsets E1, E2, ..., EL and assign the same value for each parameter within each subset.
For example, we may divide the nodes into two groups: those that strongly influence
others and those not, or we may divide the nodes into another two groups: those that are
easily influenced by others and those not. If there is some background knowledge about
the node grouping, our method can make the best use of it. Obtaining such background
knowledge is also an important research topic in the knowledge discovery from social
networks.

The discussion above is also related to the use of the data for model selection in
Section 5 in which we used each sequence separately to learn the model parameter
values and select the model rather than using them altogether for the same topic and
obtaining a single set of parameter values. The results in Section 5 show that the model
parameters thus obtained for each sequence are very similar to each other for the same
topic. This in turn justifies the use of the same parameter values for multiple sequence
observation data (the way we formulated in Section 3.3).

As we mentioned in Section 5.2 but did not show in this paper due to the space limi-
tation, the ranking results that involve detailed probabilistic simulation is very sensitive
to the underlying model which is assumed to generate the observed data. In other words,
it is very important to select an appropriate model for the analysis of information dif-
fusion from which the data has been generated if the node characteristics are the main
objective of analysis, e.g. such problems as the influence maximization problem [7,
11], a problem at a more detailed level. However, it is also true that the parameters for
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the topics that actually propagated quickly/slowly in observation converged to the val-
ues that enable them to propagate quickly/slowly on the model, regardless of the model
chosen. Namely, we can say that the difference of models does not have much influence
on the relative difference of topic propagation which indeed strongly depends on topic
itself. Both models are well defined and can explain this property at this level of ab-
straction. Nevertheless, the model selection is very important if we want to characterize
how each topic propagates through the network.

Finally, the proposed learning method is efficient and the runtime is not an issue.
The convergence is fast and it can handle networks of millions of nodes because the
complexity depends directly on the data size, not the number of nodes. In particular, the
complexity of learning from a single sequence is proportional to the number of active
nodes, their average degree, and the EM iteration number.

7 Conclusion

We considered the problem of analyzing information diffusion process in a social net-
work using two kinds of information diffusion models, incorporating asynchronous time
delay, the AsLT model and the AsIC model, and investigated how the results differ ac-
cording to the model used. To this end, we proposed novel methods of 1) learning the
parameters of the AsLT model from the observed data (the method for learning the pa-
rameters of the AsIC model has already been reported), and 2) selecting models that
better explains the observation. We experimentally confirmed that the learning method
converges to the correct values very stably and the model selection method can cor-
rectly identifies the diffusion models by which the observed data is generated based on
extensive simulations on four real world datasets. We further applied the methods to the
real blog data and analyzed the behavior of topic propagation. The relative propagation
speed of topics, i.e. how far/near and how fast/slow each topic propagates, that are de-
rived from the learned parameter values is rather insensitive to the model selected, but
the model selection algorithm clearly identifies the difference of model goodness for
each topic. We found that many of the topics follow the AsIC models in general, but
some specific topics have clear interpretations for them being better modeled by either
one of the two, and these interpretations are consistent with the model selection results.
There are numerous factors that affect the information diffusion process, and there can
be a number of different models. Model selection is a big challenge in social network
analysis and this work is the first step towards this goal.
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