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Abstract

SDS2 is a system to discover and identify the quantitative model consisting of simul-
taneous equations reflecting the first principles underlying the objective process through
experiments. It consists of SSF and SDS, where the former is to discover the structure
of the simultaneous equations and the latter to discover a quantitative formula of each
complete equation. The power of SDS2 comes from the use of the complete subset struc-
ture in a set of simultaneous equations, the scale-types of the measurement data and the
mathematical property of identity by which to constrain the admissible solutions. The
basic principles, algorithms and implementation of SDS2 are described, and its efficiency
and practicality are demonstrated and discussed with large scale working examples. This
work is to promote the research of scientific discovery to a novel and promising direction,
since the conventional equation discovery systems could not handle such a simultaneous
equation process in a highly efficient manner.
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1 Introduction

Number of methods have been proposed to discover quantitative formulae of scientific laws
from experimental measurements. Langley and others’ BACON systems [1] are the most well
known as a pioneering work. FAHRENHEIT [2] and ABACUS [3] are such successors that
use basically similar algorithms to BACON in searching for a complete equation governing the
measured data. Major drawbacks of the BACON family are their complexity in the search of
equation formulae and the considerable amount of ambiguity in their results for noisy data [4]
[5]. To alleviate these difficulties, some later systems, e.g. ABACUS and COPER [6], utilize
the information of the unit dimension of quantities to prune the meaningless terms. However,
their applicability is limited only to the case where the quantity dimension is known.

Another difficulty of the conventional systems to discover a model of practical and large
scale process is that such process is represented by multiple equations. Some of the afore-
mentioned systems such as FAHRENHEIT and ABACUS can identify each operation mode of
the objective process and derive an equation to represent each mode. For example, they can
discover state equations of water for solid, liquid and gas phases respectively. However, many
processes such as large scale electric circuits are represented by simultaneous equations. The
model representation in form of simultaneous equations is essential to grasp the dependency
structure among the multiple mechanisms in the processes [7] [8]. An effort to develop a system
called LAGRANGE has been made to automatically discover dynamical models represented by
simultaneous equations[9]. However, it derives many redundant models in high computational
complexity while the soundness of the solutions is not guaranteed.

The objective of this study is to develop a new scientific discovery system named “SDS2
(Smart Discovery System 2)” which is an extended version of our previous system “SDS”
[10]. Tt overcomes the drawbacks of the conventional scientific discovery systems. The main
extenstion of SDS2 is to discover a complex model of an objective process represented by a set
of simultaneous equations from measured quantities in experiments. SDS2 also inherits the full
advantages of SDS such as the wide applicability, the low complexity and the high robustness
against the noise.

SDS2 has been developed based on some mathematical principles established in our past
research [10] [11] [12]. It consists of “SSF (Simultaneous System Finder)’ and the main body
of SDS, where the former is to discover the structure of the simultaneous equations and the
latter to discover a quantitative formula of each complete equation. SDS2 applies SSF to the
objectiove process to identify its simultaneous structure at first, and then applies the algorithm
of SDS to derive a quantitative formula for each of the identified simultaneous equations. In
the following sections, first the outline of the principle and the algorithm of SSF are explained.
Second those of SDS are mentioned. Third the implementation of SSF and SDS combined into
SDS2 is described, and finally the evaluation of the performance of SDS2 is given.

2 QOutline of Principle and Algorithm of SSF

We set two assumptions on the objective process to be analyzed. One is that the objective pro-
cess can be represented by a set of quantitative, continuous, complete and under-constrained
simultaneous equations for the quantity ranges of our interest. Another is that all of the quanti-
ties in every equation can be measured, and all of the quantities except one dependent quantity
can be controlled in every equation to their arbitrary values in the range under experiments
while satisfying the constraints of the other equations. These assumptions are common in the
past BACON family except the features associated with the simultaneous equations.

The principles of SSF are explained through a simple electric circuit consisting of two parallel
resistances and a battery depicted in Fig. 1. One way of modeling this is by

V1 = IlRl [1],V2 = I2R2 [2],‘/@ = Vl [3] and Vve = V2 [4:], (1)
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Figure 1: An circuit of parallel resistances.

where R, Ro:two resistances, V1, Va:voltage differences across the resistances,
11, Is:electric current going through the resistances and V,:voltage of the battery.

The same circuit can be modeled by another set of equations.
IlRl = I2R2 [1],V2 = I2R2 [2],% = Vl [3] and VL = V2 [4] (2)

Both representations give correct behaviors of the circuit. The configuration of the quantities
in a set of simultaneous equations is represented by an “incidence matriz” T where its rows
E = {eqli = 1,...M} correspond to the mutually independent equations and its columns
Q ={¢;|j = 1,..., N} to the quantities. If the j-th quantity appears in the i-th equation, then
the (¢,7) element of T, i.e., T;; = 1, and otherwise 7;; = 0 [8]. When a subset consisting of
n independent equations containing n undetermined quantities are obtained by exogenously
specifying the values of some extra quantities in the under-constrained simultaneous equations,
the values of those n quantities are determined by solving the equations in the subset. In terms
of an incidence matrix, exogenous specification of a quantity value corresponds to eliminating
the column of the quantity. Under this consideration, the following definition is introduced.

Definition 1 (complete subset) Given an incidence matriz T', after applying elimination of
a set of columns, RQ(C @), let a set of nonzero columns of T|CE,Q — RQ] be NQ(C Q — RQ),
where CE C E, and T[CE,Q — RQ] is a sub-incidence malriz for equations in CE and
quantities in Q — RQ. CE is called a “complete subset” of order n, if |CE| = [NQ| = n.
Here, | o | stands for the cardinality of a set.

If we exogenously specify the values of V, and Ry, the first, the third and the forth rows of
the matrix for Eq.(1) come to contain the three nonzero columns of V3, V5 and I;. Thus these
equations form a complete subset of order 3, and the three quantities are determined while the
others, I, and R,, are not. On the other hand, if the identical specification on V, and R; is made
in the latter model, no complete subset of order 3 is obtained, since every combination of three
rows in the matrix for Eq.(2) contains more than three nonzero columns. In the real electric
circuit, the validity of the consequence derived by the former model is clear. The model having
the incidence matrix which always derives a valid interpretation in determining the quantities
of an objective process is named “structural form” in this paper.

When two models mutually have identical complete subsets, the interpretation in those
models is also identical, since each complete subset in their matrices represents a mechanism to
determine the values of the quantities. The relation between the two models having an identical
complete subset is characterized by the following theorem.

Theorem 1 (invariance theorem) Given a transform f: Uy — Ug where Ug is the entire
universe of equations. When C'E is a complete subset of ordern inT', f(CE) is also a complete
subset of order n, if f(CE) for CE C Ug maintains the number of equations and the nonzero
column structure, i.e., |CE| = |f(CE)| and CQ = CQy, where CQy is a set of nonzero columns

in T[f(CE), Q.

Various simultaneous equation formulae maintaining the equivalence of the quantitative re-
lations and the dependency structure can be derived by limiting the transformation f to a
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quantitative one satisfying the “invariance theorem” such as substitution and arithmetic oper-
ation among equations. As the complexity of the algorithm to enumerate all forms of a complete
subset admitted by the transform f faces the combinatorial explosion, our approach identifies
only one specific form defined bellow.

Definition 2 (canonical form of a complete subset) Given a complete subset CE of order
n, the “canonical form” of C'E s the form where all elements of the nonzero columns C'Q in
its incidence matriz T[CE, Q] are 1.

Because every admissible form is equivalent to every other, the identification of the canonical
form is sufficient, and every other can be derived by applying each appropriate f to the form.

Though each complete subset represents a basic mechanism to determine the values of quan-
tities in given simultaneous equations, some complete subsets are not mutually independent.
For instance, the following four complete subsets can be found in the example of Egs.(1).

{8,143 (n=2), {[1],[8],[4]3(n=3), {[2],[3],[4]}(n=3), {[1],[2],[3],[4]}(n =4) (3)

The number in [ | indicates each equation and n the order of the subset. They mutually
have many overlaps, and the complete subsets having higher orders represent the redundant
mechanism with the lower subsets. Thus, the following definitions are introduced to decompose
the internal structure of a complete subset.

Definition 3 (independent component of a complete subset) The independent compo-
nent DE; of the complete subset C'E; is defined as

DE;=CE;— |J CE;.
YCE;CCE;
andCEJ'EL

The set of essential quantities DQ); of C'E; which do not belong to any other smaller complete
subsets but are involved only in C'E; 1s also defined as

DQ;=CQ:i— |J cCgj

VCEiCCEl-
and CEJ'EL

where CQ; is a set of nonzero columns of T(CE;, Q). The order én; and the degree of freedom
om; of DFE; are defined as

én; = |DE;| and ém; = |DQ;| — |DF;]|.

In the example of Eq.(3), the three independent components are derived.

DEy = {3, 4]} — ¢ = {84}, sm=2-0=2,
DBy = {111,131, [41} - {[3], 41} = {[1]}, $n2=3-2=1,
DB = {120,131, [41} - {[3], 4]} = {21}, $na=3-2=1. )

Because each independent component DFE; is a subset of the complete subset C'E;, the
nonzero column structure of DE; also follows the invariance theorem. Consequently, the subset
of the canonical from of C'E; is applicable to represent DFE;. Based on this consideration, the
definition of the canonical form of the simultaneous equations is introduced.

Definition 4 (canonical form of simultaneous equations) The “canonical form” of a set
of simultaneous equations consists of the equations in U'_, DE; where each equation in DE; is
represented by the canonical form in the complete subset C'E;, where b is the total number of
DE;.
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(S1) Let Q@ = {qilk = 1,..,N} be a set of quantities that appear in the model of
an objective process. Set X = {xp|er = qi, for all but directly controllable g, €
Q}, DE=¢, DQ=¢, N=¢, M=¢, h=1andi=1.

(S2) Choose C; C DQj € DQ for some DQ; and also C; C X, and take their union
Chi = ... UCj U ...UC, while maintaining |C;| < ém; and |Chi| = h. Control all
zp € Chi,k =1,...,|Chi| in the experiment.

(83) Let a set of all quantities whose values are determined be Dy; C (Q — Ch;) where
Dy; # ¢. Set DEy; = Cp; + Dy, DQp; = DEy; — Uvpe,,, coE,, DEyy, dng; =

DE,,€DE
| Dps| — Y YDE,, ,CDEy; ONpry, and dmp; = |DQpi| — npi. If bnp; > 0, then add D Ep,;
DEy;,€DE
to the list Dl%', DQyp; to the list DQ, ény; to the list N, émy; to the list M and
X=X —-DQy;.

(S4) If all quantities are determined, i.e., Dp; = Q — Ch;, then go to (S5), else if no more
Ch; where |Ch;| = h exists, set h = h+ 1,1 =1 and go to (52), else set i =1+ 1
and go to (52).

(§5) The contents of the lists DE, DQ and N represent the sets of quantities involved in
independent components, the sets of essential quantities and their orders respectively.

Figure 2: Algorithm for finding structural canonical form

If the canonical form of simultaneous equations are experimentally derived to reflect the actual
dependency structure among quantities in the objective process, then the model must be a
“structural form”. Thus, the following terminology is introduced.

Definition 5 (structural canonical form) If the canonical form of simultaneous equations
s derived to be a “structural form”, then the form is named “structural canonical form”.

Under our aforementioned assumption on the measurements and the controllability of quan-
tities, a bottom up algorithm described in Fig. 2 has been developed and implemented into SSF.
SSF requires a list of the quantities for the modeling of the objective process and their actual
measurements. Starting from the set of control quantities having small cardinality, this al-
gorithm tests if values of any quantities become to be fully under control. If such controlled
quantities are found, the collection of the control quantities and the controlled quantities are
considered as a newly found complete subset |C'E;|. Then, based on the definition3, its |DE;|,
|DQ;|, én; and ém, are derived and stored. Once any new independent component is derived,
only ém; of the quantities in every |D@Q;| and the quantities which do not belong to any |DQ;|
so far found are used for control. The constraint of |D@;| does not miss any complete subset
to search due to the monotonic lattice structure among complete subsets.

3 Outline of Principles and Algorithm of SDS

SDS uses the information of scale-types of quantities to discover the formula of each equation.
The quantitative scale-types are interval, ratio and absolute scales[13]. Examples of the interval
scale quantities are temperature in Celsius and sound tone where the origins of their scales are
not absolute, and are changeable by human’s definitions. Examples of the ratio scale quantities
are physical mass and absolute temperature where each has an absolute origin. The absolute
scale quantities are dimensionless quantities.

The properties of the quantities in terms of the scale-types yields “scale-type constraint”
characterized by the following theorems [10].
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Theorem 2 (Extended Buckingham II-theorem) If ¢(z1,x2,23,...,2,) =0 is a complete
equation, and if each argument is one of interval, ratio and absolute scale-types, then the solution
can be written in the form

F(Hl, H2, ey Hn—’w) = 07

where n s the number of arguments of ¢, w is the basic number of bases in xq,x2,x3,..,Tn,
respectively. For all ¢, II; is an absolute scale-type quantity.

Bases are such basic factors independent of the other bases in the given ¢, for instance, as
length [L], mass [M], time [T] of physical unit and the origin of temperature in Celsius.

Theorem 3 (Extended Product Theorem) Assuming primary quantities in a set R are
ratio scale-type, and those in another set I are interval scale-type, the function p relating x; €
RUT to a secondary quantity Il is constrained to one of the following two:

= (] lzil*)CTT € D2 bujlesl + e)™)

II= Z a;log |@;| + Z ar, log( Z bijle | + cr) + Z bgelze| + ¢4
;R I.CI z €1}, ze€lyCI

where all coefficients except I are constants and I, N I, = ¢.

These theorems state that any meaningful complete equation consisting only of the arguments
of interval, ratio and absolute scale-types can be decomposed into an equation of absolute
scale-type quantities having an arbitrary form and equations of interval and ratio scale-type
quantities having specific forms. The former F(II, 5, ...,II,, ) = 0 is called an “ensemble”
and the latter I = p(z1, @2, x5, ..., &, ) “regime’s.

Another constraint named “identity constraint’ is also used to narrow down the candidate
formulae [10]. The basic principle of the identity constraints comes by answering the ques-
tion that “what is the relation among ©y, ©; and ©;, if ©; = fo (0O) and ©; = fo,(©4) are
known? For example, if a(©;)0, + ©, = b(0;) and a(0,)0, + ©; = b(0©,) are given, the
following identity equation is obtained by solving each for ©.

0, he,) _ O |, hey

O, = _a(@j) a(@J.) a(@,) a(®z)

It is easy to prove that the admissible relation among the three is as follows.
®h + Oél(")z'@]' + ,61®Z + (Ig@]' + ,62 = 0 (5)

The algorithm of SDS is outlined in Fig. 3. In (S1-1), SDS searches bi-variate relations
having the linear form in 7¢) through data fitting. Similar bi-variate equation fitting to the
data is applied in (S2-1) and (S2-3) where the admissible equations are power product form
and logarithmic form respectively. If this test is passed, the pair of quantities is judged to have
the admissible relation of “FEzxtended Product Theorem.”

In (S1-2), triplet consistency tests are applied to every triplet of equations in IE. Given a
triplet of the linear form equations in /F,

awyx +y= bwmayzy +z= byZ7 Gy + 2 = bacza (6)
the following condition must be met for the three equations to be consistent.
Qpr = _ayzawy (7)

This condition is used to check if the triplet of quantities belong to an identical regime. SDS
applies this test to every triplet of equations in /F, and searches every maximal convex set
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MCS where each triplet of equations among the quantities in this set has passed the test.
Each MC'S is considered to be the linear part of the regime in the formulae given in “FExtended
Product Theorem.” The similar test is applied to the quantities in RE in (S2-2).

Once all regimes are identified, new terms are generated in (S3-1) by merging these regimes
in preparation to compose the ensemble equation. SDS searches bi-variate relations between
two regimes IIs having one of the formulae specified in the equation set C'E. The repertoire in
C'FE governs the ability of the equation formulae search in SDS. Currently, only the two simple
formulae of power product form and linear form are given in C'E. Nevertheless, SDS performs
very well in search for the ensemble equation. When one of the relations specified in C'E is
found, the pair of the regime Ils is merged into a new term. This procedure is repeated in
couple for both product and linear forms until no new term generation becomes possible.

In (S3-2), the identity constraints are applied for further merging terms. The bi-variate
least square fitting of the identity constraint such as Eq.(5) is applied to AQ. If all the coeffi-
cients except one are independent in a relation, the relation is solved for the unique dependent
coefficient, and the coefficient is set to be the merged term of the relation. If all coefficients are
independent in a relation, the relation is the ensemble equation. If such ensemble equation is
not found, SDS goes back to the (S3-1) for further search.

4 Implementation of SDS2

The major function of SFF is to derive the structural canonical form of the simultaneous equa-
tions representing an objective process. However, SDS to discover a complete equation can not
directly accept the knowledge of the structural canonical form for the discovery. Accordingly,
some additional process to provide information acceptable for SDS is required to consistently
implement the two parts into SDS2. First, the problem to derive quantitative knowledge of the
simultaneous equations must be decomposed into subproblems to derive each equation individ-
ually. For the purpose, an algorithm to decompose the entire problem into such small problems
is implemented. The values of the quantities within each independent component DFE; of a
complete subset C'F; are mutually constrained, and have the order ém; = |DQ;| — én; degree of
freedom. Accordingly, the constraints within the independent component disable the bi-variate
tests among the quantities of an equation in the structural canonical form, if the order én; is
more than one. However, this difficulty is removed if the (én; — 1) quantities are eliminated
by the substitutiion of the other (én; — 1) equations within the independent component. The
reduction of the number of quantities by (én; — 1) in each equation enables to control each
quantities as if it is in a complete equation. This elimination of quantities is essential to enable
the application of SDS which uses the bi-variate test. The reduction of quantities in equations
provides further advantage, since the required amount of computaion in the equation search
depends on the number of quantities. In addition, the smaller degree of freedom of the objective
equation in the search introduces more robustness against the noise in the data and the numer-
ical error in data fitting. The algorithm for the problem decomposition of SSF which minimizes
the number of quantities involved in each equation is given in Fig. 4. This algorithm uses the
list of the complete subsets and their order resulted in the algorithm of Fig.2. The quantities
involved in each equation are eliminated by the equations in the other complete subset in (S2).
In the next (S3), the quantities involved in each equation are eliminated by the other equation
within the same complete subset, if the order of the subset is more than one. The quantities to
be eliminated in (S2) and (S3) are selected by lexicographical order in the current SSF. This
selection can be more tuned up based on the information of the sensitivity to noise and error
of each quantities in the future.

Another role of SSF for the equation discovery system is to teach how to control the quanti-
ties in the bi-variate experiments. The convntional SDS just tries to fix the values of all quan-
tities except two during the bi-variate tests. However, such control of the objective process is
impossible in case of the simultaneous equation system. SDS must be taught the quantities to
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Given a set of interval scale quantities, 1Q), a set of ratio scale quantities, RQ, and
a set of absolute scale quantities, AQ),

(S1-1)

(51-2)

(52-1)

($2-2)

($2-3)

(53)

Apply bi-variate test for an admissible linear equation of interval scale to every
pair of quantities in 1Q). Store the resultant bi-variate equations accepted by

the tests into an equation set I'E and the others not accepted into an equation
set NIE.

Apply triplet test to every triplet of associated bi-variate equations in IE. De-
rive all mazimal convex sets M C'S's for the accepted triplets, and compose all
bi-variate equations into a multi-variate equation in each MC'S. Define each
multi-variate equation as a term. Replace the merged terms by the generated
terms of the multi-variate equations in 1¢). Let RQ) = RQ) + 1Q).

Apply bi-variate test for an admissible equation of ratio scale to every pair
of quantities in R(Q). Store the resultant bi-variate equations accepted by the
tests into an equation set RE and the others not accepted into an equation set

NRE.

Apply triplet test to every triplet of associated bi-variate equations in RE.
Derive all mazimal convex sets for the accepted triplets, and compose all bi-
variate equations into a multi-variate equation in each maximal conver set.
Define each multi-variate equation as a term. Replace the merged quantities
by the generated terms in RQ).

Apply bi-variate test for an admassible logarithmic equation between the linear
forms of interval scale-type quantities and the other terms in RQ). Replace the
terms in the resultant bi-variate equations accepted in the tests by the generated
terms in RQ).

Let AQ = AQ + RQ. Given candidate formulae set CE, repeat steps (2-1)
and (2-2) until no more new term become generated.

(S3-1) Apply bi-variate test of a formula in CE to every pair of the terms in

AQ), and store them to AE. Merge every group of terms into a unique
term respectively based on the result of the bi-variate test, if this is possi-
ble. Replace the merged terms with the generated terms of multi-variate
equations in AQ).

(S3-2) Apply identity constraints test to every bi-variate equation in AE. Merge

every group of terms into a unique term respectively based on the result
of the identity constraints test, if they are possible. Replace the merged
terms with the generated terms of multi-variate equations in AQ. Go back
to step (2-1).

The candidate models of the objective system are derived by composing the terms in

AQ.

Figure 3: Outline of SDS algorithm
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(S1) Let DE, DQ and N be the lists obtained in the algorithm of Fig.2.

(S2) Fori=1 to |DE| {
For j =1 to |DE| where j #1i {
If DE; D DE; where DE;, DE; € DE {
DE; = DE; — DQ}, where DQ is arbitrally, and
DQ; C DQj € DQ and |DQj| = én;.}}}

(88) Fori=1 to |DE| {
Forj =1 toén; {
DE;; = DE; — DQ;j, where DQ;; is arbitrally, and

(S4) Every DE;; shows the list of quantities contained in a transformed equation.
Figure 4: Algorithm for minimization.

control and the quantities determined in the process to appropriately arrange the experiments.
SSF derives the information by applying a constraint propagation method to the knowledge of
the structural canonical form. The algorithm is basically the same with the causal ordering [7].

5 Evaluation of SDS2

SDS2 has been implemented using a numerical processing shell named MATLAB [14]. The
performance of SDS2 has been evaluated in terms of the validity of its results, the computational
complexity and the robustness against noise through some examples including fairly large scale
processes. The objective processes are provided by simulation.

The examples we applied are the following four.

(1) Two parallel resistances and a battery

This is depicted in Fig.1, and has been already explained in the previous sections. Its model
consists of 4 equations and 7 quantities as shown in Egs.1.

(2) Heat conduction at walls of holes

This is a heat conduction preoblem. Given a large solid material having two vertical holes, gas
goes into those holes, and condensed to its liquid phase while flowing in the holes by providing
its heat energy to the walls of the holes. In these holes, the heat conduction process are
represented by 8 equations involving 17 quantities[15].

(3) A circuit of photo-meter

This is a circuit of photo-meter to measure the rate of increase of photo intensity within a time
period. The model of this system is represented by 14 equations involving 22 quantities.

(4) Reactor core of power plant

This is a simplifeid nuclear reacotr core model. Nuclear fission reaction process, heat removal of
nuclear fuel, and heat and mass balance of reactor coolant are considered. This model involves
24 equations and 60 quantities.

Table 1 is the summary of the specifications of each problem size, complexity and robustness
against noise. T,.; shows strong dependency on the parameter m and n, i.e., the size of the
problem. This is natural, since the algorithm to derive structural canonical forms is NP-hard
to the size. In contrast, HM T,,;, shows very slight dependency to the size of the problem,
and T,,;, shows very slight dependency on the size of the problem, and the absolute value of
the required time is negligible. This observation is also highly consistent with the theoretical
view that its complexity should be only O(n?). The total time T} does not seem to strongly
depend on the size of the problem. This consequence is also very natural, because SDS handles
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Table 1: Statistics on complexity and robustness

Ex. m n av Tocr Tinin Ty T NL
(1) 4 7 2.5 3 0.00 206 52 35
(2) 8 17 3.9 1035 0.05 725 91 29
(3) 14 22 2.6 1201 0.05 773 55 31
(4) 26 60 4.0 42395 0.11 3315 128 26

m: number of equation, n: number of quantities, av: average number of quanti-
ties/equation, Tsep: CPU time (sec) to derive structural canonical form, Ti,,: CPU

time to derive minimum quantities form, T3;: CPU time to derive all equations by SDS,
T,.: average CPU time per equation by SDS, N L: limitation of % noise level of SDS.

each equation separately. The required time of SDS should be proportional to the number of
equations in the model. Instead, the efficiency of the SDS more sensitively depends on the
average number of quantities involved in each equation. This tendency becomes clearer by
comparing Ty, with av. The complexity of SDS is known to be around O(n?).

The last column of Table 1 shows the influence of the noise to the result of SDS2, where
Gaussian noise is artificially introduced to the measurements. The noise does not affect the
computation time in principle. The result showed that a maximum of 25-35% relative noise
amplitude to the absolute value of each quantity was acceptable under the condition that 8
times per 10 trials of SDS2 successfully give the correct structure and coefficients of all equations
with statistically acceptable errors. The noise sensitivity dose not increase significantly, because
SSF focuses on a complete subset which is a small part of the entire system. Similar discussion
holds for SDS. The robustness of SDS2 against the noise is sufficient for practical application.

Finally, the validity of the results are checked. In the example (1), SSF derived the expected
structural canonical form. Then SSF gave the following form of minimum number of quantities
to SDS. Here, each equation is represented by a set of quantities involved in the equation.

{Vc,Rl,Il}, {MzaR%IZ}) {‘/;,7 Vl}a {VL')VQ} (8)
As a result, SDS derived the following answer.
Ve=11Ry []—],Ve = IR [2]7‘/6 =V [3] and V, = V3 [4]7 (9)

This is equivalent to Eq.(1) not only in the sense of the invariance theorem but also the
quantitativeness. Similarly the original equations could be reconstructed in the other examples,
and they have been confirmed to be equivalent to the original in the sense of the invariant
theorem and quantitativeness.

6 Discussion and Conclusion

As mentioned in the introduction, the conventional equation discovery systems can derive only
one or a few complete equation(s) yet with high computational complexity. The research
presented here characterized under-constrained simultaneous equations in terms of complete
subsets, and provided an algorithm to derive their structure through experiments. In addition,
the constraints of scale-type and identity are investigated to be applied to the discovery of
each complete equation. These principles studied in this paper provide an effective measure to
overcome these conventional limitations.

SSF is a generic tool which can be combined with any conventional equation discovery
systems not limited to SDS. Moreover, the principle of SSF can be applied in a more generic
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manner not only to the continous processes but also to some discrete systems as far as the
systems have structures to propagate states through simultaneous constraints. Main features
of SDS are its low complexity, robustness, scalability and wide applicability to the practical
problems. The performance of SDS2, an integrated system of these two components: SSF and
SDS, was shown convincing by applying to examples of fairly large size.
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