
A Monotonic Measure for Optimal Feature

Selection

Huan Liu1 and Hiroshi Motoda2 and Manoranjan Dash3

1 Dept of Info Sys & Comp Sci, National University of Singapore, Kent Ridge,

Singapore 119260.
2 Division of Intelligent Sys Sci, Osaka University, Ibaraki, Osaka 567, Japan.
3 BioInformatics Centre, National University of Singapore, Lower Kent Ridge,

Singapore 119074.

Abstract. Feature selection is a problem of choosing a subset of relevant
features. Researchers have been searching for optimal feature selection

methods. `Branch and Bound' and Focus are two representatives. In gen-

eral, only exhaustive search can bring about the optimal subset. However,
under certain conditions, exhaustive search can be avoided without sac-

ri�cing the subset's optimality. One such condition is that there exists a

monotonic measure with which `Branch and Bound' can guarantee an op-
timal subset. Unfortunately, most error- or distance-based measures are

not monotonic. A new measure is employed in this work that is mono-

tonic and fast to compute. With this measure, the search for relevant
features is guaranteed to be complete but not exhaustive. An empirical

study is conducted to show that the algorithm indeed lives up to what

it claims. Some discussion is given at the end.

1 Introduction

The basic problem of classi�cation is to classify a given pattern (example) to one

of m known classes. A pattern of features presumably contains enough informa-

tion to distinguish among the classes. When a classi�cation problem is de�ned

by features, the number of features (N) can be quite large. A classi�er may en-

counter problems to learn something meaningful because the required amounts

of data (N , or the number of patterns) increase exponentially in proportion

with N [4]. The task of feature selection is to determine which features to se-

lect in order to achieve maximum performance with the minimummeasurement

e�ort [3]. Reducing the number of features directly alleviates the measurement

e�ort. Performance for a classi�er can be its predictive accuracy, i.e., 1 - error

rate.

As was mentioned in [3], if the goal is to minimize the error rate, and the

measurement cost for all the features is equal, then the most appealing function

to evaluate the potency of a feature to di�erentiate between the classes is the

Bayes Classi�er [20]. Due to the inductive nature of classi�cation problems, no

full distribution of data can be obtained4. Extensive research e�ort was devoted

4 If it is obtainable, we should use the Bayes Classi�er under normal circumstances.

to the investigation of other functions (mostly based on distance and informa-

tion measures, or simply on classi�ers) for feature evaluation. If there exist N

features, to �nd an optimal subset of features without knowing how many fea-

tures are relevant, it requires to explore all the 2N subsets. When N is large,

this exhaustive approach is out of the question. Therefore, various feature selec-

tion methods have been designed to avoid exhaustive search while still aiming

at the optimal subset. Examples are Branch & Bound [15, 17], Relief [7, 10],

Wrapper methods [8], Approximate Markov Blanket [9], and LVF [12]. We will

review some of these methods brie
y in the next section.

The feature selection problem can be viewed as a search problem [18, 17,

11]. The search process starts with either an empty set or a full set. For the

former, it expands the search space by adding one feature at a time (Sequential

Forward Selection) [17]; for the latter, it expands the search space by deleting

one feature at a time (Sequential Backward Selection) [15]. As we shall see,

the best alternative to exhaustive search is Branch & Bound like algorithms

if there exists a monotonic function of evaluating features. Assuming we have

subsets fS0; S1; :::; Sng, we have a measure U that evaluates each subset Si. The

monotonicity condition requires that:

S0 � S1 � ::: � Sn) U (S0) � U (S1) � ::: � U (Sn):

In this case, the search can be complete but not exhaustive. That means it need

not exhaustively search the whole space but the optimal subset is guaranteed.

Many distance and information based measures have been shown to be non-

monotonic [18]. Many researchers pointed out that the only remaining alterna-

tive is to use the error rate of a classi�er as the measure. Among many classi�ers,

however, only the Bayes Classi�er satis�es this monotonicity condition5 because

other classi�ers adopt some assumptions and employ certain heuristics [18, 3, 6].

Another disadvantage of using the error rate as a measure in the wrapper models

of feature selection is it is slow to compute. For example, to construct a decision

tree, it would take at least O(N logN).

This work proposes a measure that is monotonic as well as fast to compute

(O(N)). In the following, we review the related work, introduce an automatic

Branch & Bound algorithm for feature selection which does not require a pre-

determined number M of relevant features. We also give a proof outline that

the proposed measure is monotonic and use a simple example to show how the

algorithm works. Section 4 is about the choice of experimental methods and data

sets, and about the results and analysis. In Section 5, we o�er some discussion.

2 Related Work

The feature selection problem has long been the research topic in statistics

and pattern recognition, but most work in this area has dealt with linear re-

gression [11]. Since early 90's, it has received considerable attention from ma-

chine learning researchers. Some divide the feature selection methods into two

5 But it requires the full distribution of the data.

regimes [11, 8]. One is of Wrapper Models that basically use the classi�er's error

rate as the measure U . The other is of Filter Models that use computationally

less costly evaluation tools based on distance, information, consistency, etc. In

this work, we focus on some �lter models that explicitly aim at searching for

optimal feature subsets. Two reviewed groups are (1) Sequential Feed-forward

Selection; and (2) Sequential Backward Selection.

Focus [2] is one of the earliest algorithms within machine learning. Focus

starts with an empty set and carries out breadth-�rst search until it �nds a

minimal subset that predicts pure classes. If the full set has three features,

the root is (0; 0; 0), its children are (0 0 1), (0 1 0), and (1 0 0). It works on

binary, noise-free data. It is exhaustive search in nature. A similar approach is

taken by [17]. A systematic search is carried out, starting with the empty set

and adding features until it �nds a subset consistent with the training data (the

concept of determination). A reliabilitymeasure is used as a heuristic to verifying

a determination.

Branch & Bound for feature selection was �rst proposed in [15] and later

reviewed in [18]. It starts with a full set of features, removes one feature at a

time. If the full set contains three features, the root is (1 1 1). Its child nodes

are (1 1 0), (1 0 1), and (0 1 1), etc. Without restrictions on expanding nodes in

the search space, this could lead to exhaustive search. However, if each node is

evaluated by a measure U and an upper limit is set for the acceptable values of U ,

then Branch & Bound backtracks whenever an infeasible node is discovered. If U

is monotonic, no feasible node is omitted as a result of early backtracking and,

therefore, the gained savings in the search time do not violate the optimality

of the selected subset. As was pointed out in [18], the measures used in [15]

have disadvantages (non-monotonicity is one). The authors of [18] proposed the

concept of approximate branch and bound due to Branch & Bound's attractive

characteristics as to relax the condition of monotonicity.

The focus of this paper is to avoid exhaustive search while ensuring the

search is complete so that an optimal subset is guaranteed. In cases where the

optimality of a solution is not paramount, there exist some heuristic and random

feature selection algorithms. We brie
y introduce some here, many more can be

found in [5]. Relief [7] is a feature weight based algorithm inspired by instance-

based learning algorithms [1]. Relief assigns a weight to each feature that re
ects

its ability to distinguish among the classes, and then selects those features with

weights that exceed a user-speci�ed threshold. Another algorithm which does

not explicitly search exhaustively is LVF [12] that randomly searches the feature

space. For each candidate subset, it calculates an inconsistency count based

on the intuition that the class label associated with the maximum number of

patterns is most probably the correct class, considering only the features in the

subset. The two methods in this group employ either re-sampling of data or

random generation of subsets. They are di�erent from the methods in the �rst

two groups.

3 A Non-exhaustive yet Complete Search Algorithm

In this section, we present a monotonic measure for feature evaluation; elaborate

on an Automatic Branch & Bound algorithm with technical details about its

implementation.

3.1 A monotonic measure

For two subsets of features, Si and Sj , one is preferred to the other based on a

measure U of feature-set evaluation. Si and Sj are indi�erent if U (Si) = U (Sj)

and #(Si) = #(Sj) where # is the cardinality; Si is preferred to Sj if U (Si) =

U (Sj) but #(Si) < #(Sj), or if U (Si) < U (Sj) and #(Si) � #(Sj). As we know,

the condition for Branch & Bound to work optimally is that U is monotonic.

In this work, U is an inconsistency rate over the data set given Si. The

inconsistency rate is calculated as follows: (1) two patterns are considered in-

consistent if they match all but their class labels, for example, patterns (0 1 1)

and (0 1 0) match with respective to the �rst two attributes, but are di�erent

in the last attribute (class label); (2) the inconsistency count is the number of

all the matching patterns minus the largest number of patterns of di�erent class

labels: for example, there are n matching patterns, among them, c1 patterns

belong to label1, c2 to label2, and c3 to label3 where c1 + c2 + c3 = n. If c3
is the largest among the three, the inconsistency count is (n � c3); and (3) the

inconsistency rate is the sum of all the inconsistency counts divided by the total

number of patterns (N). By employing a hashing mechanism, we can compute

the inconsistency rate approximately with a time complexity of O(N).

Now we give a proof outline to show that this inconsistency rate measure is

monotonic, i.e., if Si � Sj , then U (Si) � U (Sj). Since Si � Sj, the discriminat-

ing power of Si can be no greater than that of Sj . As we know, the discriminating

power is reversely proportional to the inconsistency rate. Hence, the inconsis-

tency rate of Si is greater than or equal to that of Sj, or U (Si) � U (Sj). The

monotonicity of the measure can also be proved as follows. Consider three sim-

plest cases of Sk(= Sj � Si) without loss of generality: (i) features in Sk are

irrelevant, (ii) features in Sk are redundant, and (iii) features in Sk are relevant.

(We consider here data without noise and discuss noisy data later.) If features

in Sk are irrelevant, based on the de�nition of irrelevancy, these extra features

do not change the inconsistency rate of Sj since Sj is Si[Sk, so U (Sj) = U (Si).

Likewise for case (ii) based on the de�nition of redundancy. If features in Sk are

relevant, that means Si does not have as many relevant features as Sj . Obvi-

ously, U (Si) � U (Sj) in the case of Si < Sj . It is clear that the above results

remain true for cases that Sk contains irrelevant, redundant as well as relevant

features.

3.2 Automatic Branch & Bound (ABB)

ABB is a Branch & Bound algorithm with its bound set to the inconsistency

rate � of the data set with the full set of features. It starts with the full set

of features S0, removes one feature from S
l�1
j in turn to generate subsets Slj

where l is the current level and j speci�es di�erent subsets at the lth level. If

U (Slj) > U (Sl�1j), Slj stops growing (the branch is pruned), otherwise, it grows

to level l + 1, in other words, one more feature will be removed. In short, ABB

seeks the smallest Sj whose inconsistency rate is �. S is the full feature set and

D the data set.

� = inConCal(S, D);

ABB (S, D) f
/* subset generation */

For all feature f in S f
S1 = S � f ; /* remove one feature at a time */

enQueue(Q, S1);g /* add at the end */

while notEmpty(Q) f
S2 = deQueue(Q); /* remove at the start */

if (S2 is legitimate ^ inConCal(S2; D) � �)

/* recursion */

ABB (S2, D); gg

The essence of the algorithm is shown above. inConCal() calculates the con-

sistency rate of data given a feature subset. Care has been taken in implementing

the algorithm such that (1) no duplicate subset will be generated via proper enu-

meration; and (2) no child node of a pruned node will be generated by ensuring

that the Hamming distance between a new subset at the current level and any

pruned subset at the parent level is greater than 16 (this is the legitimacy test

in ABB).

It is not required anymore to specify the size of a desired subset, M ,or a

bound for the measure as normally required by Branch & Bound. At the end of

search, we just need to report the legitimate subsets with the smallest cardinality

as the optimal subsets. This is because of using the inconsistency measure. Any

subset with its inconsistency rate larger than � is out for sure. The algorithm is

named \ABB" since M is automatically determined.

3.3 An example

The working of ABB is best explained in detail through an example. Let's con-

sider a simple example in which a data set is described by four features, assuming

only the �rst two are relevant. The root S0 = (1 1 1 1) of the search tree is a

binary array with four `1's. Refer to Figure 1. Following ABB, we expand the

root to four child nodes by turning one of the four `1's into `0' (L2 in Figure 1).

All these four are legitimate child nodes because the root is a valid node. The

child nodes expanded from the current parent may be illegitimate if they are also

children of some pruned nodes. The four nodes are S1 = (1 1 1 0), S2 = (1 1 0 1),

S3 = (1 0 1 1), and S4 = (0 1 1 1). Since one of the relevant features is missing,

6 A full set of N attributes entails an N-bit binary array in which ith value 1 means

ith attribute is chosen to include in the subset.

U (S3) and U (S4) will be greater than U (S0) where U is the inconsistency rate

on the given data. Hence, the branches rooted by S3 and S4 are pruned and

will not grow further. Since ABB is a breadth-�rst search algorithm, it expands

S1 �rst. Following our enumeration procedure7 , we now have three more new

nodes (L3 in Figure 1). That is S5 = (1 1 0 0), S6 = (1 0 1 0), and S7 = (0 1

1 0). However, S6 and S7 are illegitimate since they are also children of pruned

nodes S3 and S4 respectively. This can be determined by the Hamming Distance

(HD) of two nodes, e.g., S6 and S3. Since their HD is 1, S6 is also a child of

S3. Only when a new node passes the legitimacy test will its inconsistency rate

be calculated. Doing so improves the e�ciency of ABB because N (number of

patterns) is normally much larger than N (number of attributes). The rest of

the nodes (S8; :::; S11) are generated and tested in the same spirit.

S0: (1 1 1 1)

S1: (1 1 1 0)

S5: (1 1 0 0) S6: (1 0 1 0) S8: (1 0 0 1) S9: (0 1 0 1)

S10: (1 0 0 0) S11: (0 1 0 0)

S2: (1 1 0 1) S4: (0 1 1 1) L2

L3

L4

S3: (1 0 1 1)

S7: (0 1 1 0)

L1

Fig. 1. A simple example with four attributes. The �rst two are relevant.

3.4 Handling noise

The existence of noise a�ects the measure of feature evaluation. There are two

types of noise in general. Type I noise is about inconsistencies in the data. That

is, two patterns are the same but do not have the same class labels. This type

of noise is naturally handled by ABB since it calculates the bound (�) before

searching for subsets. Type II noise is some patterns with their class labels con-

sistently wrongly labeled. Obviously type II noise may not cause inconsistencies

in the data. A priori knowledge about type II noise is required in order to handle

it. If the knowledge is available, ABB can handle type II noise by modifying �

based on how much type II noise is in the data. We will come back to this issue

7 The procedure is: �nd the �rst `0' from the left end as the marker; create child nodes

by changing one `1' at a time to `0' from right to left until each `1' to the left side of

the marker is changed in turn.

in discussion after the empirical study through an example (Monk3) in which

we explicitly allowerd some inconsistency although there was no inconsistency

in the training data.

4 Empirical Study

The objectives of this empirical study are to verify:

1. ABB indeed �nds optimal subsets for various data sets, and

2. features selected are good for various learning algorithms.

To verify whether ABB indeed �nds optimal subsets we select two groups of data

sets: one with known relevant features and the other with unknown relevant fea-

tures as described next. All data sets are from the UC Irvine data repository [13]

unless speci�ed otherwise.

For the �rst group we compare the output subsets of ABB with the known

subsets. For the second group we compare the outputs of ABB with that of Focus,

a popular method in literature that guarantees optimal subsets. For the second

objective we choose two di�erent learning algorithms: a decision tree method

(C4.5 [16]) and a standard back-propagation neural network (SNNS [21]).

1st group of data sets, with known relevant attributes, consists of CorrAL

data designed in [6], Monks data in [19] (CorrAL and Monks have separate data

sets for training and testing), and Par3+3+3 data which is a parity-3 problem

and has 9 attributes: the �rst three are relevant, the middle three are irrelevant,

and the last three are redundant. We should expect as many as 8 equally good

subsets of three features. The whole data set has 512 patterns.

2nd group of data sets, with unknown relevant attributes, consists of WBC -

the Wisconsin Breast Cancer data set, LED-7 - data with 7 Boolean attributes

and 10 classes, the set of decimal digits (0..9), Letter - the letter image recognition

data, LYM - the lymphography data, and Vote - the U.S. House of Representa-

tives Congress-persons on the 16 key votes.

The experiments are designed to observe:

1. optimal subsets for various data sets found by ABB. The optimality of sub-

sets is veri�ed by Focus and prior knowledge,

2. reduction of error rate for C4.5 inductive classi�er with optimal subsets, and

3. reduction of mean square error (MSE) for SNNS [21] neural network classi�er

with optimal subsets.

In Table 1, two thirds of the data is taken for selecting features using ABB

and Focus. The rest of the data is used for testing purpose if not otherwise

speci�ed.

Table 1 shows that ABB indeed �nds optimal subsets as validated by Focus

and a priori knowledge. Focus does breadth �rst search starting from the empty

set and stops after reaching the �rst consistent subset. In fact, the subset found

by Focus is one of the solutions of ABB.

Data DTr DTo C N M Focus/Prior Knowledge ABB

(One Set)

CorrAL 32 64 2 6 4 A1;A2;A3;A4 A1;A2; A3;A4

Monk1 124 432 2 6 3 A1;A2;A5 A1;A2; A5

Monk2 169 432 2 6 6 A1 - A6 A1 - A6

Monk3 122 432 2 6 3 A2;A4;A5 A2;A4; A5

Par3+ 341 512 2 9 3 A1;A2;A3 A7;A8; A9

WBC 463 699 2 9 4 A1;A2;A6;A7 A1;A2; A6;A7

LED-7 400 600 10 7 5 A1;A2;A3;A4;A5 A1;A2; A3;A4;A5

Letter 5980 8968 26 16 9 A1;A2;A7 - A13 A1;A2; A7 - A13

LYM 100 148 4 18 6 A2;A13 - A16;A18 A2;A13 - A16;A18

Vote 300 435 2 16 8 A1 - A4;A9; A11;A13;A16 A1 - A4;A9;A11;A13;A16

Table 1. Reduction in number of features. DTr - training set, DTo - tiotal set, C -

number of classes, N - number of original features; M - number of selected features.

While comparing the results of ABB and Focus, we found an interesting

fact that \ABB and Focus complement each other with respect to time taken to

reach optimal subset". To verify this we conducted another set of experiments to

compare the portions of the search space evaluated by ABB and Focus for various

data sets considering the sequential backward exhaustive search as reference

(see Table 2). Notice that for those data sets for which ABB is quite e�cient

(Monk2, LED-7, Letter, Vote) Focus searches a comparatively large number of

subsets. For example, for Monk2 data set ABB evaluates 7 subsets whereas

Focus evaluates 63 subsets out of a maximum of 64. In contrast, there are data

for which Focus is particularly good when compared with ABB; for example,

Par3+3+3, WBC, and Lymphography (as shown bold faced in Table 2). The

reason is that Focus starts the search from an empty set whereas ABB starts

from the complete set. So, if the size of the optimal subset is not small ABB is

a better choice, otherwise Focus is better than ABB. Hence, our �nding is that

ABB and Focus complement each other. To take adavantage of both algorithms

one may run both simultaneously till any one of the two algorithms stops.

Based on the subsets found for each data set, we obtain the results shown in

Tables 3 and 4. In Table 3, C4.5 gave better accuracy (except for Monk2 since

no feature should be removed for this data set) of 10-fold cross validation. For

the second data group, we notice that numbers of features were all reduced, error

rates were decreased. But the results of 10-fold cross validation for tree size are

mixed for both data groups, some showing larger tree sizes as pointed out by
in Table 3. As was observed by [14], smallest trees do not necessarily give the

best predictive accuracy. What is observed here is that better accuracy may not

mean a smaller tree size. We also noticed that in the \after" (feature selection)

setting, in most cases, C4.5 used all features selected by ABB, which indicates

that features selected by ABB are relevant in decision tree induction. However,

Data set # All ABB Focus

Evaluated Ratio # Evaluated Ratio

CorrAL 64 14 0.22 42 0.66

Monk1 64 12 0.19 24 0.38

Monk2 64 7 0.11 63 1.00

Monk3 64 19 0.30 35 0.54

Par3+3+3 512 265 0.51 46 0.09

WBC 29 188 0.37 145 0.28

LED-7 27 9 0.07 99 0.77

Letter 216 1971 0.03 42,634 0.65

LYM 218 82,156 0.31 23,167 0.08

Vote 216 301 0.005 39,967 0.66

Table 2. Search space reduction. # All - number of all nodes in the search space for

a data set, # Evaluated - number of nodes generated and evaluated, and Ratio is #
Evaluated divided by #All.

C4.5 did choose features not selected by ABB in the \before" setting, e.g., in

the case of CorrAL data.

Tree Size Error Rate %

Data Before After Before After

CorrAL 14.6 13.0 6.0 0.0

Monk1 43.0 41.0 0.7 0.0

Monk2 16.3 16.3 21.1 21.1

Monk3 19.0 19.0 1.1 1.1

Par3+3+3 13.0 15.0 17.2 0.0

WBC 38.0 36.0 6.6 6.0

LED-7 19.0 19.0 0.0 0.0

Letter 6660.0 6113.0 28.1 27.9

LYM 26.9 29.6 21.8 21.0

Vote 16.0 19.0 2.8 2.3

Table 3. The 10-fold cross validation results (tree size and error rate) of C4.5 before
and after feature selection.

Running back-propagation neural network involves the setting of some pa-

rameters, such as the network structure (number of layers, number of hidden

units), learning rate, momentum, number of CYCLES (epochs), etc. In order to

focus our attention on the e�ect of feature selection by ABB, we try to minimize

the tuning of the parameters for each data set. We �x the learning rate as 0.1,

the momentum as 0.5, one hidden layer, the number of hidden units as half of

the original input units for all data sets. The experiment is carried out in two

steps: (1) a trial run to �nd a proper number of CYCLES for each data set

which is determined by a sustained trend of no decrease of error; and (2) two

runs on data sets with and without feature selection via ABB respectively using

the number of CYCLES found in step 1. Other parameters remain �xed for the

two runs in step 2. As the output of SNNS is a real number, the class label in

each data is converted to a binary pattern. If the data has 3 (0,1,2) classes then

label `0' becomes output pattern `1 0 0' and so on. Finally the rror is measured

by Mean Squared Error (MSE) by �nding the di�erence in the predicted and the

actual values. The results are shown in Table 4. In all cases MSE either decreases

or is very close after feature selection.

Before FS After FS

Data CYCLES #HU N MSE M MSE

CorrAL 1000 3 6 0.023 4 0.046

Monk1 1000 3 6 0.262 3 0.212

Monk2 1000 3 6 0.16 6 0.16

Monk3 1000 3 6 0.003 3 0.0

Par3+3+3 1000 5 9 0.311 3 0.0

WBC 1000 5 9 0.04 4 0.06

LED-7 1000 4 7 0.0 5 0.0

Letter 5000 8 16 0.374 9 0.273

LYM 7000 9 18 0.16 6 0.19

Vote 4000 8 16 0.038 8 0.024

Table 4. Back-propagation results of SNNS before and after feature selection, where
#HU denotes number of Hidden Unit, N is number of original features, M is number

of features selected by ABB.

5 Discussion and Conclusion

Time complexity This issue is directly related to how large the search space

is. In other words, how many nodes (subsets) have been generated. The other

factors about time complexity of ABB are (i) time complexity of inconsistency

checking, which is O(N); and (2) time complexity of legitimacy test, which is

O(N). But they are relatively the same for each node. So the key factor is the

search space. Through our experiments and analysis, we realize that the search

space of ABB is closely related to the number of relevant features. For instance,

taking the simple example in Section 3.3, when two features out of four are

relevant, the search space is 12 nodes; if all four features are relevant, it is 5

nodes, i.e., the root plus 4 child nodes. In general, the larger the size of optimal

subset, the smaller the search space due to early pruning of the illegitimate

nodes.

Prior knowledge can come in many forms. One is about the noise in the

data. As we know, this can be used to modify � in ABB. � is de�ned by the

inconsistency found in the data with full features plus a certain percentage (prior

knowledge) of noise. For the Monk3 data set, this percentage is 5% as � for ABB.

We brie
y reviewed the work of optimal feature selectors, and demonstrated

that with a monotonic measure, Branch & Bound is the best deterministic al-

gorithm (the search is not exhaustive, yet complete). We showed that the in-

consistency rate is such a measure and it is fast to compute. The new method

ABB is simple to implement and guarantees optimal subsets of features. Em-

pirical study demonstrates that (1) ABB removes irrelevant, redundant, and/or

correlated features even with the presence of noise (as in Monk3 with 5% noise);

and (2) the performance of a classi�er with the features selected by ABB also

improves. Another �nding from this study is Focus and ABB complement each

other.

References

1. D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms. Ma-

chine Learning, 6:37{66, 1991.

2. H. Almuallim and T. G. Dietterich. Learning with many irrelevant features. In
Proceedings of Ninth National Conference on AI, pages 547{552, 1991.

3. M. Ben-Bassat. Pattern recognition and reduction of dimensionality. In P. R. Kr-

ishnaiah and L. N. Kanal, editors, Handbook of statistics-II, pages 773{791. North

Holland, 1982.

4. A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Occam's razor. In
J.W. Shavlik and T.G. Dietterich, editors, Readings in Machine Learning, pages

201{204. Morgan Kaufmann, 1990.

5. M. Dash and H. Liu. Feature selection methods for classi�cations. Intelligent Data
Analysis: An International Journal, 1(3), 1997.

6. G.H. John, R. Kohavi, and K. P
eger. Irrelevant feature and the subset selection

problem. In Machine Learning: Proceedings of the Eleventh International Confer-

ence, pages 121{129. Morgan Kaufmann Publisher, 1994.

7. K. Kira and L.A. Rendell. The feature selection problem: Traditional methods and
a new algorithm. In AAAI-92, Proceedings Ninth National Conference on Arti�cial

Intelligence, pages 129{134. AAAI Press/The MIT Press, 1992.

8. R. Kohavi. Wrappers for performance enhancement and oblivious decision graphs.

PhD thesis, Department of Computer Science, Standford University, Stanford, CA,
1995.

9. D. Koller and M. Sahami. Toward optimal feature selection. In L. Saitta, edi-

tor, Machine Learning: Proceedings of the 13th International Conference. Morgan

Kaufmann Publishers, 1996.

10. I. Kononenko. Estimating attributes : Analysis and extension of RELIEF. In

Proceedings of European Conference on Machine Learning, pages 171{182, 1994.

11. P. Langley. Selection of relevant features in machine learning. In Proceedings of

the AAAI Fall Symposium on Relevance. AAAI Press, 1994.

12. H. Liu and R. Setiono. A probabilistic approach to feature selection - a �lter solu-
tion. In L. Saitta, editor, Machine Learning: Proceedings of the 13th International

Conference. Morgan Kaufmann Publishers, 1996.

13. C.J. Merz and P.M. Murphy. UCI repository of machine learning databases.

http://www.ics.uci.edu/~mlearn/MLRepository.html . Irvine, CA: University

of California, Department of Information and Computer Science, 1996.

14. P.M. Murphy and M.J. Pazzani. Exploring the decision forest: An empirical in-
vestigation of occam's razor in decision tree induction. Journal of Art. Intel. Res.,

1:257{319, March 1994.

15. P.M. Narendra and K. Fukunaga. A branch and bound algorithm for feature subset
selection. IEEE Trans. on Computer, C-26(9):917{922, September 1977.

16. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

17. J. C. Schlimmer. E�ciently inducing determinations : a complete and systematic
search algorithm that uses optimal pruning. In Proceedings of Tenth International

Conference on Machine Learning, pages 284{290, 1993.

18. W. Siedlecki and J Sklansky. On automatic feature selection. International Jour-
nal of Pattern Recognition and Arti�cial Intelligence, 2:197{220, 1988.

19. S.B. Thrun and et al. The monk's problems: A performance comarison of dif-

ferent learning algorithms. Technical Report CMU-CS-91-197, Carnegie Mellon
University, 1991.

20. Sholom M. Weiss and Casimir A. Kulikowski. Computer Systems That Learn.

Morgan Kaufmann Publishers, San Mateo, California, 1991.
21. Andreas Zell and et al. Stuttgart neural network simulator (snns), user manual,

version 4.1. Technical Report 6/95, Institute for Parallel and Distributed High

Performance Systems (IPVR), University of Stuttgart, FTP: ftp.informatik.uni-

stuttgart.de/pub/SNNS, 1995.

This article was processed using the LATEX macro package with LLNCS style

