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Abstract. We propose a method to discover a different kind of influential nodes
in a social network, which we call “super-mediators”, i.e., those nodes which
play an important role in receiving the information and passing it to other nodes.
We mathematically formulate this as a difference maximization problem in the
average influence degree with respect to a node removal, i.e., a node that con-
tributes to making the difference large is influential. We further characterize the
property of these super-mediators as having both large influence degree, i.e., ca-
pable of widely spreading information to other recipient nodes, and large reverse-
influence degree, i.e., capable of widely receiving information from other infor-
mation source nodes. We conducted extensive experiments using three real world
social networks and confirmed that this property holds. We further investigated
how well the conventional centrality measures capture super-mediators. In short
the in-degree centrality is a good measure when the diffusion probability is small
and the betweenness centrality is a good measure when the diffusion probability
is large, but the super-mediators do depend on the value of the diffusion proba-
bility and no single centrality measure works equally well for a wide range of the
diffusion probability.

Keywords: Information diffusion, super-mediator, influence degree, reverse-
influence degree

1 Introduction

The emergence of Social Media such as Facebook, Digg and Twitter has provided us
with the opportunity to create large social networks, which play a fundamental role in
the spread of information, ideas, and influence. Such effects have been observed in real
life, when an idea or an action gains sudden widespread popularity through “word-of-
mouth” or “viral marketing” effects. This phenomenon has attracted the interest of many
researchers from diverse fields [12], such as sociology, psychology, economy, computer
science, etc.



2 Kazumi Saito, Masahiro Kimura, Kouzou Ohara, and Hiroshi Motoda

A substantial amount of work has been devoted to the task of analyzing and mining
information diffusion (i.e., cascading) processes in large social networks [16, 14, 2, 1,
18, 25, 3]. Widely used information diffusion models in these studies are independent
cascade (IC) [4, 6, 7], linear threshold (LT) [26, 27] and their variants [8, 19, 5, 10, 21,
22]. These two models focus on different aspects of information diffusion. IC model
is sender-centered (information push) and each active node independently influences
its inactive neighbors with given diffusion probabilities. LT model is receiver-centered
(information pull) and a node is influenced by its active neighbors if their total weight
exceeds the threshold for the node. Basically the former models diffusion process of
how a disease spreads and the latter models diffusion process of how an opinion or
innovation spreads.

The main focus of research using these models over the past decade has been on op-
timization problems in which the goal is to maximize the spread of information through
a given network, either by selecting a good subset of nodes to initiate the cascade [6,
9] or by applying a broader set of intervention strategies such as node and link addi-
tions [17, 24]. In particular the former problem is well studied as the influence maxi-
mization problem, i.e., finding a subset of nodes of size K that maximizes the expected
influence degree with K as a parameter. In [23] we proposed a new type of influence
maximization problem which we called “Target selection problem” (to avoid confusion,
we called the original influence maximization problem as “Source selection problem”).
The difference is that the new problem does not assume that the information is guaran-
teed to start spreading from the selected target nodes. Rather we send the same informa-
tion from outside of the network to the selected targets as a probabilistic process. This
is closer to a situation in which we send a direct mail to selected customers expecting
that they spread the received information to others. What we found very interesting is
that the nodes selected as the solution of the target selection problem were substantially
different from the nodes selected as the solution of the source selection problem, espe-
cially in case of LT model. We attributed the difference to the fact that the target nodes
must not only be able to be influential, i.e., capable of widely spreading information
to other recipients, but also be able to be reverse-influential, i.e., capable of widely re-
ceiving the information from other sources. In a separate context we studied another
type of influential nodes which we called “super-mediators”, i.e., nodes which play an
important role in receiving the information and passing it to other nodes [20]. There, we
empirically1 defined the super-mediators to be the nodes that frequently appear in the
long information diffusion sequences that start from a node and are shared by many of
these sequences that starts from different nodes2. The biggest difference of the present
work from [20] is that the present work is model-driven while our previous work is
data-driven, i.e., [20] does not assume any diffusion model but it requires that abundant
observed diffusion sequences are available.

The work in this paper is motivated by these studies. “Source selection problem”
only cares the ability of nodes to spread information. “Target selection problem” cares
also the ability of the nodes to receive information in addition to the ability to spread the

1 We call it empirical in the sense that the characterization is qualitative and there is no mathe-
matically defined objective function to be optimized.

2 We assume that there are many sequences of different length for each starting node.
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information, but only in the first step of information diffusion chain. Super-mediators
share the same concept as “target selection problem”, but they can be any nodes in the
chain of information diffusion process. From this observation, we can mathematically
define the super-mediators as the solution of an optimization problem and rank them.
The influence degree σ(v) of a node v is defined to be the expected number of active
nodes at the end of diffusion process, i.e., nodes that have become influenced due to
information diffusion (see Sec.2 for a more rigorous definition). The average influence
degree of the whole network is defined to be the average of σ(v) over all nodes in
the network. If a node v is a super-mediator, removing this node would substantially
decrease the average influence degree. Thus, the importance of each node as a super-
mediator can be quantified as the difference of the average influence degree with respect
to the node removal.

Here in this paper we use IC model as the information diffusion model and only con-
sider a single node removal, i.e., K = 1, but this optimization problem carries the same
problem of computational complexity of estimating influence degree3. We devised the
bond percolation [9] and pruning [8] algorithms to efficiently estimate the influence de-
gree. In this paper, we further improved these techniques and reduced the computation
time drastically (but this is not our focus in this paper).

We wanted to characterize the property of the super-mediators returned as the solu-
tion of the optimization problem. As mentioned above, there are two important factors:
the ability to spread information and the ability to receive information. The former is
captured by the influence degree. The latter is captured by the reverse-influence degree,
which is a new concept born in this study, i.e., the expected number of initial source
nodes from which the information reaches a node at the end of information diffusion.
Our hypothesis is that the super-mediators should be ranked high in terms of both of
them. We have tested our hypothesis using three real world networks (Enron, Blog and
Wikipedia), and confirmed that this property holds. In case of Enron e-mail network, the
nodes identified as super-mediators are interpretable in the light of open literature. We
further investigated whether the conventional centrality measures can serve as a good
measure to identify the super-mediators. What we found is that the super-mediators de-
pend on the value of the diffusion probability and in short the in-degree centrality is a
good measure when the diffusion probability is small and the betweenness centrality is
a good measure when the diffusion probability is large, and no single centrality measure
works equally well for a wide range of the diffusion probability. It can be said that the
measure we proposed in this paper is a new centrality that can be added to the existing
pool, but the difference is that this measure explicitly considers information diffusion
process while the existing centrality considers only network structure.

The paper is organized as follows. Section 2 gives a brief description of the inde-
pendent cascade model. Section 3 defines super-mediators and gives an algorithm to
find and rank them. Section 4 characterizes the super-mediators and introduces a new
concept “reverse influence degree” and gives an efficient way to compute it. Section 5
reports experimental results and shows that the hypothesis we made holds for the three

3 If we consider K > 1, the problem becomes more difficult, but we can still use the sub modular
property and the same greedy algorithm as is used in “Source selection problem” with various
tactics, e.g., burnout [19].
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networks. Section 6 summarizes what has been achieved in this work and addresses the
future work.

2 Information Diffusion Model

We consider a network represented by a directed graph G = (V, E), where V and E (⊂
V×V) are the sets of all the nodes and links, respectively. Below we revisit the definition
of IC model according to the literatures [6, 11]. The diffusion process proceeds from an
initial active node in discrete time-step t ≥ 0, and it is assumed that nodes can switch
their states only from inactive to active (i.e., the SIR setting, see Section 3).

IC model has a diffusion probability pu,v with 0 < pu,v < 1 for each link (u, v) as a
parameter. Suppose that a node u first becomes active at time-step t, it is given a single
chance to activate each currently inactive child node v, and succeeds with probability
pu,v. If u succeeds, then v will become active at time-step t + 1. If multiple parent nodes
of v first become active at time-step t, then their activation trials are sequenced in an
arbitrary order, but all performed at time-step t. Whether u succeeds or not, it cannot
make any further trials to activate v in subsequent rounds. The process terminates if no
more activations are possible.

For an initial active node v ∈ V , let ϕ(v; G) denote the number of active nodes at the
end of the random diffusion process. It is noted that ϕ(v; G) is a random variable. We
denote the expected value of ϕ(v; G) by σ(v; G), and call it the influence degree of v.

3 Identifying Super-Mediators

As stated earlier, we conjecture that if a node w is a super-mediator, removing this node
would substantially decrease the average influence degree. In order to mathematically
formulate this notion, we first define the following graph G \ {w}, which is constructed
by removing a node w from a directed graph G = (V, E):

G \ {w} = (V \ {w}, E \ {w}), E \ {w} = {(u, v) ∈ E | u � w, v � w}. (1)

Then, we can quantify the super-mediator degree of each node w, denoted by medt(w),
as the difference in the average influence degree with respect to the node removal, i.e.,

medt(w) =
∑

v∈V
σ(v; G)p(v) −

∑

v∈V\{w}
σ(v; G \ {w})p(v), (2)

where p(v) stands for the probability that the node v becomes an information source
node, that is, an initial active node. Of course, we want to identify the nodes that have
large values of super-mediator degree.

We apply our bond percolation technique [9] to efficiently calculate the super-
mediator degree medt(w) for each node w ∈ V . Note first that the IC model on G can
be identified with the so-called susceptible/infective/recovered (SIR) model [15, 27] for
the spread of a disease on G, where the nodes that become active at time t in the IC
model correspond to the infective nodes at time t in the SIR model. Recall that in the
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SIR model, each individual occupies one of the three states, “susceptible”, “infected”
and “recovered”, where a susceptible individual becomes infected with a certain prob-
ability when it encounters an infected patient, and subsequently recovers at a certain
rate. It is known that the SIR model on a network can be exactly mapped onto a bond
percolation model on the same network [15, 6]. Thus, the IC model on G is equivalent
to a bond percolation model on G, that is, these two models have the same probability
distribution for the final set of active nodes. Our bond percolation technique [9] exploits
this relationship. Here, we present the algorithm for calculating medt(w) based on the
bond percolation technique. A bond percolation process on G is the process in which
each link of G is randomly designated either “occupied ” or “unoccupied” according to
some probability distribution in which the occupation probability over each link (u, v)
is set to the diffusion probability pu,v. Now, we consider M times of bond percolation
processes. Let Em denote the set of occupied links at the m-th bond percolation process
and let Gm denote the graph (V, Em), then for a large M, we can calculate the estimated
influence degree σ̄(u; G) with a reasonable accuracy as follows:

σ̄(u; G) =
1
M

M∑

m=1

|R(u; Gm)|, (3)

where R(u; Gm) stands for a set of reachable nodes from u on Gm such that there is a path
from u to v for v ∈ R(u; Gm), and |R(u; Gm)| is the number of nodes in R(u; Gm). Here
note that our bond percolation technique decomposes each graph Gm into its SCCs,
where SCC (strongly connected component) is a maximal subset C of V such that for
all u, v ∈ C there is a path from u to v. Namely, R(u; Gm) = R(v; Gm) if u, v ∈ C. Thus,
we can obtain R(u; Gm) for any node u ∈ V by calculating R(u; Gm) for only one node u
in each component C.

We obtain the following estimation formula by substituting Equation (3) into Equa-
tion (2):

medt(w) =
1
M

∑

v∈V

M∑

m=1

|R(v; Gm)|p(v) − 1
M

∑

v∈V\{w}

M∑

m=1

|R(v; Gm \ {w})|p(v). (4)

In order to efficiently calculate R(v; Gm\{w}) for each pair of nodes, v and w, we consider
a set of reverse reachable nodes defined by

R−(w; Gm) = {v ∈ V |w ∈ R(v; Gm)}.
Then, we can easily see that

v � R−(w; Gm) =⇒ R(v; Gm \ {w}) = R(v; Gm).

Namely, for the m-th bond percolation process and a fixed node w, we can obtain
R(v; Gm \ {w}) for any node v ∈ V by calculating R(v; Gm \ {w}) only for v ∈ R−(w; Gm).
Here, as described above, we can further improve the efficiency by applying SCC de-
composition for a subgraph consisting of nodes in R−(w; Gm). Below we can summarize
our proposed algorithm for calculating the super-mediator degree medt(w) for each node
w ∈ V .



6 Kazumi Saito, Masahiro Kimura, Kouzou Ohara, and Hiroshi Motoda

1. Perform bond percolation process M times (m = 1, · · · ,M);
(a) For the m-th bond percolation process, calculate R(v; Gm) by applying SCC

decomposition;
(b) For each w ∈ V , compute R−(w; Gm), and for each v ∈ V , set R(v; Gm \ {w}) =

R(v; Gm) if v � R−(w; Gm); otherwise calculate R(v; Gm \ {w}) by applying SCC
decomposition;

2. Calculate the super-mediator degree medt(w) according to Equation (4).

4 Characterizing Super-Mediator

As mentioned earlier, we attempt to characterize the property of the super-mediators
by two important factors for each node v: the influence degree σ(v; G) and the reverse-
influence degree denoted by σ−(v; G). First of all, in order to quantify the relation-
ships between these two factors, we define the probability σ(u, v; G) that the node v
becomes active when u is an information source node. Then, we can calculate σ(v; G)
by
∑

u∈V σ(v, u; G). On the other hand, if we define the reverse-influence degree as the
expected number of initial source nodes from which the information reaches the node v
at the end of information diffusion, we can define σ−(v; G) by

σ−(v; G) =
∑

u∈V
σ(u, v; G).

In order to further quantify the relationships, we consider the following reverse graph
G−, which is constructed by reversing any link (u, v) ∈ E for a directed graph G = (V, E).

G− = (V, E−), E− = {(v, u) | (u, v) ∈ E}. (5)

Then, we can show that the reverse-influence degree of each node v is equal to the
influence degree of node v on the reverse graph G−, i.e.,

σ−(v; G) = σ(v; G−). (6)

To confirm this fact, we introduce a function R(u, v; Gm) of v ∈ V such that R(u, v; Gm) =
1 if there is a path from u to v on Gm, and R(u, v; Gm) = 0 otherwise, where Gm

is the graph obtained by the m-th bond percolation process in Section 3. Noting that
R(u, v; Gm) = R(v, u; G−m), it is straightforward to show that Equation (6) holds as shown
below:

σ̄−(v; G) =
1
M

M∑

m=1

∑

u∈V
R(u, v; Gm)

=
1
M

M∑

m=1

∑

u∈V
R(v, u; G−m)

= σ̄(v; G−), (7)

where G−m is the reverse graph of Gm. As a natural conjecture, we can expect that the
super-mediator nodes are influential on both a given graph G and its associated re-
verse graph G−, which respectively corresponds to the influence degree σ(v; G) and
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the reverse-influence degree σ−(v; G). Thus, our hypothesis is that the super-mediators
should be ranked high in terms of both of them. We empirically evaluate this hypothesis
using three real world networks since exploring this analytically seems difficult.

5 Experiments

5.1 Datasets and Settings

We employed three datasets of large real networks. The first one is the Enron network,
which is derived from the Enron Email Dataset [13]. We regarded each email address
as a node, and constructed a link from email address u to email address v only if u
sent an email to v. The Enron network is a directed network which has 19, 603 nodes
and 210, 950 directed links. The second one is the Blog network, which is a trackback
network of Japanese blogs used by Kimura et al [11]. The Blog network is also a di-
rected network which has 12, 047 nodes and 53, 315 directed links. The third one is
the Wikipedia network, which is a network of people derived from the “list of people”
within Japanese Wikipedia, also used by Kimura et al [11]. The Wikipedia network is a
bidirectional network having 9, 481 nodes and 245, 044 directed links.

Below we explain the parameter settings of IC model. We first assume a generative
model according to the beta distribution with a mean of μ for the diffusion probabil-
ity pv,w for any link (v,w) ∈ E. Note that the beta distribution is the conjugate prior
probability distribution for the Bernoulli distribution corresponding to a single toss of
a coin. We further suppose that each diffusion probability is independently generated
from the beta distribution with respect to each information diffusion process. Then the
average occupied probability of the bond percolation process over each link reduces to
μ. Actually, this formulation is equivalent to assigning a uniform value μ to the diffusion
probability pv,w for any link (v,w) ∈ E, that is, pv,w = μ. According to [6], we set the
value of μ to a value that is less than or equal to 1/d̄, where d̄ is the mean out-degree of
a network. Thus, we investigate μ = r/d̄, where r is a parameter with 0 < r ≤ 1. The
parameter M to estimate the expectation is set to 10,000 for all experiments. The prob-
ability that the node v becomes an information source node was assumed to be uniform,
i.e., p(v) = 1/|V |.

5.2 Centralities

We also investigated whether or not super-mediators can be identified by heuristic meth-
ods based on the three well-known centrality measures, degree centrality, closeness cen-
trality, and betweenness centrality that are commonly used as the influence measure in
sociology. Let G = (V, E) be a directed network for our analysis, and let G− = (V, E−)
be the reverse network of G. For the degree centrality, we consider the out-degree of
node v ∈ V , deg+(v), defined as the number of links from v, and the in-degree of node
v ∈ V , deg−(v), defined as the number of links to v; i.e.,

deg+(v) = |{(v,w) ∈ E}|, deg−(v) = |{(w, v) ∈ E}| = |{(v,w) ∈ E−}|.
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Fig. 1: Distribution of the super-mediator/influence/reverse-influence degree for the Enron net-
work in case of r = 1.0.

For the closeness centrality, we consider the closeness of node v ∈ V , close(v), defined
as

close(v) =
1
|V |
∑

w∈V

1
dist(v,w)

,

and the reverse closeness of node v ∈ V , close−(v), defined as

close−(v) =
1
|V |
∑

w∈V

1
dist−(v,w)

,

where dist(v,w) stands for the graph distance (shortest path length) from node v to
node w in the network G, and dist−(v,w) stands for the graph distance from node v
to node w in the reverse network G−. For the betweenness centrality, we consider the
betweenness of node v ∈ V , betw(v), defined as the total number of shortest paths
between pairs of nodes that pass through v. We consider detecting super-mediators by
ranking the nodes in decreasing order with respect to a centrality measure. We refer
to the detection methods by centrality measures deg(v), deg−(v), close(v), close−(v),
and betw(v) as the out-degree, in-degree, closeness, reverse closeness, and betweenness
methods, respectively.

5.3 Results

Confirmation of Properties of Super-Mediators First, we investigated the distribu-
tions of the three measures, i.e., the super-mediator, influence, and reverse-influence
degree in the Enron network to see how much they differ to each other in terms of
characterizing each node. In Fig. 1, the values of “ratio to the maximum value” in each
degree are depicted as a function of node rank. Note that node rank is different for each
degree. It can be observed that the curves for the influence and reverse-influence de-
gree are similar to each other, while the curve for the super-mediator degree is quite
different from the other two. Each curve is almost flat for the first two. The one for the
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Table 1: Top 3 email accounts (nodes) in the super-mediator, influence, and reverse-influence
degree ranking for the Enron network (r = 1.0).

account name (ID: ratio to the maximum degree value)
rank super-mediator influence reverse-influence

1 jeff.skilling (642: 1.000) bob.ambrocik (16734: 1.000) tom.alonso (5510: 1.000)
2 kenneth.lay (471: 0.870) technology.enron (17219: 0.979) jeff.richter (1768: 0.999)
3 sally.beck (535: 0.843) outlook.team (10779: 0.978) chris.mallory (5933: 0.999)

Table 2: The rank of the top 3 super-mediators for the Enron network in the influence and reverse-
influence degree ranking (r = 1.0).

rank (ratio to the maximum degree value)
ID super-mediator influence reverse-influence
642 1 (1.000) 441 (0.947) 642 (0.999)
471 2 (0.870) 122 (0.970) 374 (0.999)
535 3 (0.843) 126 (0.970) 377 (0.999)

influence degree maintains a relatively high ratio close to 1.0 up to approximately top
300 nodes and the one for the reverse-influence degree up to approximately top 1,000
nodes. This means that there is very little difference among these top ranked nodes as
far as the influence is concerned. On the other hand, the distribution curve rapidly de-
creases to the top 1,000 nodes for the super-mediator degree. We can conclude that the
super-mediator ranking can characterize each node by far clearly than the influence and
reverse-influence ranking.

We further examined the top 3 nodes in each ranking for the Enron network in case
of r = 1.0, and summarized them in Table 1. Again, we can observe that there is a clear
difference in the values of the super-mediator degree among the top 3 email accounts
(nodes), but the difference is not clear for the other two degree, especially the reverse-
influence degree. In addition, these top 3 ranked super-mediators are different from the
top 3 ranked nodes for the other two: the influence degree and the reverse-influence
degree. It is notable that “Jeffrey Skilling” (the top ranked) and “Kenneth Lay” (the
second ranked) in the super-mediator degree are key persons of the Enron scandal:
“Jeffrey Skilling” is the former president of Enron and “Kenneth Lay” was the CEO
of Enron. Both of them do not appear in the top 3 in both the influence and reverse-
influence degree ranking. “Jeffrey Richter”, the second ranked in the reverse-influence
degree, is known as a trader of Enron, but is not as well-known as the former two
executives. These observations suggest the super-mediator degree can be a promising
measure to identify nodes that actually play an important role in a given network.

Next, we investigated how the top 3 super-mediators for the Enron network rank in
terms of the influence and the reverse-influence degree values. Our conjecture is that
the super-mediators should be ranked high in these two measures. The results are sum-
marized in Table 2. It is found that these super-mediators are ranked relatively high,
at least they are in the top 5% nodes. This confirms our conjecture. However, because
their curves are flat, there are many other nodes that are ranked high in these two mea-
sures. This means that the reverse is not necessarily true, i.e., super-mediators have high
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(a) Blog network
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(b) Wikipedia network

Fig. 2: Distribution of the super-mediator/influence/reverse-influence degree for the Blog and
Wikipedia networks in case of r = 1.0.
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(a) r = 0.5
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(b) r = 0.25

Fig. 3: Distribution of the super-mediator/influence/reverse-influence degree for the Enron net-
work in cases of r = 0.5 and r = 0.25.

values for these two measures but having high values for these two measures are not
necessarily super-mediators as defined in Equation (2). Indeed, we observed the same
tendencies for the Blog and Wikipedia networks. Here, we show only the distributions
of the three measures for these networks in case of r = 1.0 in Figs. 2a and 2b, re-
spectively. Note that since the Wikipedia network is bidirectional, the reverse-influence
degree is equivalent to the influence degree, so it is not shown in Fig. 2b.

Further Analysis Using the Enron network, we further analyzed the properties of
super-mediators. First, we investigated the effect of diffusion probability by varying the
value of r. Figures 3a and 3b, and Tables 3 and 4 show the results for the case of r = 0.5
and r = 0.25, respectively. Here, each table indicates ranks and the values of “ratio
to the maximum value” with respect to super-mediator, influence and reverse influence
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Table 3: The rank of the top 3 super-mediators for the Enron network in the influence and reverse-
influence degree ranking (r = 0.5).

rank (ratio to the maximum degree value)
ID super-mediator influence reverse-influence
535 1 (1.000) 66 (0.970) 94 (0.996)
471 2 (0.831) 114 (0.969) 128 (0.995)
642 3 (0.728) 426 (0.742) 341 (0.985)

Table 4: The rank of the top 3 super-mediators for the Enron network in the influence and reverse-
influence degree ranking (r = 0.25).

rank (ratio to the maximum degree value)
ID super-mediator influence reverse-influence
535 1 (1.000) 52 (0.970) 46 (0.979)
6 2 (0.648) 185 (0.734) 1 (1.000)

471 3 (0.639) 154 (0.799) 144 (0.931)

degree for the top 3 super-mediators. It is obvious that the distribution curves shown
in Fig. 3a and 3b share the same tendency as those in Fig. 1. The notable difference is
that the flat region of each curve shrinks for the influence and reverse-influence degree
as the diffusion probability becomes smaller. This is because both σ(v; G) and σ−(v; G)
become smaller for every node v in accordance with the decrease of the diffusion proba-
bility. Also from Tables 3 and 4, we can see the same tendency as for the case of r = 1.0
although the top 3 nodes and their rankings for r = 0.5 and r = 0.25 are not exactly the
same as for r = 1.0. Further we notice that all the values for the influence and reverse-
influence degree are not very high due to the aforementioned shrink of the flat region,
i.e., third rank for r = 0.5 and the second and the third rank for r = 0.25, but overall
both the influence degree and the reverse-influence degree are high for the high ranked
super-mediators. Indeed, in the influence and reverse-influence ranking, these nodes are
within the top 3% nodes at r = 0.5, and within the top 1% nodes at r = 0.25.

Next, we investigated whether the conventional centrality measures can serve as a
good measure to identify the super-mediators. Figure 4 displays the values of “ratio to
the maximum value” as a function of node rank with respect to out-degree deg+(v),
in-degree deg−(v), closeness close(v), reverse closeness close−(v), and betweenness
betw(v). We observe that the distributions of out-degree deg+(v), in-degree deg−(v) and
betweenness betw(v) are similar to the distribution of the super-mediator degree, while
the distributions of closeness close(v) and reverse closeness close−(v) are similar to the
distributions of the influence and reverse-influence degree. Here note that the value of
“ratio to the maximum value” of a node with respect to the super-mediator degree is less
than 0.2 for nodes ranked after the top 100. Thus, we focused on the top 100 nodes, and
examined the similarity between the super-mediator ranking and the other ranking, i.e.,
the out-degree, in-degree, closeness, reverse closeness, and betweenness ranking. Here,
we measured the similarity between the top k nodes for one ranking method, denoted as
a set Ak, and those for the other ranking method, denoted as a set A′k, by the F-measure
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(a) Out-degree, closeness, and betweenness
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(b) In-degree and reverse closeness

Fig. 4: Distributions of conventional centrality measures for the Enron network.

F(k) defined by

F(k) =
|Ak ∩ A′k |

k
.

Figures 5a, 5b and 5c show the results for the cases of r = 1.0, r = 0.5 and r = 0.25,
respectively. Figure 5d displays the similarities between the super-mediator ranking
for the case of r = 1.0 and that of r = 0.5 and r = 0.25. We notice that the super-
mediators depend on the value of the diffusion probability from Fig. 5d. We further
notice that the betweenness centrality is best when the diffusion probability is large
(Fig. 5a, 5b) and the in-degree centrality becomes better when the diffusion probability
gets smaller (Fig. 5c). It is interesting that the out-degree centrality is not as good as the
in-degree centrality. Further investigation is needed to understand this phenomenon. Ta-
ble 5 shows the top 3 nodes for the out-degree, in-degree, closeness, reverse-closeness,
and betweenness centrality in case of r = 1.0. These should be compared with the
node IDs in Table 2, i.e., 642, 471 and 535. Two nodes (642, 471) for the betweenness
centrality match them and one node (535) for the out-degree, in-degree and closeness
centrality matches them. This supports the above observation. In summary no single
centrality measure works equally well for a wide range of the diffusion probability. The
betweenness centrality is a good measure when the diffusion probability is large and
in-degree centrality is a good measure when the diffusion probability is small. This is
intuitively understandable. When the diffusion probability is large, there are many long
diffusion sequences, in which case the betweenness plays a key role, whereas the diffu-
sion probability is small, many of the diffusion sequences are short, in which case node
degree plays a key role.

6 Conclusion

We addressed a problem of identifying and characterizing influential nodes in a social
network which we call “super-mediators” (nodes which play a role of mediator), i.e.,
nodes that play an important role in receiving the information and passing it to other
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(b) r = 0.5
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(c) r = 0.25
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Fig. 5: Relation between conventional centrality and super-mediator degree for the Enron net-
work.

Table 5: Top 3 nodes for conventional centrality measures for the Enron network for r = 1.0

rank out-degree in-degree closeness reverse-closeness betweenness
1 451 6 535 6 6
2 10779 203 10779 203 642
3 535 535 451 684 471

nodes. This notion of influential nodes is different from the conventional one in which
a node is said to be influential if the information starting from that node spreads to
many other nodes. We quantified the degree of importance as a super-mediator degree
and formulated this as the difference of the average influence degree with respect to
the node removal. If a node is a super-mediator, removal of this node from the network
will substantially decrease the average influence degree. Thus finding the most influ-
ential super-mediator is finding a node that maximizes this difference. We can rank the
super-mediators according to the amount of difference. This computation requires to
estimate influence degree of each node, which is defined to be the expected number of
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active nodes at the end of information diffusion process, and is very time consuming.
We used our bond percolation approach to simulate an individual diffusion process and
the expectation is approximated by the empirical mean of many trials of diffusion pro-
cess. We conjectured that super-mediators would have both large influence degree, i.e.,
capable of widely spreading information to other recipient nodes, and large reverse-
influence degree, i.e., capable of widely receiving information from other information
source nodes. In fact reverse-influence degree of a node in a graph is the same as the in-
fluence degree of the same node of the graph in which the edge direction is reversed for
all edges. We conducted extensive experiments using three real world social networks
(Enron, Blog and Wikipedia) with different diffusion probability assuming indepen-
dent cascade model, and confirmed that this conjecture is correct, but the reverse is not
correct, i.e., nodes that have both large influence degree and large reverse-influence de-
gree are not necessarily super-mediators. The performance of super-mediator degree is
tested in the Enron network. The top three super-mediators identified by our method are
confirmed to be actually influential. We further investigated how well the conventional
centrality measures (in-degree, out-degree, closeness, reverse-closeness and between-
ness) capture super-mediators. In short the in-degree centrality is a good measure when
the diffusion probability is small and the betweenness centrality is a good measure when
the diffusion probability is large, but the super-mediators do depend on the value of the
diffusion probability and no single centrality measure works equally well for a wide
range of the diffusion probability. Our immediate future work is to investigate the gen-
erality of the findings reported in this paper for a variety of networks and elucidate why
the out-degree centrality is not as good a measure as the in-degree centrality.
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