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Abstract. Conventional work on scienti�c discovery such as BACON

derives empirical law equations from experimental data. In recent years,

SDS introducing mathematical admissibility constraints has been pro-

posed to discover �rst principle based law equations, and it has been

further extended to discover law equations from passively observed data.

Furthermore, SSF has been proposed to discover the structure of a si-

multaneous equation model representing an objective process through

experiments. In this report, the progress of these studies on the discov-

ery of �rst principle based scienti�c law equations is summarized, and

the future directions of this research are presented.

1 Introduction

Langley and others' BACON [1] is the most well known pioneering work to
discover a complete equation representing scienti�c laws governing an objective

process under experimental observations. FAHRENHEIT [2], ABACUS [3], etc.
are the successors of BACON that use basically similar algorithms. However, a

drawback of the BACON family, that is their low likelihood of the discovered
equations being the �rst principle underlying the objective process, is reported.
To alleviate the drawback, some systems, e.g., ABACUS and COPER [4], utilize

the information of the unit dimensions of quantities to prune the meaningless
terms. However, many of these conventional scienti�c equation discovery systems

have some critical limitations for the real world applications. Fisrt, the informa-
tion of the unit dimension of each quantity in the data is needed to discover the
�rst principle based equation. Second, the data must be acquired under \active

observations" where the values of some quantities representing the objective pro-
cess are observed for various process states by controlling the values of the other

relevant quantities. Third, a complex equation model, especially a \simultaneous

equation model", to represent the process consisting of multiple mechanisms is

hardly discovered due to the complexity of the search space.

To alleviate the �rst limitation, a law equation discovery system named SDS
based on the mathematical constraints of \scale-type" and \identity" is proposed
for the active observations [5]. Since the knowledge of scale-types of quantities is

widely obtained in various domains, SDS is applicable to non-physics domains.
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The equations discovered by SDS are highly likely to represent the �rst princi-
ple underlying the objective process. To address the second limitation, SDS has

been further extended by introducing a novel principle named \quasi-bi-variate
�tting" [6] to make it applicable to the \passive observations" where the quan-

tities of the objective process can only be partially or even hardly controlled.
Moreover, to overcome the third limitation, a simultaneous structure �nding
system named SSF has been proposed to discover a valid simultaneous equation

structure under the active observations [7]. SSF identi�es the number of equa-
tions needed to represent the objective process, and further identi�es the sets of

quantities to appear in each of the respective equations of the model while elim-
inating quantities irrelevant to the equations. The combination of SDS and SSF
enables the discovery of the �rst principle based simultaneous equation model

for the objective process under active observations. In this report, the principles
and the performances of these recent scienti�c discovery systems are outlined,

and the future directions of this research topic are discussed.

2 Required Conditions

Prior to the explanation of each scienti�c law equation discovery system, the con-
ditions required for the application of the system are summarized. The approach
of the SDS requires the following conditions.

(1) All of the quantities except one dependent quantity can be controlled to
their arbitrary values in the ranges of the quantities of our interest.

(2) The objective system can be represented by a complete equation in the value

range.

(3) The scale-types of all quantities needed to represent the objective system
are known.

The �rst condition is to ensure the application of the SDS to experimental en-

vironment in scienti�c laboratories. This condition is the requirement of the
original BACON systems, and is also required by other BACON family. The

second condition is also a common requirement in BACON family to search for
a complete equation for every continuous region in the objective system. The
third condition comes from the fact that the SDS uses the the information of

the scale-types of the quantities to search mathematically admissible equation
formulae to relate the quantities. As the scale-types of the measurement quanti-

ties are widely known based on the measurement theory [5], this condition does
not restrict the applicability of the SDS.

The extended SDS discovers the law equations from the passively observed
data, and thus the aforementioned condition (1) is not required. Instead, it needs

the following condition in addition to the conditions (2) and (3).

(4) The observed data are uniformly distributed over the possible states of the

objective system.
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Violation of the requirement of the uniform distribution over a certain value
range of a quantity implies the low observability of the quantity [6],[8]. Any

approaches such as the linear system identi�cation and the neural network do
not derive valid models under low observability. This limitation is generic, and

further discussion on this issue is out of scope of this report.
The condition required by the SSF for the derivation of the simultaneous law

equation models is as follows.

(5) The simultaneous equation model under consideration is not over-constrained

where the number of the equations is no more than the number of quantities
in the model.

This condition always holds for the models in scienti�c and engineering domains,
since the over-constrained state does not exist in any real world process.

3 Smart Discovery System (SDS)

The information required from the user besides the actual measurements in SDS

is a list of the quantities and their scale-types. The rigorous de�nition of scale-
type was given by Stevens[9]. The quantitative scale-types are interval scale,

ratio scale and absolute scale, and these are the majorities of the quantities.
Examples of the interval scale quantities are temperature in Celsius and sound
tone where the origins of their scales are not absolute, and are changeable by

human's de�nitions. Its admissible unit conversion follows \Generic linear group:
x
0 = kx + c". Examples of the ratio scale quantities are physical mass and

absolute temperature where each has an absolute zero point. Its admissible unit
conversion follows \Similarity group: x0 = kx". Examples of the absolute scale

quantities are dimensionless quantities. It follows \Identity group: x0 = x".
The �rst step of the algorithm of SDS searches bi-variate relations among the

quantities by using the \scale-type constraint." Two well-known theorems which

are deduced from the group structures of the scale-types provides the basis of
this step [5].

Theorem 1 (Extended Buckingham �-theorem) If �(x1; x2; x3
::::) = 0 is a complete equation where each xi 2 Q, the set of quantities given

in the experiment, and if each argument is one of interval, ratio and absolute

scale-types, then the solution can be written in the form

F (�1;�2; :::; �n�w) = 0;

where n is the number of arguments of �, w is the basic number of bases in

x1; x2; x3::::, respectively. For all i, �i is an absolute scale-type quantity.

A base is such a basic scaling factor which has a degree of freedom independent

of the other bases in the given �. For instance, length [L], mass [M ] and time
[T ] of physical dimension and the origin of the temperature in Celsius are the

examples of the bases. The relation of each �i to the arguments of � is given by
the following theorem [5].



4 Takashi Washio and Hiroshi Motoda

Theorem 2 (Extended Product Theorem) Let primary quantities in a set

RQ are ratio scale-type and those in another set IQ interval scale-type, the

function � relating a secondary quantity � to xi 2 RQ [ IQ has the forms:

� = (
Y

xi2R

jxij
ai)(
Y

Ik�I

(
X

xj2Ik

bkj jxj j+ ck)
ak )

� =
X

xi2R

ai log jxij+
X

Ik�I

ak log(
X

xj2Ik

bkj jxj j+ ck) +
X

x`2Ig�I

bg`jx`j+ cg

where all coe�cients except � are constants and Ik \ Ig = �.

These theorems state that any meaningful complete equation consisting of the
arguments of interval, ratio and absolute scale-types can be decomposed into an
equation of absolute scale-type quantities having an arbitrary form and some

equations of interval and ratio scale-type quantities in products and logarithmic
form. The former F (�1;�2; :::;�n�w) = 0 is called an \ensemble" and the latter

� = �(x1; x2; x3::::)s \regime"s.
If any pair of interval and/or ratio scale quantities fx; yg in a given complete

equation is to belong to an identical regime, they has to have a relation that

follows the Theorem 2. Conversely, SDS searches bi-variate relations in the set of
quantitiesQ where the relations have the following product, linear or logarithmic

forms which are deduced from the Theorem 2.

x
a
y = b; where x; y are ratio scale; (1)

ax + y = b; where x; y are interval scale, and (2)

a log x+ y = b or cxa + y = b;

where x is ratio scale, and y interval scale. (3)

The value of the constant a in each formula must be independent of any other

quantities according to Extended Product Theorem, while the constants b and c
are dependent on the other quantities in the regime. SDS applies the least square
�tting of these relations to the bi-variate experimental data of x and y that are

measured while holding the other quantities constant in Q, and determines the
values of coe�cients in the bi-variate relations. Subsequently, the judgment is

made whether this equation �ts the data well enough by some statistical tests.
This procedure is now demonstrated by an example of a complex system

depicted in Figure 1. This is a circuit of photo-meter to measure the rate of

increase of photo intensity within a certain time period. The resistance and
switch parallel to the capacitor and the current meter are to reset the operation

of this circuit. The actual model of this system is represented by the following
complex equation involving 18 quantities.

(
R3hfe2

R3hfe2 + hie2

R2hfe1

R2hfe1 + hie1

rL
2

rL2 +R1

)(V1 � V2) �
Q

C
�
Khie3X

Bhfe3

= 0: (4)

Here, L and r are photo intensity and sensitivity of the Csd device. X;K and B

are position of indicator, spring constant and intensity of magnetic �eld of the
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Fig. 1. A circuit of photo-meter

current meter respectively. hiei is input impedance of the base of the i-th tran-
sistor. hfei is gain ratio of the currents at the base and the collector of the i-th

transistor. The de�nitions of the other quantities follow the standard symbolic
representations of electric circuit. hfeis are absolute scale, V1 and V2 interval

scale, and the rest ratio scale. X is the dependent quantity in this circuit, and the
others are independently controllable by the change of boundary conditions and
the replacement of devices. SDS requests the bi-variate change of quantities to

the experimental environment. When a quantity is dependent (not controllable)
during the search process, SDS modi�es its request to control the other indepen-

dent quantity. A simulation based experimental environment was designed and
build for the circuit system. �4% (std.) of relative Gaussian noise was added to
both of the control quantity (input) and the measured quantity (output) in every

bi-variate test. First, SDS set the set of interval scale quantities IQ as fV1; V2g,
ratio scale quantities RQ as fL; r;R1; R2; R3; hie1 ; hie2 ; hie3 ; Q;C;X;K;Bg and

absolute scale quantities AQ as fhfe1 ; hfe2 ; hfe3g based on the input informa-
tion on scale-types. Next, it performed the bi-variate �tting of a linear form

Eq. (2) to the experimental data among the quantities in IQ, and applied the
statistical tests. Then, SDS �gured out a set consisting of a bi-variate equation
IE = f�0 = 1:000V1 � 1:000V0g quickly. Subsequently, a product form Eq. (1)

among the quantities in RQ[f�0g is searched, and applied the statistical tests.
The resultant set of the bi-variate equations RE that passed the tests was

as follows.

RE = fL
1:999

r = b1; L
�1:999

R1 = b2; r
�1:000

R1 = b3; R
�1:000
2

hie1 = b4;

R
�1:000
3

hie2 = b5; Q
�1:000

C = b6; h
1:000
ie3

X = b7; h
1:000
ie3

K = b8;

h
�1:000
ie3

B = b9; X
1:000

K = b10;X
�0:999

B = b11; K
�1:000

B = b12g

The bi-variate �tting of Eq. (3) for the other pairs across IQ and RQ have also

been conducted. But no equations have passed the statistical tests.
In the next step, triplet consistency tests are applied to every triplet of equa-

tions in IE [ RE. In case of a triplet of the power form equations, xaxyy =

bxy; y
ayzz = byz; x

axzz = bxz , by substituting y in the �rst to y in the second,
we obtain x�ayzaxyz = bxy

�ayz
byz. Thus, the following condition must be met.

axz = �ayzaxy:
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However, if any of the three equations are not correct due to the noise and error
of data �tting, this relation may not hold. Thus, a statistical test judges if the

three of the equations are mutually consistent in terms of as. For the triplet of the
linear form equations, a similar test is applied based on the identical principle.

SDS applies this test to every triplet of equations in IE [RE, and search every
maximal convex set MCS where each triplet of equations among the quantities
in this set are mutually consistent. The value of each a is evaluated by its average

a over the equations in the MCS. When the value of a is close enough to its
nearest integer within its statistical error bound, it is set to the integer value.

This operation is based on the observation that the majority of the �rst principle
based equations have integer power coe�cients. Finally, the merged quantities
are replaced by the term of each equation of the derived regime in IQ [ RQ.

In the example in Figure 1, the �nal forms of regimes were represented by the
merged terms in IQ [RQ as follows.

IQ [RQ = f�1 = R1r
�1
L
�2
; �2 = hie1R

�1

2
; �3 = hie2

R
�1

3
;�4 = hie3XKB

�1
;�5 = QC

�1
; �0 = V1 � V0g

Once all regimes are identi�ed, new terms are further generated by merging
these regimes in IQ[RQ[AQ. SDS searches bi-variate relations having one of
the formulae xay = b (product form) and ax+y = b (linear form) by adopting the

least square �tting of these formulae. Then, the statistical tests of the goodness
of the �tting are applied. In the example of the circuit, the product form was

applied �rst. They were merged to the following new terms.

�1 = �1hfe1 = R1r
�1:0

L
�2:0

hfe1 ;

�2 = �2hfe2 = hie1R
�1:0
2

hfe2 ;

�3 = �3hfe3 = hie2R
�1:0
3

hfe3 :

Next, the linear form was tested, then a form was found.

�4 = �4 +�5 = hie3XKB
�1:0 +QC

�1:0

Thus, IQ [ RQ [ AQ became as f�0; �1; �2; �3; �4g. Again, by applying the
linear form, another was newly generated.

�5 = �0�
�1:0
4

= (V1 � V0)(hie3XKB
�1:0 +QC

�1:0)�1:0

Thus, IQ [ RQ [ AQ = f�1; �2; �3; �5g. As no new terms became available,

this step was �nished.

In the �nal step, the \identity constraint" are applied to further merge terms.
The basic principle of the identity constraints comes by answering the question

that \what is the relation among �h, �i and �j , if �i = f�j
(�h) and �j =

f�i
(�h) are known?" For example, if a(�j)�h+�i = b(�j) and a(�i)�h+�j =

b(�i) are given, the following relation is deduced.

�h + �1�i�j + �1�i + �2�j + �2 = 0
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This principle is generalized to various relations among multiple terms. In the
example of the circuit, SDS found a set of the bi-variate linear relations on

the combinations of f�1; �5g; f�2; �5g and f�3; �5g. By applying the identity
constraint, the following multi-linear formula has been obtained.

�1�2�3 +�1�2 +�2�3 + �1�3 +�1 +�2 + �3 +�5 + 1 = 0

Because every coe�cient is independent of any terms, this is considered to be
the ensemble equation. The equivalence of this result to Eq. (4) is easily checked
by substituting the intermediate terms to this ensemble equation.

4 Extended SDS

As noted in the previous section, the bi-variate �tting requires experimental
control of some quantities, and is not applicable to the passive observation

environments. To overcome this di�culty, the \quasi-bi-variate �tting" proce-
dure depicted in Figure 4 is used to extract a bi-variate relation between two

quantities under the approximated constant values of the other quantities. Let
OBS = fX1; X2; :::;Xng be a set of observations where eachX is am-dimesional
vector of m quantities. The �tting of a candidate bi-variate formula for a pair of

two quantities Pij = fxi; xjg(� X) is applied to a subset of OBS. This subset
OBSijg is chosen in such a way that every quantity xk 2 (X�Pij) takes a value

in the vicinity of the value of xkg, where Xg = fx1g; x2g; :::; xmgg 2 OBS is an
arbitrary chosen observation vector. The vicinity of xkg is de�ned as

�xk = jxk � xkgj < �k:

�k determines the size of the vicinity. This vicinity is indicated by a rectangular
cube in the left �gure of Fig. 4. Every admissible bi-variate formula is generally

represented in the form

Fij(Pij ; aij ; Gij(X � Pij);Hij(X � Pij)) = 0: (5)

Here, Gij and Hij are dependent on the quantities in X�Pij , while aij remains
constant. Given an OBSijg, if each �k is moderately small, the values of Gij and

Hij become almost constant. The least square �tting of Eq.(5) approximately
provides the functional relation within Pij and the coe�cient aij as depicted

in the bottom �gure of Fig. 4 while almost excluding the in
uence of the other
dimensions X � Pij . The goodness of the �tting is judged by some statistical

tests. For the bi-variate relations of the identity constraints, the similar scheme
of the quasi-bi-variate �tting is applied.

The proposed method has been applied to a real world problem. The objec-

tive of the application is to discover a generic law formula governing the mental
preference of people on their houses subject to the cost to buy the house and
the social risk at the place of the house. We designed a questionnaire sheet to

ask the preference of the house in the trade o� between the frequency of huge
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Fig. 2. Outline of quasi-bi-variate �tting

earthquakes, x1 (earthquake/year), and the cost to buy, x2 ($). These are ra-

tio scale quantities. In the questionnaire, 9 combinations of the cost and the
earthquake frequency are presented, and each person chooses its preference from

the 7 levels for each combination. We distributed this questionnaire sheet to
the people owning their houses in the suburb area of Tokyo, and totally 400

answer sheets are collected back. The answer data has been processed by fol-
lowing the method of successive categories which is widely used in the exper-
imental psychology to compose an interval scale preference index y [10], and

OBS = fX1;X2; :::;X400g where Xi = [x1i; x2i; yi] is obtained. The expected
basic structure of the law equation governing the data is y = f(x1; x2). The

quasi-bi-variate �tting between x1 and x2 was applied, and x1 = a(y)x�0:25
2

have been obtained. Next, the formulae between x1 and y have been identi�ed
as either one of y = a(x2)x

�0:23
1

+ b(x2) and y = 0:62 log x1 + b(x2). Simi-

lar search has been made for x2 and y, and, likewise, two candidate equations
y = a(x1)x

0:026
2

+ b(x1) and y = 0:34 log x2 + b(x1) have been derived. Subse-

quently, the triplet-test among fx1; x2; yg is conducted, and only the following
two candidates have passed the test.

y = 0:63 log x1 + 0:34 log x2 � 2:9 (6)

y = �0:61x�0:23
1

x
0:026
2

+ 3:2 (7)(8)

Though both equations are admissible as law equations based on the mathe-
matical constraints and the given data, Eq. (6) is preferred as a law equation in
terms of the principle of parsimony, because it gives less error for the question-

naire data, and has less number of parameters.

5 Simultaneous Structure Finder (SSF)

The principle to discover the simultaneous equation structure from experimental
data is based on some fundamental and generic characteristics of simultaneous
equation models presented in the past work [7]. The principle is brie
y explained

though an example electric circuit depicted in Fig. 3. This can be represented
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R1 R2

V1 V2

I1 I2
Ve

Fig. 3. An circuit of parallel resistances.

by the following simultaneous equation model.

V1 = I1R1 #1; V2 = I2R2 #2; Ve = V1 #3 and Ve = V2 #4; (9)

where R1; R2: two resistances, V1; V2: voltage di�erences across resistances, I1; I2:
electric current going through resistances and Ve: voltage of a battery. We con-
sider an experiment to externally control some values of the quantities in this

model. For example, the quantities R1 and Ve can be externally controlled by
the speci�cation of the resistance and the battery. If we specify these values in

Eq.(9), the values of the other quantities, V1, V2 and I1, that are involved in the
�rst, the third and the forth equations, #1, #3 and #4, are determined since
the number of the quantities which are not externally speci�ed is equal to the

number of the equations. But, this external control does not determine the val-
ues of R2 and I2 through the equation #2. Thus, the equation set f#1;#3;#4g

is considered to represent a mechanism which determines the state of a part of
the objective process. We introduce the following de�nition to characterize this

mechanism in the simultaneous equation model.

De�nition 1 (complete subset) Given a set of equations, E, let the set of all

quantities be Q appearing in the equations in E. Given a quantity set SQ(� Q)

for external speci�cation, when the values of all quantities in NQ = CQ � SQ

are determined where CQ (SQ � CQ � Q) is a set of all quantities appearing in

a set of equations CE(� E), CE is called a \complete subset". The cardinality

jCEj = jNQj is called the \order" of the complete subset.

The equation set f#1;#3;#4g is a complete subset of the order 3. Under any

external control of two quantities among R1, Ve, V1, V2 and I1, f#1;#3;#4g al-
ways determines the values of the remained three quantities. Thus, the complete
subset is \invariant" for the selection of the externally controlled quantities.

The complete subset gives an important foundation to discover the structure
of the simultaneous equation model, which appropriately re
ects the dependency,

embedded in the observation of quantities. For example, the circuit in Fig. 3 can
be represented by the following di�erent simultaneous equation formulae

I1R1 = I2R2 #10; V2 = I2R2 #2; Ve = V1 #3 and Ve = V2 #4: (10)

If the same speci�cation on Ve and R1 is made in Eq.(10), a di�erent complete
subset f#3;#4g is obtained, and any complete subset to determine the value of
I1 does not exist since the equation #10 cannot determine the value of I1 without

the constraint of #2. #10 and #2 that include the undetermined quantities I2
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and R2 do not satisfy De�nition 1. In the real experiment on the electric circuit,
the value of I1 is physically determined, and this fact contradicts the consequence

derived by the analysis on Eq.(10). In contrast, the model of Eq.(9) always gives
correct answers on the determination of quantities for any external speci�cations

of quantities. The model having the complete subsets, which are isomorphic with
the actual dependency among quantities, is named a \structural form".

Conversely, if we identify all complete subsets from the experimental observa-

tion of quantities in the objective process, and compose a simultaneous equation
model consisting of these complete subsets, the model is ensured to be the struc-

tural form. The following theorem provides a basis for the composition [7].

Theorem 3 (modular lattice theorem) Given a model of an objective pro-

cess consisting of equations E, the set of all complete subsets of the model, i.e.,

L = f8CEi � Eg, forms a modular lattice of the sets for the order of the

complete subsets, i.e., 8CEi; CEj 2 L, CEi [ CEj 2 L, CEi \ CEj 2 L and

n(CEi [ CEj) = n(CEi) + n(CEj) � n(CEi \ CEj) where n is the order of a

given complete subset.

For instance, the following four complete subsets having the modular lattice
structure can be found in the example of Eq.(9).

f#3;#4g(n = 2); f#1;#3;#4g(n = 3);

f#2;#3;#4g(n = 3); f#1;#2;#3;#4g(n = 4):

Because the complete subsets of an objective process mutually overlap in the
modular lattice, the redundant overlaps must be removed in the model compo-
sition by introducing the following de�nition of independent component.

De�nition 2 (independent component of a complete subset) The inde-

pendent component DEi of the complete subset CEi is de�ned as

DEi = CEi �
[

8CEj�CEiand CEj2L

CEj ;

where L is the set of all complete subsets of the model. The order �ni of DEi

is de�ned as �ni = jDEij.

For instance, the following independent components can be found for Eq.(9).

DE1 = f#3;#4g � � = f#3;#4g; �n1 = 2� 0 = 2;

DE2 = f#1;#3;#4g � f#3;#4g = f#1g; �n2 = 3� 2 = 1;

DE3 = f#2;#3;#4g � f#3;#4g = f#2g; �n3 = 3� 2 = 1:

Because the independent components do not overlap, their collection represents
the structure of the simultaneous equation model.

However, the issue on the ambiguity of the representation of the structural
form still remains. For example, the set of equations fV1 = I1R1#1; Ve =
V1#3; Ve = V2#4g in Eq.(9) which is a complete subset of order 3 can be trans-

formed by the linear transformation as follows.
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2Ve + V1 + V2 = 4I1R1 #1; 2Ve = 2V1 � V2 + I1R1 #3;

and 3Ve = �V1 + 2V2 + 2I1R1 #4:

This transformation preserves the complete subset, and the model remains as a
structural form. This ambiguity of the equation representation in a complete sub-

set can cause combinatorial explosion in the enumeration of the structural forms.
As indicated in the above example, if the set of all quantities, CQ, appearing

in a complete subset CE is preserved through some transformation maintaining
quantitative equivalence, the complete subset is also preserved [7]. Accordingly,

only the following formula of a complete subset is focused in the search.

De�nition 3 (canonical form of a complete subset) Given a complete

subset CE, the \canonical form" of CE is the form where all quantities in CQ

appears in each equation in CE.

An example of the canonical form is Eq.(11). Based on this de�nition, the struc-
tural canonical form of a simultaneous equation model is further de�ned.

De�nition 4 (structural canonical form of simultaneous equations) The

\canonical form" of simultaneous equations consists of the equations in [bi=1DEi

where each equation in DEi is represented by the canonical form in the complete

subset CEi, and b is the total number of DEi. If the canonical form of simul-

taneous equations is derived to be a \structural form", then the form is named

\structural canonical form".

The structural form of Eq.(9) is shown as follows.

DE1 = ff11(Ve; V1; V2) = 0 #3; f12(Ve; V1; V2) = 0 #4g;

DE2 = ff2(Ve; V1; V2; I1; R1) = 0 #1g; DE3 = ff3(Ve; V1; V2; I2; R2) = 0 #2g;(11)

where f(�) = 0 is an arbitrary formula to represent a quantitative relation.
Because Eq.(9) is a structural form, Eq.(11) is the structural canonical form.

The concrete shape of each formula can be derived by the aforementioned SDS,
once the structure of simultaneous equations is given.

6 Discussion and Conclusion

Dzeroski and Todorovski developed LAGRANGE [11] and LAGRAMGE [12]
which discover simultaneous equation models from observed data. However, the

mathematical admissibility is not introduced su�ciently in the discovery process,
and many redundant representations of simultaneous equations can be derived

at an expense of high computational complexity. COPER, which also discov-
ers simultaneous equations, uses very strong mathematical constraints based on

the unit dimensions to prune the meaningless terms [4]. However, it inevitably
requires the unit information which is not frequently obtained in non-physical
domains. The major advantages of our proposing methods in comparison with

the past approaches are the e�ciency of the equation search, the soundness of
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the discovery in terms of the �rst principle and the wide applicability not limited
to the physical domain. These are achieved by introducing the criteria of generic

mathematical admissibility.
The future directions of our work are

(1) Discovery of simultaneous equations from passively observed data and
(2) Discovery of dynamic law equations from passively observed time series data.

For the former purpose, the principle of SSF should be extended to discover
the structure of simultaneous equations from passively observed data. This may
become possible by developing a new data sampling technique similar to the

quasi-bi-variate �tting of the extended SDS. The latter approach is expected to
discover the �rst principle based di�erential equations which appear in various

scienti�c and engineering domains. The major issue to overcome will be the
statistical information processing on the noise contained in the time series data
which are widely seen in many problems. These scienti�c law equation discovery

methods will provide a new measure of system modeling based on data in wide
scienti�c and engineering domains.
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