On dealing with dynamic utility of learned
knowledge, a case study in geometry
problem-solving task

Masaki Suwa and Hiroshi Motoda
Advanced Research Laboratory, Hitachi Ltd.,
2520, Hatoyama, Saitama, 350-03, Japan

Abstract

Cost-effective utiity of learned knowledge consists of two terms;
the cumulative matching costs of testing to apply the knowledge
in problems and cumulative speed-up effects its application has on
problem-solving time. To evaluate these two factors correctly, mea-
suring dynamic utility of learned knowledge when it is actually ap-
plied to problems is required. In that scheme, however, since utility
value of knowledge is in general negative before its application brings
about speed-up effects in some problems, we encounter a new is-
sue. What kind of strategy should be taken to retain and/or discard
knowledge with currently negative utility value during a training ses-
sion? This is important because it determines the available set of
knowledge to be provided for the subsequent problem in each stage
within a training session. The strategy taken greatly affects not only
the problem-solving costs needed for a training session but also the
kinds of the knowledge that gains a positive estimation at the end
of the training session and thus will be provided for a test session.
This issue is crucial especially in situations where there are strong
interactions of co-existing knowledge during a training session. Five
strategies are presented in the domain of geometry problem-solving
and evaluated from the following criterion; a desirable strategy may
be the one that allows really useful knowledge to gain a positive esti-
mation at the end of a training session, with minimizing the problem-
solving costs during the session.

1 Introduction

Measuring cost-effective utility of learned knowledge, i.e. matching costs
needed for testing to apply it' and speed-up effects its application has on
problem-solving time, is essential to avoid learning paradox, i.e. learning
may degrade problem-solving performance (Gratch et al. 1991a; Minton
1985; Submanian et al. 1990).

Various techniques of measuring utility value have been proposed so far.
In the PRODIGY /EBL system (Minton 1990), speed-up effect is approx-
imately estimated by initial observation when the knowledge was learned

1This includes the cost taken in testing to apply the knowledge but in vain.

from a problem, since it’s difficult to measure it when the knowledge has
been actually applied. This simplification was criticized because approx-
imation only by a single instance from which the knowledge was learned
does not reflect fluctuating factors of speed-up effects by various problem
contexts, 1.e. tnteractions from other co-existing knowledge and the kinds
of currently existing problem statements (Gratch et ol 1991b). Gratch
proposed a method in which the incremental utility is measured every time
a piece of knowledge is learned, and if it is statistically assured as posi-
tive after several measurements then it will be adopted as control strategy
(Gratch et al. 1992). However, this technique neglects the cost that will be
spent in testing to apply knowledge in vain after adopted as a member of
available control knowledge. Actually we have encountered in the domain
of geometry such knowledge that exhibits big speed-up effects in its appli-
cation but does not pay as a whole because the cost of testing to apply it in
vain to problems is extremely large. These disadvantages are attributed to
staticly measuring utility when knowledge is learned. From these concerns,
our view in this paper is that dynamic® analysis of cost-effective utility of
learned knowledge is required when it is actually applied, not when it has
been learned?.

In the scheme of dynamic measurement of utility values, however, we
encounter a new technical issue about how to deal with gathered utility
data. Utility value of knowledge is in general negative at first due to the
cumulative cost of testing to apply the knowledge, before its application
brings about speed-up effects in some problems. This means that we cannot
discard a piece of knowledge because it has a negative utility value at
present, i.e. it may be useful knowledge which will have positive speed-
up effects in the near future*. Therefore, in this paper we examine what
kind of strategies should be taken to retain and/or discard knowledge of
currently negative utility value during a training session. This is important
because it determines the available set of knowledge to be provided for the
subsequent problem in each stage within a training session. The strategy
taken greatly affects not only the problem-solving costs during the training
session but also the kinds of the knowledge that gains a high utility value at
the end of the training session. Under an undesirable strategy, some pieces
of really useful knowledge which should have scored high utility value may

2Due to dynamic measurement of cost-effective utility, the utility value of knowledge
is inevitably influenced by interactions of currently available knowledge. We will mention
it in the related work section.

3 As many researchers pointed out, dynamic measurement of speed-up effect is diffi-
cult and time-consuming. We show later a simplified technique of measuring it when
knowledge is applied, but discussing the technique itself is not the main issue of this
paper, as we say in this introduction.

4Things would be simpler in static analysis because initial estimation of speed-up
effects may give a positive value.

not be found in the list of available knowledge when a training session ends,
and it will degrade performance in the subsequent test session.

2 Strategies for dealing with utility values

Some variations of the following two strategies will be evaluated in this
paper-

1. To arrange the pieces of learned knowledge in a descending order
of utility value every time a problem is solved and utility values are
measured, and then to retain the best N pieces of knowledge in terms
of utility value in the list of available knowledge for the next problem.

2. To discard such knowledge as soon as possible during a training ses-
sion whose utility has been assured as “bad”. For judging the “bad-
ness” of knowledge, we use the technique of statistical range estima-
tion of the true population mean of utility values.

Dynamic utility values are dealt with under each variation of the above
strategies during the training session and after that a test problem is solved
by use of only the knowledge which has scored a positive utility as a total.
And we evaluate the feasibility of those strategies according to the following
standard;

1. whether or not the strategy can reduce the problem-solving costs
during the training session as much as possible,

2. whether or not the strategy can estimate knowledge of really high
utility as positive and available for the test session.

Before going into the detail of the experiments done in geometry problem-
solving domain, we will characterize the domain itself, the learning system
and the kind of learned knowledge in the next section. Further we will
describe briefly the technique of dynamic analysis of utility value.

3 Characterization of the learning system
3.1 Domain

Geometry problem-solving is to prove a goal statement deductively by use
of domain knowledge when some problem statements are given. The char-
acteristics of this domain are

e that a huge variety of instatiations are produced by preconditions
and/or consequent-parts of domain knowledge in applying it and this
may potentially impose heavy burden of matching costs on problem-
solving performance,

e and that not only goal-oriented backward reasoning but also bottom-
up forward reasoning is essential to constructing a successful proof-
tree efficiently especially in complicated problems (Sweller 1988),

e and therefore that search control knowledge suggesting which domain
knowledge should be used in a forward manner to an already asserted
problem statement plays a significant role in avoiding irrelevant paths
of inference.

The first point connotates that in geometry domain there could be po-
tentially heavy interactions from other co-existing knowledge and/or other
factors that will greatly affect dynamic cost-effective utility data. This
requires us to provide a feasible strategy of dealing with dynamic utility
values.

3.2 Search control knowledge

We do experiments in this paper on the learning system PCLEARN (Suwa
et al. 1994a; 1994b). It chunks essential features from the problem dia-
grams that will work as search control knowledge. The learned knowledge
helps a problem solver select appropriate domain knowledge to be applied
to explored problem statements in a forward manner.

The kind of search control knowledge the PCLEARN system learns is
called “perceptual-chunks (or schemas)” (Greeno 1983) and its significant
role in controlling problem solver’s search has been extensively studied in
the domain of geometry problem-solving (Koedinger et al. 1990; McDougal
et al. 1992; McDougal et al. 1993). The characteristic of a perceptual-
chunk 1s that it is acquired from a problem as a chunk of diagram elements
which are meaningful and grouped together with each other (Suwa et al.
1994a; 1994b). In this sense, a perceptual chunk can be regarded as a lo-
cal chunk frequently found in the diagrams of many problems. Therefore,
it does not contribute to directly accomplishing the goal statement, un-
like search control knowledge learned by goal-oriented learning technique,
such as explanation-based learning method (Minton et al. 1989). Rather,
a perceptual-chunk only helps problem solvers do local search at a local
control decision node during problem-solving traces.

The “freeness” of perceptual-chunks from the goal structure of the prob-
lem from which they are learned is advantageous in assuring higher appli-
cability to many future problems (Suwa et al. 1994a). But its “localness”
is a major weak point at the same time because 1t may not always con-
trol search in a correct direction globally. Therefore we need to justify
whether the learned perceptual-chunks are worth being retained as avail-
able knowledge. Only empirical evaluation of their utility values gives us
this justification by actually applying them in future problems with differ-
ent problem situations (Suwa et al. 1993).

3.3 Measuring cost-effective data of applied knowledge

We briefly describe the method of measuring cost-effective utility of percep-
tual chunks. The utility value of a perceptual-chunk is calculated through-

out its use over many problems according to the following formula,
Utility = TotalE f fects — Total MatchCosts, (0.1)

where TotalE f fects 1s the cumulative speed-up effect that results from
applying the perceptual-chunk frequently, and TotalMatchCosts is the
cumulative time cost spent in testing to apply the perceptual-chunk in
vain over frequent testings during many problems. Every time a problem
is solved, the matching costs are measured for each perceptual-chunk, and if
a perceptual-chunk has been applied in solving the problem, speed-up effect
by its use is also calculated. In recording both values, we normalize them
by the complexity of the current problem in question®. This is intended to
prevent costs and/or effects measured in larger problems from preferrably
governing the utility of knowledge.

If we intend to correctly make dynamic analysis of speed-up effect a
piece of knowledge brings about, running the system with and without the
knowledge on each problem would be required, and this would have to be
done for each piece of knowledge in question. Doing so requires solving
the same problem multiple times and costs too much, as many researchers
pointed out (Minton 1990; Gratch et al. 1991b). In this paper we simplify
the analyzing process by comparing the current solution trace obtained
by applying learned knowledge with the solution trace constructed when
the same problem was solved without using any learned knowledge®. The
speed-up effect is calculated according to the following formula;

Effect = NoMacroModeCosts — MacroM odeCosts, (0.2)

MacroModeCosts is the summation of the matching costs taken at the
following nodes of the current solution trace; (a) the node (Ngp;) to which
the perceptual-chunk has been applied, (b) all the other nodes that had to
be verified for applying the chunk, and (c) all the nodes newly produced
by its application. NoMacroM odeCosts 1s the summation of the match-
ing costs taken at the following nodes of the solution trace constructed
without using any perceptual-chunks; (a) the ones that correspond to the
above three kinds of nodes and (b) the ones along irrelevant paths that are
invoked from the node corresponding to Ny, if any. Note that applying a
perceptual chunk to a node Ng,; may save the costs in the irrelevant paths
from N, and it is a major positive source of speed-up effect. On the other
hand, M acroM odeC'ost will be potentially added up at every relevant node
as the number of other co-existing perceptual-chunks increases. This is in-
teractions from other knowledge and may be a negative source of speed-up
effect.

5We approximate problem complexity by the problem-solving time spent in solving
the problem without using any learned knowledge.

8Doing so requires solving the same problem in advance without any search control
knowledge. The issue about the cost spent in learning has been a controversy in uitlity
analysis. See related work for discussions.

After calculating speed-up effect for each of all the perceptual-chunks
applied to a problem, we sum up the effects of all the perceptual chunks.
Ideally the total should be equal to the problem-solving time savings ob-
tained by applying those perceptaul-chunks, i.e. the difference of the
problem-solving cpu-time currently measured and the cpu-time spent in
solving the same problem without using any perceptual-chunks. But in
many cases both will not be equal. Therefore, we assume that the de-
screpancy of both values is attributed to interactions among the applied
perceptual-chunks and add up/subtract the value of discrepancy divided
by the number of applied chunks to/from the evaluated speed-up effect of
each perceptual-chunk.

4 How to deal with utility data
4.1 Experimental setting

We provided twenty geometry problems selected from junior high school
reference books. The categories of problems selected are resticted to “fea-
tures of triangles” and “parallel lines and angles”. Since problems of the
same category would share some common perceptual chunks, they can be
good examples as an experimental platform to address utility problem. The
givens and goals of the problems are shown in Fig. 77.

Out of the 20 problems, we assigned 19 problems to a training session
and after repeating the training session twice” the remaining one problem
is to be solved as a test session. In a training session, 19 problems are
arranged in the descending order of problem complexity, and each of them
is solved by use of the currently available set of perceptual-chunks. In a test
session, the remaining one problem is solved using only those perceptual-
chunks which have scored positive utility values at the end of the training
session. Since the number of the ways of leaving one out for a test session
is twenty, we did the above experiments for all the 20 cases. So we got 19
x 2 x 20 problem-solving data for training sessions and 20 data for test
sessions.

We provided the following five strategies of dealing with cost-effective
utility data, out of which the first three are variations of the best-N strat-
egy mentioned in Section 1 and the last two are variations of judging the
“badness” of knowledge. We will do the above experiments for each of
these five. Five strategies are

1. To adopt the best 20 pieces of knowledge as available (named as
“best-207),

"We repeat this twice because the training session of 19 problems is too short to allow
some pieces of really useful knowledge to gain positive estimation. Positive estimation
can be obtained only after the knowledge has been applied to problems several times.

Givens: 20 A Givens: Givens:

[,?\ ADC collinear = BDC collinear /F _ AB=AC,
LADB=1, AB=AC, AE#BC,
LABD=LCBD LBAD=LCAD BAF F collinear,

A D C Goal: AD=CD B D C Goal: BD=CD c LFAE—LCAE
Givens: A Givens: Givens:
A AB=AC, AEC collinear, BDHC collinear,
LABD=4CBD, BED collinear, DH=HC,
D ZACE=£BCE. AB=AD, LDHA=L
AEB collinear b, BC=DC ZDBA=ZDAB
B C ADC collinear Goal: Gaa/ BD=AC
Goal: BD=CE LBEA=L Givens:
Givens: Givens: i{é BD=DC,
BEC collinear, AFC collinear, B AF=AC.
AFE collinear, BGD collinear, DE# BF,
AD#BC, D AF=FC, BG=GD, BAF collinear,
3 LABF=LEBF AB=CD, E " BDC collinear,
& Y G:[,‘?-AE=LDAE G £ GCE[F collinear
: ¥ _ oal:
.......... LBFA=1 AABE—ACDE ZAEC=L
10 Givens: Givens: X
ABICD ADIBC AG=GD,BG=G] Givens:
DBM= MC, CG=GF, ADB collinear,
ABP collinear, AGD collinear, CED collinear,
PMD collinear, BGE collinear, AC=BC, AE=BE
BMC collinear E CGF collinear Goal:
Goal: AB=BP Goal: ZADC=L
Givens: ::::E 4ABC=LDEF Givens:
AEB collinear, * Givens: ADC collinear,
MADC collinear, BC=CD, AC=CF, AEF collinear,
BDM collinear, AB=DE, BED collinear,
CEN collinear, BCD collinear, BFGC collinear,
AE=EB, AD=DC, ACF collinear, & \. AD=DC, BE=ED,
C BD=DM, CE=EN Goal: . F G C ArpG
Goal: AN=AM 4BAC=£DEC Goal: BF=CG
Givens: Givens: . Q Givens:
BNMC collinear, ADB collinear, RPQ collinear,
AEN collinear, ACE collinear, A APB collinear,
ADM collinear, DME collinear, CAQ collinear,
LABD=£CBD, BFMC collinear, P, BRC collinear,
LACE= £BCE, C BD=CE, CM=MF, AB=AC,
MC £ADB=L DM=ME BR C /pro-L
LAEC=L E Goal: AB=AC Goal: AP=AQ
Goal: DE#/MN Givens:
Givens: BAR collinear,
A AEC collinear, BPC collinear,
ADB collinear, APE collinear,
g DYE collinear, AQDC collinear,
BXC collinear, PQR collinear,
AYX collinear, AB=CD, BP=PC,
B X C AD=DB, AE=EC AP=PE, AQ=QD
Goal: AY=YX Goal: AQ=AR

Fia. 0.1. the geometry problems used for experiments

2. To adopt the best 40 pieces of knowledge as available (named as
“best-407),

3. To adopt the best 60 pieces of knowledge as available (named as
“best-607),

4. To discard the knowledge whose population mean of utility values
has been assured to be negative by statistical range estimation,

5. To discard not only the knowledge of 4 but also the knowledge which

has never been applied but has taken too much cumulative matching
costs®

8In this experiment, the knowledge whose cumulative costs exceed 0.2 in terms of the
value normalized by problem complexity is judge to be “bad”.

The first three are intended for investigating how large buffer is needed
to still retain candidates of high-utility knowledge before gaining a posi-
tive estimation. The last two are intended for positively discarding bad
knowledge as soon as possible, instead of waiting for their utility values to
underscore the lowest in the “best-N” knowledge. The variations in the
two are due to the difference about what would be regarded as “bad”.

4.2 Statistical range estimation

In general there will be a discrepancy between the average of samples(T)
and the true population mean(u). We employ a technique of statistically
estimating the possible range of u at a certain confidence from the gathered
data on T and the number of samples (n). The average of samples T is
known to have a distribution around g according to the variance of the
current samples (s2) and the degree of freedom (n — 1). So, if we set

r—p
t= ST (0.3)
we already have a table of the distribution of #value. According to this
table, we can say at a confidence § that t-value exists between — f(§) and
f(é), where f(é) is a function of §. Thus, we can estimate the range of p
at a confidence é as follows;

T —f(6)-

S S

< u Sf'i'f(é)\/m

The true utility is calculated from the true population mean of both
matching costs and speed-up effects by the following formula;

(0.4)

n—1

Utility = Npenefit * Hbenefit — Ncost * Heost (05)
For each of the matching costs and speed-up effects, we can statistically
estimate their range of existence. In order to assure the utility of a piece
of knowledge as negative, we have only to prove the maximum of utility
is less than zero by calculating it from the maximum of speed-up effects
and the minimum of matching costs. We can assure this at a confidence
of é, x 6., where &, is the confidence in estimating the range of speed-up
effects and 6. 1s the confidence in estimating the range of matching costs.
In the experiment we made estimation at the confidence of 60 %.

4.3 Experimental Results

For each of the five strategies of dealing with utility data, Table 7?7 shows
the following; (1) the average of cpu-time costs over 20 test problems, (2)
the average of cpu-time costs over 760 training problems, (3) the number
of problems out of 20 test problems, in which positive speed-up effects by
use of learned knowledge, negative effects and no applications of knowl-
edge are observed respectively. Cpu-time costs are normalized by problem

complexity. Below we wrap up the observations about the characteristics
of the employed strategies.

Table 0.1 problem-solving performance in training and test sessions for
each strategy of dealing with utility values

The test 20 problems Average costs
positive no negative test training
effects application effects sessions sessions

best-20 4 14 2 1.12 1.22
best-40 8 11 1 0.95 1.45
best-60 8 10 2 0.92 2.94
neg. assure* 7 11 2 0.90 2.22
neg.assure + 2 6 2 077 1.8

no-application*

neg.assure™ -- the strategy of discarding the knowledge which has been statistically
assured as negative,
no-application* -- the strategy of discarding thse knowledge which has never been
applied and has taken too much costs.

1. In using the “best-20” strategy, the number of problems in which no
knowledge was applied is the largest and the number of problems in
which positive speed-up effects were observed is the smallest. Con-
sequently, the average cost in the test sessions becomes larger than
1.0. The reason is as follows; since the volume of the list of available
knowledge during training sessions, i.e. in this case 20, is too small,
some pieces of knowledge which should have scored a positive value at
the end of a training session have dropped out of the list before gain-
ing positive utility value in the training session. This result suggests
that in order to estimate good knowledge as positive at the
end of a training session, we need a certain volume of buffer
of knowledge that allows currently negative knowledge to be
retained available during the session.

2. Retaining too much knowledge during training sessions, however,
brings about rather undesirable outcome. As the number of avail-
able knowledge retained increases, the average training costs
tend to become extremely large undesirably. Especially, the
use of “best-60” strategy costs about three times larger problem-
solving cpu-time than using problems without any learned knowledge,
while the average cost of test sessions scores less than 1.0 desirably.
This is mainly because the solver uses such knowledge that is actually
bad but is retained still in the list of currently available knowledge,
and also because the situation becomes aggravated by a snowballing

effect where using bad knowledge will degrade the problem-solving
proof-trees in the training sessions and thus more and more bad
knowledge will be learned from the proof-tree.

. The strategies of removing bad knowledge as soon as possible

when 1t 1s assured to be bad are effective in allowing really good
knowledge to be estimated as positive at the end of training
sessions, with restricting the training costs consumed to not
so expensive degree. Especially, in using the fifth strategy, the
number of problems in which positive speed-up effects are observed
is the largest and the number of problems in which no knowledge was
applied is the least and consequently the average cost in test sessions
is 0.77 while the average cost in training sessions is 1.28.

Table 7?7 shows the following for each case of using the five strategies;
(1) the average of the number of knowledge that is still retained in the list
of available knowledge when a training session ends®, over the 20 cases,
and (2) the average of the number of knowledge that has obtained positive
utility estimation out of the pieces of knowledge of (1), over the 20 cases.

Table 0.2 the characteristics of the knowledge retained at the end of train-

ing se

1.

2.

ssion
% positively-estimated
all the knowledge knowledge **
best-20 20.0 35
best-40 40.0 6.2
best-60 60.0 3.8
neg. assure 62.8 5.9
neg.assure +
no-application 45.1 9.3
* the average number of all the retained knowledge at the end of a training
session , over the 20 cases
** the average number of positively-estimated knowledge at the end of a
training session, over the 20 cases
The number of the positively estimated knowledge in case of “best-

20” strategy is the smallest. This observation also tells that the
volume of the retained knowledge is too small.

It 1s surprising that the number of positively estimated knowledge in
“best-60” strategy is fewer than that in “best-40” strategy. This is

9This includes not only knowledge of pisitive utility but also knowledge of negative

utility.

11

mainly caused by “interactions with other bad knowledge; re-
member that, as we mention the method of measuring cost-effective
utility value, MacroModeCost includes the matching costs at the
nodes that have been produced by applying the knowledge itself. This
means that, when a piece of knowledge has been applied, if bad knowl-
edge requiring too much costs co-exists together, it will potentially
degrade the utility value of that applied knowledge. Consequently
this will make it difficult for the knowledge to obtain positive estima-
tion finally. In other words, the property of bad knowledge will
ruin the property of the others.

3. The Jast two strategies contribute much to preventing knowledge from
being affected by interactions with bad knowledge; according to the
average number of retained knowledge when a training session ends
over the 20 cases, the fourth strategy is compatible with the “best-
60” and the fifth one is compatible with the “best-40”. In each of
both comparisons, the average number of the positively estimated
knowledge is larger in the statistical strategy, and also the average
costs of both test and training sessions shown in Table 7?7 are smaller
in the statistical strategy.

4. According to the above discussions, the fifth strategy of removing
both (1) the knowledge that has been statistically assured as negative
and (2) the knowledge that has never been applied but has taken too
much matching costs is the most desirable to avoid interactions with
bad knowledge and to obtain good performance in test sessions with
keeping training costs not so expensive.

4.4 Current limitations and discussions

In the experiments shown in this paper, the best result of the test costs
was 0.77 in the fifth strategy. This 1s worse than we expected first. We
mention its reason although this paper does not target at implementing a
system that exhibits as much learning effects as possible. The main reason
is that such problems that do not inherently share perceptual-chunks as
partial problem structures with other problems are included in the twenty
problems. This is obviously found, as shown in Table 7?7, from the observa-
tion that under all the five strategies some common problems did not allow
for any applications of learned knowledge when they are solved in test ses-
sions. Although we noticed it by observing problem-solving performances
during all the training sessions, we didn’t change the experimental condi-
tions, thinking that we should not artificially design an ideal environment
of training sessions. Those problems are in a way unrelated factors that
may potentially degrade learning effects. We rather have to note, how-
ever, that under these tough conditions some learning effects as well as the
differences of the employed strategies are clearly observed.

12

The technique of range estimation employed for judging the badness of
knowledge could be employed for judging the “goodness” of knowledge as
well. We can think of an alternative strategy to use only the knowledge
that has been statistically assured to be positive utility'® for test sessions.
Although the feasibility of this strategy is an open question at present, we
currently have a negative view against it. The set of knowledge that has
scored a positive value in the current version consists of three types; (1) such
knowledge which is applied frequently and exhibits some speed-up effects
whenever it is applied, (2) such knowledge which exhibits frequently small
negative effects (or is rarely applied) but sometimes big positive speed-up
effects, and (3) such knowlede which exhibits sometimes big negative effects
but frequently some positive effects (resulting in positive estimation as a
total). If we assure the goodness of knowledge as mentioned above, only the
knowledge of the first class would be selected as available for test sessions.
That may be problematic because it may potentially cause the situation
again that no knowledge is applied in many problems of test sessions. We
have to examine it in near future.

We repeated each training session twice to make the most of the sta-
tistical strategies under a restricted source of geometry problems. Ideally
we should have collected more numbers of different problems. Repeating a
training session twice, however, might suffice because when the same prob-
lem is solved for the second time the utility of the knowledge learned from
the problem for the first time can be testified in the different contexts of
interactions with co-existing knowledge from the first situation.

The order of problems in a training session may potentially influence the
set of learned knowledge. In this paper, we fixed it in the descending order
of problem complexity. This may have been one of the factors governing
the costs in training sessions and test sessions. We have to examine this
factor in future.

5 Related work

Most studies on learning systems have so far evaluated cost-effective utility
in a static way, 1.e. it is meaured simultaneously when knowledge has been
learned, because 1t i1s the simplest way. They don’t have to solve the same
problem multiple times. On the other hand, dynamic analysis in this pa-
per requires solving the same problem without using any learned knowledge
in advancce. This is obviously more time-consuming than static analysis.
But our view is that for the purpose of obtaining dynamic utility value
of a piece of knowledge, comparing the current solution trace obtained by
applying the knowledge with the one obtained without any knowledge is in-
dispensable. Our simplified technique is still less time-comsuming than the

10Notice that this is different from the knowledge that has scored a positive utility
value at the end of a training session. In this paper the latter strategy has been taken.

13

ideal method of solving the same problem with and without the knowledge
for each piece of knowledge in question. Due to this simplification, how-
ever, our technique would yield rather rough estimation of utility values.
But we assume that we can compensate this roughness by doing statistical
estimation.

We do not address interaction problem in the same sense as Gratch deals
with in his paper (Gratch et al. 1992). Gratch addresses it in the following
way; in general the measured utility values inherently include some inter-
actions from the current available set of control knowledge. He proposes
a framework where only the knowledge which gains good interaction from
the current available set will be adopted as new control knowledge. This
was possible only by gathering static utility value of knowledge simultane-
ously in learning. In this respect, he makes the most of interactions among
knowledge toward the goal of improving the planner’s performance in a
hill-climbing way. On the other hand, we view interaction problem differ-
ently; we understand that interactions between knowledge are one of the
fluctuating factors like other factors, e.g. high dependence of utility values
on the already existing problem statements, and also that deterioration of
training costs due to applying learned knowledge before knowing its utility
is ineviable as a cost of learning. In other words, this matches well human
way of learning; when actually using knowledge in real problems causes
fatal failure, we human learn to avoid using it.

This attitude toward interaction problem is originated from the fol-
lowing notion. We think that we do not necessarily have to improve the
system’s performance in a hill-climbing way. Rather, if there should be a
set of perceptual-chunks that have high-utility as a whole in any contexts
including interactions from other knowledge and/or other fluctuating fac-
tors, we want to obtain such an organized set of perceptual-chunks in the
domain in question. It may be a success if we can finally come up with
satisfactory performance by doing so, even if we pay some costs to reach
the final state.

6 Conclusion

We address the issue of how to deal with dynamic utility values of knowl-
edge during a training session, the main factor determining the available
set of knowledge to be provided for the subsequent problem in each stage
within the session. The strategy taken has a great impact not only on
problem-solving costs spent in the training session but also whether or
not really useful knowledge can gain positive estimation at the end of the
training session and therefore on the problem-solving performance in the
subsequent test session.

Five strategies were examined in this paper. They are (1) using the
best 20 knowledge in terms of cost-effective utility values, out of all the

14

learned knowledge, (2) using the best 40 knowledge, (3) using the best 60
knowledge, (4) discarding the knowledge as soon as possible whose utility
has been statistically assured as negative, and (5) discarding not only the
knowledge of (4) but also the knowledge which has never been applied but
has taken too much costs.

We have come up with the following insights.

e Some buffer to retain knowledge of currently negative utility values
in the list of available knowledge is needed before some of them gets
positive estimation in the subsequent training session.

e Too much volume of buffer, however, will undesirably cause inter-
actions from bad knowledge and snowballing effects during training
sessions. If the two effects coincide with each other, the problem-
solving costs in training sessions will extremely pile up and, what
is worse, the utility value of even useful knowledge will be improp-
erly underestimated due to interactions and discarded from the list of
available knowledge. The latter phenomenon badly affects problem-
solving performance in test sessions.

e The strategies of discarding “bad” knowledge as soon as possible are
effective in allowing really useful knowledge to gain positive estima-
tion at the end of training sessions, with restricting the training costs
to a certain degree.

Although this is a trial of fundamental examination, further investiga-
tions along this direction will be an important standard for dealing with
utility problem in general domains where matchings in applying knowledge
impose a heavy burden on problem-solving performance.

Bibliography

1. Gratch, J. and DeJong, G. (1991a). A Hybrid Approach to Guaranteed
Effective Control Strategies, Proceedings of ML-91.

2. Gratch, J. and DeJong, G. (1991b). On comparing operationality and
utility, Tech. Report, UIUCDCS-R-91-1713, Unwersity of Illinois at
Urbana-Champaign.

3. Gratch, J. and DeJong, G. (1992). COMPOSER: A Probabilistic Solu-
tion to the Utility Problem in Speed-up Learning, Proceedings of AAAI-
92, 235-240.

4. Greeno, J. G. (1983). Forms of understanding in mathematical problem-
solving, Paris, S.G et al. eds., Learning and Motivation in the Classroom.
Lawrencce Erlbaum Associates.

5. Koedinger, K. R. and Anderson, J. R. (1990). Abstract planning and

perceptual chunks: elements of expertise in geometry, Cognitive Science
14, 511-550.

15

6. McDougal, T. and Hammond, K. (1992). A recognition model of ge-
ometry theorem-proving, Proc. of the 14th Annual Conference of the
Cognitive Science Society, 106-111.

7. McDougal, T. and Hammond, K. (1993). Representing and using pro-
cedural knowledge to build geometry proofs, Proc. of AAAI-93, 60-65.

8. Minton, S. (1985). Selectively generalizing plans for problem solving,
Proceedings IJCAI-85, 596-602.

9. Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka, D. R., Etzioni,
O. and Gil, Y., (1989). Explanation-based learning: a problem solving
perspective, Artificial Intelligence 40, 63—118.

10. Minton, S. (1990). Quantitative results concerning the utility of
explanation-based learning, Artificial Intelligence 42, 363-391.

11. Subramanian, D. and Feldman, R. (1990). The utility of EBL in recur-
sive domain theories, Proceedings of AAAI-90, 942-949.

12. Suwa, M. and Motoda, H. (1993). A perceptual criterion for visually
controlling learning, Proceedings of 4th international workshop on al-
gorithmic learning theory, Lecture Notes in Al 744, 356-369, Springer-
Verlag.

13. Suwa, M. and Motoda, H. (1994a). Learning perceptually-chunked
macro-operators, Machine Intelligence 13, Oxford University Press (in
press).

14. Suwa, M. and Motoda, H. (1994b). PCLEARN: A model for learning
perceptual-chunks, to appear in Proceedings of the 16th Annual Meetings
of the Cognitive Science Society, Atlanta, Georgia.

15. Sweller, J. (1988). Cognitive load during problem-solving: effects on
learning, Cognitive Science 12, 257-285.

