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Abstract. We address the problem of discovering a different kind of influential
nodes, which we call ”super-mediator”, i.e. those nodes which play an important
role to pass the information to other nodes, and propose a method for discover-
ing super-mediators from information diffusion samples without using a network
structure. We divide the diffusion sequences in two groups (lower and upper),
each assuming some probability distribution, find the best split by maximizing
the likelihood, and rank the nodes in the upper sequences by the F-measure. We
apply this measure to the information diffusion samples generated by two real net-
works, identify and rank the super-mediator nodes. We show that the high ranked
super-mediators are also the high ranked influential nodes when the diffusion
probability is large, i.e. the influential nodes also play a role of super-mediator
for the other source nodes, and interestingly enough that when the high ranked
super-mediators are different from the top ranked influential nodes, which is the
case when the diffusion probability is small, those super-mediators become the
high ranked influential nodes when the diffusion probability becomes larger. This
finding will be useful to predict the influential nodes for the unexperienced spread
of new information, e.g. spread of new acute contagion.

1 Introduction

There have been tremendous interests in the phenomenon of influence that members
of social network can exert on other members and how the information propagates
through the network. Social networks (both real and virtual) are now recognized as an
important medium for the spread of information. A variety of information that includes
news, innovation, hot topics, ideas, opinions and even malicious rumors, propagates in
the form of so-called “word-of-mouth” communications. Accordingly, a considerable
amount of studies has been made for the last decade [1–20].
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Among them, widely used information diffusion models are the independent cas-
cade (IC) [1, 8, 13] and the linear threshold (LT) [4, 5] and their variants [14, 15, 6, 16–
18]. These two models focus on different information diffusion aspects. The IC model
is sender-centered and each active node independently influences its inactive neighbors
with given diffusion probabilities. The LT model is receiver-centered and a node is in-
fluenced by its active neighbors if their total weight exceeds the threshold for the node.
Which model is more appropriate depends on the situation and selecting the appropriate
one is not easy [18].

The major interests in the above studies are finding influential nodes, i.e. finding
nodes that play an important role of spreading information as much as possible. This
problem is called influence maximization problem [8, 10]. The node influence can only
be defined as the expected number of active nodes (nodes that have become influenced
due to information diffusion) because the diffusion phenomenon is stochastic, and es-
timating the node influence efficiently is still an open problem. Under this situation,
solving an optimal solution, i.e. finding a subset of nodes of size K that maximizes the
expected influence degree with K as a parameter, faces with combinatorial explosion
problem and, thus, much of the efforts has been directed to finding algorithms to ef-
ficiently estimate the expected influence and solve this optimization problem. For the
latter, a natural solution is to use a greedy algorithm at the expense of optimality. Fortu-
nately, the expected influence degree is submodular, i.e. its marginal gain diminishes as
the size K becomes larger, and the greedy solution has a lower bound which is 63% of
the true optimal solution [8]. Various techniques to reduce the computational cost have
been attempted including bond percolation [10] and pruning [14] for the former, and
lazy evaluation [21], burnout [15] and heuristics [22] for the latter.

Expected influence degree is approximated by the empirical mean of the influence
degree of many independent information diffusion simulations, and by default it has
been assumed that the degree distribution is Gaussian. However, we noticed that this
assumption is not necessarily true, which motivated to initiate this work. In this paper,
we address the problem of discovering a different kind of influential nodes, which we
call ”super-mediator”, i.e. those nodes which play an important role in passing the infor-
mation to other nodes, try to characterize such nodes, and propose a method for discov-
ering super-mediator nodes from information diffusion sequences (samples) without
using a network structure. We divide the diffusion samples in two groups (lower and
upper), each assuming some probability distribution, find the best split by maximizing
the likelihood, and rank the nodes in the upper sequences by the F-measure (more in
subsection 3.2).

We tested our assumption of existence of super-mediators using two real networks1

and investigated the utility of the F-measure. As before, we assume that information
diffusion follows either the independent cascade (IC) model or the linear threshold (LT)
model. We first analyze the distribution of influence degree averaged over all the initial
nodes2 based on the above diffusion models, and empirically show that it becomes a

1 Note that we use these networks only to generate the diffusion sample data, and thus are not
using the network structure for the analyses.

2 Each node generates one distribution, which is approximated by running diffusion simulation
many times and counting the number of active nodes at the end of simulation.
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power-law like distribution for the LT model, but it becomes a mixture of two distri-
butions (power-law like distribution and lognormal like distributions) for the IC model.
Based on this observation, we evaluated our super-mediator discovery method by fo-
cusing on the IC model. It is reasonable to think that the super mediators themselves
are the influential nodes, and we show empirically that the high ranked super-mediators
are indeed the high ranked influential nodes, i.e. the influential nodes also play a role
of super-mediator for the other source nodes, but this is true only when the diffusion
probability is large. What we found more interesting is that when the high ranked super-
mediators are different from the top ranked influential nodes, which is the case when the
diffusion probability is small, those super-mediators become the high ranked influential
nodes when the diffusion probability becomes larger. We think that this finding is useful
to predict the influential nodes for the unexperienced spread of new information from
the known experience, e.g. spread of new acute contagion from the spread of known
moderate contagion for which there are abundant data.

The paper is organized as follows. We start with the brief explanation of the two
information diffusion models (IC and LT) and the definition of influence degree in sec-
tion 2, and then describe the discovery method based on the likelihood maximization
and F-measure in section 3. Experimental results are detailed in section 4 together with
some discussion. We end this paper by summarizing the conclusion in section 5.

2 Information Diffusion Models

We mathematically model the spread of information through a directed network G =
(V, E) without self-links, where V and E (⊂ V×V) stand for the sets of all the nodes and
links, respectively. For each node v in the network G, we denote F(v) as a set of child
nodes of v, i.e. F(v) = {w; (v,w) ∈ E}. Similarly, we denote B(v) as a set of parent nodes
of v, i.e. B(v) = {u; (u, v) ∈ E}. We call nodes active if they have been influenced with
the information. In the following models, we assume that nodes can switch their states
only from inactive to active, but not the other way around, and that, given an initial
active node set H, only the nodes in H are active at an initial time.

2.1 Independent Cascade Model

We recall the definition of the IC model according to [8]. In the IC model, we specify a
real value pu,v with 0 < pu,v < 1 for each link (u, v) in advance. Here pu,v is referred to
as the diffusion probability through link (u, v). The diffusion process unfolds in discrete
time-steps t ≥ 0, and proceeds from a given initial active set H in the following way.
When a node u becomes active at time-step t, it is given a single chance to activate each
currently inactive child node v, and succeeds with probability pu,v. If u succeeds, then
v will become active at time-step t + 1. If multiple parent nodes of v become active
at time-step t, then their activation attempts are sequenced in an arbitrary order, but all
performed at time-step t. Whether or not u succeeds, it cannot make any further attempts
to activate v in subsequent rounds. The process terminates if no more activations are
possible.
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2.2 Linear Threshold Model

In the LT model, for every node v ∈ V , we specify a weight (ωu,v > 0) from its parent
node u in advance such that

∑
u∈B(v)ωu,v ≤ 1. The diffusion process from a given initial

active set H proceeds according to the following randomized rule. First, for any node v
∈ V , a threshold θv is chosen uniformly at random from the interval [0, 1]. At time-step
t, an inactive node v is influenced by each of its active parent nodes, u, according to
weight ωu,v. If the total weight from active parent nodes of v is no less than θv, that is,∑

u∈Bt(v) ωu,v ≥ θv, then v will become active at time-step t+ 1. Here, Bt(v) stands for the
set of all the parent nodes of v that are active at time-step t. The process terminates if
no more activations are possible.

2.3 Influence Degree

For both models on G, we consider information diffusion from an initially activated
node v, i.e. H = {v}. Let ϕ(v; G) denote the number of active nodes at the end of the
random process for either the IC or the LT model on G. Note that ϕ(v; G) is a random
variable. We refer to ϕ(v; G) as the influence degree of node v on G. Let E(v; G) denote
the expected number of ϕ(v; G). We call E(v; G) the expected influence degree of node
v on G. In theory we can simply estimate E by the simulations based on either the IC
or the LT model in the following way. First, a sufficiently large positive integer M is
specified. Then, the diffusion process of either the IC or the LT model is simulated from
the initially activated node v, and the number of active nodes at the end of the random
process, ϕ(v; G), is calculated. Last, E(v; G) for the model is estimated as the empirical
mean of influence degrees ϕ(v; G) that are obtained from M such simulations.

From now on, we use ϕ(v) and E(v) instead of ϕ(v; G) and E(v; G), respectively if G
is obvious from the context.

3 Discovery Method

3.1 Super-mediator

As mentioned in section 1, we address the problem of discovering a different kind of
influential nodes, which we call ”super-mediator”. These are the nodes which appear
frequently in long diffusion sequences with many active nodes and less frequently in
short diffusion sequences, i.e. those nodes which play an important role to pass the
information to other nodes. Figure 1 (a) shows an example of information diffusion
samples. In this figure, by independently performing simulations 5, 000 times based on
the IC model, we plotted 5, 000 curves for influence degree of a selected information
source node with respect to time steps3. From this figure, we can observe that 1) due to
its stochastic nature, each diffusion sample varies in a quite wide range for each simu-
lation; and 2) some curves clearly exhibit sigmoidal behavior in part, in each of which
the influence degree suddenly becomes relatively high during a certain time interval.

3 The network used to generate these data is the blog network (see subsection 4.1).
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Fig. 1: Information diffusion from some node in the blog network for the IC model (p = 0.1).

In Figure 1 (b), we plotted the distribution of the final influence degree for the above
5, 000 simulations. From this figure, we can observe that there exist a number of bell-
shaped curves (which can be approximated by quadratic equations) in a logarithmic
scale for each axis, which suggests that the influence degree distribution consists of
several lognormal like distributions. Together with the observation from Figure 1 (a),
we conjecture that super-mediators appear as a limited number of active nodes in some
lognormal components with relatively high influence degree. Therefore, in order to dis-
cover these super-mediator nodes from information diffusion samples, we attempt to
divide the diffusion samples in two groups (lower and upper), each assuming some
probability distribution, find the best split by maximizing the likelihood, and rank the
nodes in the upper samples by the F-measure.

3.2 Clustering of Diffusion samples

Let S(v) = {1, 2, · · · ,M(v)} denote a set of indices with respect to information diffusion
samples for an information source node v, i.e. {d1(v), d2(v), · · · , dM(v)(v)}. Here note
that dm(v) stands for a set of active nodes in the m-th diffusion sample. As described
earlier, in order to discover super-mediator nodes, we consider dividing S(v) into two
groups, S1(v) and S2(v), which are the upper group of samples with relatively high
influence degree and the lower group, respectively. Namely, S1(v) ∪ S2(v) = S(v) and
minm∈S1(v) |dm(v)| > maxm∈S2(v) |dm(v)|. Although we can straightforwardly extend our
approach in case of k-groups division, we focus ourselves on the simplest case (k = 2)
because of ease of both evaluation of basic performance and the following derivation.
By assuming the independence of each sample drawn from either the upper or the lower
group, we can consider the following likelihood function.

L(S(v);S1(v), Θ) =
∏

k∈{1,2}

∏
m∈Sk(v)

p(m; θk), (1)

where p(m; θk) denotes some probability distribution with the parameter set θk for the
m-th diffusion sample, and Θ = {θ1, θ2}. If it is assumed that the influence degree distri-
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bution consists of lognormal components, we can express p(m; θk) by

p(m; θk) =
1√

2πσ2
k |dm(v)|

exp
⎛⎜⎜⎜⎜⎝− (log |dm(v)| − μk)2

2σ2
k

⎞⎟⎟⎟⎟⎠ , (2)

where θk = {μk, σ
2
k}. Then, based on the maximum likelihood estimation, we can iden-

tify the optimal upper group Ŝ1(v) by the following equation.

Ŝ1(v) = arg max
S1(v)

{
L(S;S1(v), Θ̂)

}
, (3)

where Θ̂ denotes the set of maximum likelihood estimators.
Below we describe our method for efficiently obtaining Ŝ1(v) by focusing on the

case that p(m; θk) is the lognormal distribution defined in Equation (2), although the
applicability of the method is not limited to this case. For a candidate upper group
S1(v), by noting the following equations of the maximum likelihood estimation,

μ̂k =
1

|Sk(v)|
∑

m∈Sk(v)

log |dm(v)|, σ̂2
k =

1
|Sk(v)|

∑
m∈Sk(v)

(log |dm(v)| − μ̂k)2, (4)

we can transform Equation (3) as follows.

Ŝ1(v) = arg max
S1(v)

{
2 logL(S(v);S1(v), Θ̂)

}
= arg max

S1(v)

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
∑

k∈{1,2}
|Sk | log

(
σ̂2

k

)⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (5)

Therefore, when a candidate upper group S1(v) is successively changed by shifting its
boundary between S1(v) and S2(v), we can efficiently obtain Ŝ1(v) by simply updating
the sufficient statistics for calculating the maximum likelihood estimators. Here, we
define the following operation to obtain the set of elements with the maximum influence
degree,

η(S(v)) =
{

m; |dm(v)| = max
m∈S(v)

{|dm(v)|}
}
, (6)

because there might exist more than one diffusion sample with the same influence de-
gree. Then, we can summarize our algorithm as follows.

1. Initialize S1(v)← η(S(v)), S2(v)← S(v) \ η(S(v)), and L̂← −∞.
2. Iterate the following procedure:
2-1. Set S1(v)← S1(v) ∪ η(S2(v)), and S2(v)← S2(v) \ η(S2(v)).
2-2. If S2(v) = η(S2(v)), then terminate the iteration.
2-3. Calculate L = −∑k∈{1,2} |Sk(v)| log(σ̂2

k).
2-4. If L̂ < L then set L̂← L and Ŝ1(v)← S1(v)
3. Output Ŝ1(v), and terminate the algorithm.

We describe the computational complexity of the above algorithm. Clearly, the num-
ber of iterations performed in step 2 is at most (M(v) − 2). On the other hand, when
applying the operator η(·) in steps 1 and 2.1 (or 2.2), by classifying each diffusion
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sample according to its influence degree in advance, we can perform these operations
with computational complexity of O(1). Here note that since the influence degree is a
positive integer less than or equal to |V |, we can perform the classification with com-
putational complexity of O(M(v)). As for step 2.3, by adding (or removing) statistics
calculated from η(S2(v)), we can update the maximum likelihood estimators Θ̂ defined
in Equation (4) with computational complexity of O(1). Therefore, the total computa-
tional complexity of our clustering algorithm is O(M(v)). Note that the above discussion
can be applicable to a more general case for which the sufficient statistics of p(m; θk) is
available to its parameter estimation.

A standard approach to the above clustering problem might be applying the EM
algorithm by assuming a mixture of lognormal components. However, this approach
is likely to confront the following drawbacks: 1) due to the local optimal problem, a
number of parameter estimation trials are generally required by changing the initial
parameter values, and we cannot guarantee the global optimality for the final result;
2) since many iterations are required for each parameter estimation trial, we need a
substantially large computational load for obtaining the solution, which results in a pro-
hibitively large processing time especially for a large data set; and 3) in case that a data
set contains malicious outlier samples, we need a special care to avoid some unexpected
problems such as degradation of σ̂2

k to 0. Actually, our preliminary experiments based
on this approach suffered from these drawbacks. In contrast, our proposed method al-
ways produces the optimal result with computational complexity of O(M(v)).

3.3 Super-mediator Discovery

Next, we describe our method for discovering super-mediator nodes. Let D = {dm(v); v ∈
V,m = 1, · · · ,M(v)} denote a set of observed diffusion samples. By using the above
clustering method, we can estimate the upper group Ŝ1 for each node v ∈ V . For Ŝ1(v),
we employ, as a natural super-mediator score for a node w ∈ V , the following F-measure
F(w; v), a widely used measure in information retrieval, which is the harmonic average
of recall and precision of a node w for the node v. Here the recall means the number
of samples that include the node w in the upper group divided by the total number of
samples in the upper group, and the precision means the number of samples that include
a node w in the upper group divided by the total number of the node w in the samples.

F(w; v) =
2|{m; m ∈ Ŝ1(v),w ∈ dm(v)}|

|Ŝ1(v)| + |{m; m ∈ S(v),w ∈ dm(v)}| . (7)

Note that instead of the F-measure, we can employ the other measures such as the
Jaccard coefficients, but for our objective that discovers characteristic nodes appearing
in Ŝ1(v), we believe that the F-measure is most basic and natural. Then, we can consider
the following expected F-measure for D.

F (w) =
∑
v∈V

F(w; v)r(v), (8)

where r(v) stands for the probability that the node v becomes an information source
node, which can be empirically estimated by r(v) = M(v)/

∑
v∈V M(v). Therefore, we
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can discover candidates for the super-mediator nodes by ranking the nodes according
to the above expected F-measure.

In order to confirm the validity of the F-measure and characterize its usefulness, we
compare the ranking by the F-measure with the rankings by two other measures, and
investigate how these rankings are different from or correlated to each other considering
several situations. The first one is the expected influence degree defined in Section 2.3.
From observed diffusion samples D, we can estimate it as follows.

E(w) =
1

M(w)

M(w)∑
m=1

|dm(w)|. (9)

The second one is the following measure:

N(w) =
∑
v∈V
|{m; w ∈ dm(v)}|r(v). (10)

This measure ranks high those nodes that are easily influenced by many other nodes.

4 Experimental Evaluation

4.1 Data Sets

We employed two datasets of large real networks, which are both bidirectionally con-
nected networks. The first one is a trackback network of Japanese blogs used in [13]
and has 12, 047 nodes and 79, 920 directed links (the blog network). The other one is
a network of people derived from the “list of people” within Japanese Wikipedia, also
used in [13], and has 9, 481 nodes and 245, 044 directed links (the Wikipedia network).

Here, according to [17], we assumed the simplest case where the parameter values
are uniform across all links and nodes, i.e. pu,v = p for the IC model. As for the LT
model, we assumed ωu,v = q|B(v)|−1, and adopted q (0 ≤ q ≤ 1) as the unique parameter
for a network instead of ωu,v as in [18]. According to [8], we set p to a value smaller
than 1/d̄, where d̄ is the mean out-degree of a network. Thus, the value of p was set to
0.1 for the blog network and 0.02 for the Wikipedia network. These are the base values,
but in addition to them, we used two other values, one two times larger and the other
two times smaller for our analyses, i.e. 0.02 and 0.05 for the blog network, and 0.04
and 0.01 for the Wikipedia network. We set the base value for q to be 0.9 for the both
networks to achieve reasonably long diffusion results. Same as p, we also adopted two
other values, one two times larger and the other two times smaller. Since the double of
0.9 exceeds the upper-bound of q, i.e. 1.0, we used 1.0 for the larger value, and we used
0.45 for the smaller one.

For each combination of these values, information diffusion samples were gener-
ated for the corresponding model on each network using each node in the network as
the initial active node. In our experiments, we set M = 10, 000, which means 10, 000
information diffusion samples were generated for each initial active node. Then, we
analyzed them to discover super-mediators. To efficiently generate those information
diffusion samples and estimate the expected influence degree E of an initial active node,
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(f) Wikipedia (p = 0.04)

Fig. 2: The average influence degree distribution of the IC model

we adopted the method based on the bond percolation proposed in [14]. Note that we
only use these two networks to generate the diffusion sample data which we assume we
observed. Once the data are obtained, we no more use the network structure.

4.2 Influence Degree Distribution

First, we show the influence degree distribution for all nodes. Figure 2 is the results
of the IC model and Fig. 3 is the results of the LT model. M(= 10, 000) simulations
were performed for each initial node v ∈ V and this is repeated for all the nodes in
the network. Since the number of the nodes |V | is about 10,000 for both the blog and
the Wikipedia networks, these results are computed from about one hundred million
diffusion samples and exhibits global characteristics of the distribution. We see that the
distribution of the IC model consists of lognormal like distributions for a wide range of
diffusion probability p with clearer indication for a larger p. Here it is known that if the
variance of the lognormal distribution is large, it can be reasonably approximated by
a power-law distribution [23]. On the contrary, we note that the distribution of the LT
model is different and is a monotonically decreasing power-law like distribution. This
observation is almost true of the distribution for an individual node v except that the
distribution has one peak for the LT model. One example is already shown in Fig 1 (b)
for the IC model. Figures 4 and 5 show some other results for the both models. In each
of these figures the most influential node for the parameter used was chosen as the ini-
tial activated source node v. From this observation, the discovery model we derived in
subsections 3.2 and 3.3 can be straightforwardly applied to the IC model by assuming
that the probability distribution consists of lognormal components and the succeed-
ing experiments were performed for the IC model. However, this does not necessarily
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(f) Wikipedia (q = 1.0)

Fig. 3: The average influence degree distribution of the LT model
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(f) Wikipedia (p = 0.04)

Fig. 4: The influence degree distribution for a specific node v of the IC model

mean that the notion of super-mediator is only applicable to the IC model. Finding a
reasonable and efficient way to discover super-mediator nodes for the LT model is our
on-going research topic. Further, the assumption of dividing the groups into only two
need be justified. This is also left to our future work.
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Fig. 5: The influence degree distribution for a specific node v of the LT model

4.3 Super-mediator Ranking

Tables 1, 2 and 3 summarize the ranking results. Ranking is evaluated for two different
values of diffusion probability (p = 0.1 and p = 0.05 for the blog data, and p = 0.02 and
0.01 for the Wikipedia data) and for the three measures mentioned in subsection 3.3.
Rank by all the measures is based on the value rounded off to three decimal places. So
the same rank appears more than once. The first two (Tables 1 and 2) rank the nodes by
F for p = 0.1 and 0.05 (blog data) and p = 0.02 and 0.01 (Wikipedia data), respectively,

Table 1: Comparison of the ranking by F with rankings by E and N for a large diffusion proba-
bility.

(a) Blog network (p = 0.1)
Ranking by F Ranking by E,N

Ranking Node ID E N
1 146 2 2
1 155 1 1
3 140 3 3
3 150 4 4
5 238 5 5
5 278 6 6
5 240 7 7
5 618 10 8
9 136 8 9
9 103 9 10

(b) Wikipedia network (p = 0.02)
Ranking by F Ranking by E,N

Ranking Node ID E N
1 790 1 1
1 8340 2 2
3 323 3 3
3 279 4 4
5 326 5 5
6 772 6 6
6 325 7 7
8 1407 8 8
9 4924 9 9

10 3149 11 10
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Table 2: Comparison of the ranking by F with rankings by E and N for a small diffusion proba-
bility.

(a) Blog network (p = 0.05)
Ranking by F Ranking by E,N

Ranking Node ID E N
1 155 26 28
2 146 29 29
3 140 41 44
4 150 63 66
5 238 92 93
6 618 79 81
6 240 113 112
8 103 84 86
8 490 95 96
8 173 88 89

(b) Wikipedia network (p = 0.01)
Ranking by F Ranking by E,N

Ranking Node ID E N
1 790 167 168
2 279 199 198
2 4019 1 1
4 3729 2 2
4 7919 3 3
4 1720 7 4
4 4465 5 6
4 1712 6 7
9 4380 4 5
9 3670 9 8

Table 3: Comparison of the ranking by E for a high diffusion probability with rankings by E, F ,
and N for a low diffusion probability.

(a) Blog network
Ranking by E Ranking by E,F ,N

for p = 0.1 for p = 0.05
Ranking Node ID E F N

1 155 26 1 28
2 146 29 2 29
3 140 41 3 44
4 150 63 4 66
5 238 92 5 93
6 278 161 18 154
7 240 113 6 112
8 136 83 8 85
9 103 84 8 86

10 618 79 6 81

(b) Wikipedia network
Ranking by E Ranking by E,F ,N
for p = 0.02 for p = 0.01

Ranking Node ID E F N
1 790 167 1 168
2 8340 200 9 201
3 323 196 14 200
4 279 199 2 198
5 326 212 24 206
6 325 231 51 236
7 772 242 41 235
8 1407 257 80 264
9 4924 305 111 298

10 2441 279 103 287

and compare each ranking with those by E and N . From these results we observe that
when the diffusion probability is large all the three measures ranks the nodes in a similar
way. This means that the influential nodes also play a role of super-mediator for the
other source nodes. When the diffusion probability is small, the Wikipedia data still
shows the similar tendency but the blog data does not. We further note that E and N
rank the nodes in a similar way regardless of the value of diffusion probability. This
is understandable because the both networks are bidirectional. In summary, when the
diffusion probability is large, all the three measures are similar and the influential nodes
also play a role of super-mediator for the other source nodes.

The third one (Table 3) ranks the nodes by E for p = 0.01 (blog data) and p =
0.02 (Wikipedia data) and compares them with the rankings by the three measures for
p = 0.05 (blog data) and p = 0.01 (Wikipedia data). The results say that the influential
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nodes are different between the two different diffusion probabilities, but what is strik-
ingly interesting to note is that the nodes that are identified to be influential (up to 10th)
at a large diffusion probability are almost the same as the nodes that rank high by F at
a small diffusion probability for the blog data. This correspondence is not that clear for
the Wikipedia data but the correlation of the rankings by E (at a large diffusion prob-
ability) and F (at a small diffusion probability) is much larger than the corresponding
correlation by the other two measures (E andN). This implies that the super-mediators
at a small diffusion probability become influential at a large diffusion probability. Since
the F-measure can be evaluated by the observed information sample data alone and
there is no need to know the network structure, this fact can be used to predict which
nodes become influential when the diffusion probability switches from a small value for
which we have enough data to a large value for which we do not have any data yet.

4.4 Characterization of Super-mediator and Discussions

If we observe that some measure evaluated for a particular value of diffusion probabil-
ity gives an indication of the influential nodes when the value of diffusion probability is
changed, it would be a useful measure for finding influential nodes for a new situation. It
is particularly useful when we have abundant observed set of information diffusion sam-
ples with normal diffusion probability and we want to discover high ranked influential
nodes in a case where the diffusion probability is larger. For example, this problem set-
ting corresponds to predicting the influential nodes for the unexperienced rapid spread
of new information, e.g. spread of new acute contagion, because it is natural to think
that we have abundant data for the spread of normal moderate contagion.

The measure based on E ranks high those nodes that are also influential where the
diffusion probability is different from the current value if nodes are not sensitive to the
diffusion probability, i.e. a measure useful to estimate influential nodes from the known
results when the diffusion probability changes under such a condition. The measure
based on N ranks high those nodes that are easily influenced by many other nodes.
It is a measure useful to estimate influential nodes from the known results if they are
the nodes easily influenced by other nodes. In our experiments, the influential nodes
by E for the much larger diffusion probability, i.e. p = 0.2 (blog data) and p = 0.04
(Wikipedia data) were almost the same as the high ranked ones by any one of the three
measures E, N and F for p = 0.1 (blog data) and p = 0.02 (Wikipedia data), although
we have to omit the details due to the space limitation.

In the previous subsection we showed that the super-mediators at a small diffusion
probability become influential at a large diffusion probability. In a situation where there
are relatively large number of active nodes, the probability that more than one parent try
to activate their same child increases, which mirrors the situation where the diffusion
probability is effectively large. It is the super-mediators that play the central role in these
active node group under such a situation. This would explain why the super-mediators
at a small diffusion probability become influential nodes at a large diffusion probability.



14 Kazumi Saito, Masahiro Kimura, Kouzou Ohara, and Hiroshi Motoda

5 Conclusion

We found that the influence degree for the IC model exhibits a distribution which is
a mixture of two distributions (power-law like distribution and lognormal like distri-
bution). This implied that there are nodes that may play different roles in informa-
tion diffusion process. We made a hypothesis that there should be nodes that play an
important role to pass the information to other nodes, and called these nodes “super-
mediators”. These nodes are different from what is usually called “influential nodes”
(nodes that spread information as much as possible). We devised an algorithm based on
maximum likelihood and linear search which can efficiently identify the super-mediator
node group from the observed diffusion sample data, and proposed a measure based on
recall and precision to rank the super-mediators. We tested our hypothesis by applying it
to the information diffusion sample data generated by two real networks. We found that
the high ranked super-mediators are also the high ranked influential nodes when the dif-
fusion probability is large, i.e. the influential nodes also play a role of super-mediator for
the other source nodes, but not necessarily so when the diffusion probability is small,
and further, to our surprise, that when the high ranked super-mediators are different
from the top ranked influential nodes, which is the case when the diffusion probability
is small, those super-mediators become the high ranked influential nodes when the dif-
fusion probability becomes larger. This finding will be useful to predict the influential
nodes for the unexperienced spread of new information from the known experience, e.g.
prediction of influential nodes for the spread of new acute contagion for which we have
no available data yet from the abundant data we already have for the spread of moderate
contagion.
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