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Abstract. We propose a method of detecting the points at which the speed of
information diffusion changed from an observed diffusion sequence data over a
social network, explicitly taking the network structure into account. Thus, change
in diffusion is both spatial and temporal. This is different from most of the existing
change detection approaches in which all the diffusion information is projected
on a single time line and the search is made in this time axis. We formulate this
as a search problem of change points and their respective change rates under the
framework of maximum log-likelihood embedded in MDL. Time complexity of
the search is almost proportional to the number of observed data points and the
method is very efficient. We tested this using both a real Twitter date (ground truth
not known) and the synthetic data (ground truth known), and demonstrated that
the proposed method can detect the change points efficiently and the results are
very different from the existing sequence-based (time axis) approach (Kleinberg’s
method).
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1 Introduction

Recent technological innovation and popularization of high performance mobile/smart
phones has drastically changed our communication style and the use of various social
media such as Twitter1 and Facebook2 has been substantially affecting our daily lives.
It is fresh to our memory that Twitter played a very important role as the information
infrastructure during the recent natural disaster, both domestic and abroad, including
the 2011 To-hoku earthquake and tsunami in Japan.

In reality, the way information diffuses depends on both the content and the interest
of the people. Being able to detect changes in the way information propagates allows us

1 https://twitter.com/
2 https://www.facebook.com/
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to analyze peoples behavior, e.g. finding a community of people with a similar interest,
and deepens our understanding of the world around us. This brings in an important
and interesting problem, which is to accurately and efficiently detect the change points
(where in the network the changes take place and how big the respective changes in the
diffusion speed are) from the observed information diffusion data.

There are substantial number of studies on change detection in information diffu-
sion process. Most of them treat change detection along the time axis alone in which all
the diffusion information is projected on a single time line and the detection is formu-
lated as a search problem in this time axis. These include [9], [8], [2], [1], [3], [7]. We
have also approached this problem by directly dealing with the change of time interval
between occurrences of a target event [6], and showed that our method outperformed
Kleinberg’s method [3] which is considered to be the state of the art. However, in re-
ality information diffusion takes place along a diffusion path. Each path has multiple
descendants (child nodes) and new paths start only from the children that are in the
observed data. Thus, change in diffusion is both spatial and temporal. The above tra-
ditional sequence-based (time axis) approaches may be good enough to know a global
trend over a long period of time, but is definitely not good enough to detect the correct
change points. Information diffuses differently within different communities just as the
sound velocity changes within different substances. Thus it is important to take both
spatial and temporal factors into account in detecting changes,i.e., where and when the
change takes place.

We model these changes as changes in the time-delay parameter, where the delay
is assumed to follow an exponential distribution. More precisely, we assume that the
parameter changes are approximated by a step function along each diffusion path and
propose an optimization algorithm that maximizes the likelihood of generating the ob-
served diffusion sequence, and the number of change points are determined by MDL
principle. The time complexity of the algorithm is almost proportional to the number of
observed data points (candidates of possible change points).

We first demonstrate that the proposed method can detect the bursts using a real
Twitter data quite efficiently. The results were very different from Kleinberg’s method [3]
which is considered to be the state of the art for burst detection along the time axis. This
confirmed the need to explicitly use the network structure. Since we do not know the
ground truth for the Twitter data, we generated synthetic data and embedded the change
points of varying number using the same network structure with the Twitter data. The
proposed method could successfully detect the correct change points for all cases with
one very minor mis-detection, while Kleinberg’s method again performed very poorly
and the detected many incorrect change points.

2 Proposed Method

We consider information diffusion over a social network whose structure is defined as a
directed graphG = (V,E), whereV andE (⊂ V×V) represent a set of all nodes and a set
of all links, respectively. Suppose that we observe a sequence of information diffusion
C = {(v0, t0), (v1, t1), · · · , (vN, tN)} that arose from the information released at the source
nodev0 at timet0. Here,vn is anactivenode where the information has been propagated
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andtn is its time. We assume, as a standard setting, that the actual information diffusion
paths of a sequenceC correspond to a treeTC that is embedded in the directed graphG
representing the social network [5], i.e., the parent node which passed the information
to a nodevn is uniquely identified to bevp(n) if n > 0. Here,p(n) is a function that
returns the node identification number of the parent ofvn in the range of{0, · · · ,n− 1}.

By setting that the time delay of information diffusion is represented as the simple
exponential distributionp(tn − tp(n); r) = r exp(−r(tn − tp(n))), we mathematically define
the change point detection problem. For the actual information diffusion paths of a
sequenceC, we consider the corresponding set of integers defined byD = {0,1, · · · ,N}.
Let the node of thej-th change point ben( j) ∈ D, then we assume that the delay
parameter switches fromr j to r j+1 for the descendant nodes ofvn( j) until another change
took place. Namely, we are assuming a step function as a shape of parameter changes.
Let the set comprisingJ change points beSJ = {n(1), · · · ,n(J)}, and we setn(0) = 0
for the sake of convenience (tn( j−1) < tn( j)). Let the division ofD by SJ beD j , i.e.,
D = D0∪D1∪· · ·∪DJ, whereD j is a set of the descendant nodes ofvn( j) until another
change happens, and|D j | represents the number of observed points inD j . Here, we
request that|D j | , 0 for any j ∈ {0, · · · , J}.

We consider the problem of detecting change points as a problem of finding a subset
SJ ⊂ D when the set of nodes of information diffusion resultC is given. For this
purpose, we consider maximizing the following objective function.

L(C; r̂ J+1,SJ) = −N −
J∑

j=0

|D j | log

 1
|D j |

∑
n∈D j

(tn − tp(n))

 . (1)

Here, as shown in [6], we can obtain this objective function by substituting the maxi-
mum likelihood estimate of the parameterr̂ J+1 to the log-likelihood forC for a given
set of change pointsSJ. We first describe the simple method which is applicable when
the number of change pointsJ is large. This is a progressive binary splitting without
backtracking. Below we describe the details of this algorithmA: after initializing j ← 1
andS0← ∅ (stepA1), we fix the already selected set of (j − 1) change pointsS j−1 and
search for the optimalj-th change pointn( j) (stepA2), and add it toS j−1 (stepA3).
We repeat this procedure fromj = 1 to J. Here note that in the stepA3 elements of
the change point setS j are reindexed to satisfytn(i−1) < tn(i) for i = 2, · · · , j. Clearly,
the time complexity of the simple method isO(NJ) which is fast. Thus, it is possible
to obtain the result within a reasonable computation time for a largeN. However, since
this is a greedy algorithm, it can be trapped easily to a poor local optimal.

By inheriting the basic idea of our previous method [6], we propose a method which
is computationally almost equivalent to the simple method but gives a solution of much
better quality. Below we describe the details of this algorithmB: We start with the
solution obtained by the simple methodSJ (stepB1), pick up a change pointn( j) from
the already selected points, fix the restSJ \ {n( j)} and search for a better valuen( j)′

(stepB2), where· \ · represents set difference. We repeat this fromj = 1 to J. If no
replacement is possible for allj ( j = 1, · · · J), i.e. n( j)′ = n( j) for all j, then no better
solution is expected and the iteration stops.

So far, we have fixed the number of change pointsJ, and proposed a method of
finding the optimal parameter vectorr̂ J+1 and inferring the change pointsSJ for the
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observed dataC. Now, we present a method of estimating the value ofJ from C for
solving the change points detection problem. To this end, we employ MDL (Rissanen’s
Minimum Description Length) [4]. More specifically, in order to describe the informa-
tion diffusion model based on the obtained resultSJ, we need the set ofJ+1 time-delay
parameterŝr J+1, as well as the set ofJ change pointsSJ, which amounts to 2J + 1 pa-
rameters. Thus we can consider the following MDL formula for the case ofJ change
points:

MDL(J) = −L(C; r̂ J,SJ+1) +
1
2

(2J + 1) log(N). (2)

Below we describe the details of this algorithmC: after initializing J ← 0 andS0 ←
∅ (stepC1), we computeSJ+1 by the proposed algorithmsA and B, and Calculate
MDL(J+1) from Equation (2) (stepC2). We repeat this procedure fromJ = 0 by setting
J← J+1 until MDL(J+1) ≤ MDL(J). Here, we note that for model selection, we can
consider employing various methods other than the MDL criterion and the likelihood
ratio test, although we used the MDL criterion as a candidate.

3 Experiments

We applied the proposed method to the real-world information diffusion sequence which
takes a form of tree and investigated how it can detect reasonable change points on the
tree by visualizing the resulting change points and corresponding time-delay parame-
ters estimated by it. To this end, we used a sequence of retweets extracted from Twitter
3, and formed a corresponding diffusion tree that has 477 nodes (tweets) and 476 edges
(retweet actions). We refer to this dataset as the Retweet dataset.

3.1 Results for Real Data

We applied our proposed method to the Retweet dataset, and obtained the result that the
number of change points underlying in the tree is 4. Actually, the log-likelihoods for
J = 4 and 5 are−33596.4 and−3353.9, respectively, and the corresponding MDL val-
ues are 3387.4 and 3387.9, respectively. We can observe that those values do not change
significantly betweenJ = 4 and 5, but it does not hold ifJ is smaller. Figure 1(a) visu-
alizes the result forJ = 4, in which nodes of the diffusion tree are denoted by different
colors and different markers according to the estimated time-delay parameter values
associated to them and the four change points detected are indicated with squares.

From these results, we can find that the given diffusion tree is clearly divided into 5
subtrees which have a certain number of nodes and whose root nodes are either the root
node of the whole tree or change points detected by the proposed method. In addition,
it can be observed that the diffusion speed clearly changes between different subtrees.
Thus, these subtrees are likely to be considered as different communities in which in-
formation diffusion speed of a certain topic is different. Analyzing these subtrees more
in depth is one of the future directions of this work.

Next, we compared the proposed method with conventional sequence-based meth-
ods [3, 6] that detect change points by considering only a time series diffusion sequence

3 https://twitter.com/
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(a) Proposed (b) KLBG1

Fig. 1.Visualization of changes of diffusion time on the information diffusion tree by the proposed
and KLBG1 methods.

without using any structural information of the network behind the diffusion. In this
paper, we chose Kleinberg’s method [3] as a representative one among them. It is based
on hidden Markov model and has two parameters,γ and s. The parameterγ is used
in its cost function, and we employedγ = 1 in this experiment. The parameters is a
scaling parameter and determines the delay parameter at the statej by r j = sjr0 where
the parameterr0 is estimated byr0 = N/tN as described in [3]. We set the scaling pa-
rameters to 5 based on the observations obtained by applying our proposed method
to the original dataset. Hereafter, we refer to Kleinberg’s method with this setting as
the KLBG1 method. In addition, we consider an alternative Kleinberg’s method with
another setting in whichr0 is fixed to 1.0, and refer to it as the KLBG2 method, which
is used only for the experiments on the synthetic datasets discussed below.

Figure 1(b) shows, in the same manner as in Fig. 1(a), the result obtained by ap-
plying the KLBG1 method to the Retweet dataset. Comparing to Fig. 1(a), it is found
that the number of change points detected by the KLBG1 method is substantially larger
than the one by the proposed method. In addition, there are multiple small subtrees
with an identical time delay parameter and they spread across a wide range of the dif-
fusion tree. This is because the sequence-based methods use only a sequence of time
stamps projected on a single time axis and do not take into account any structural in-
formation behind the diffusion process. Consequently, we cannot utilize this result to
extract meaningful node groups or communities that could affect the information diffu-
sion speed, which is possible by the proposed method.

3.2 Results for Synthetic Data

We constructed a synthetic sequence of information diffusion by utilizing the Retweet
dataset. More specifically, to systematically regenerate the observation time points in
which J change points are embedded, we dividedD of the Retweet dataset intoJ + 1
subsetsD0, · · · ,DJ so that the original diffusion tree is decomposed intoJ+1 subtrees
each of which has at least 20 nodes. Then, we set the time-delay parameterr j to 1.0 for
j = 0 and 5× rpt( j) for j > 0, wherept( j) means the index such thatp(n( j)) ∈ Dpt( j).
It is noted that this coefficient of 5 is equivalent to the value of the scaling parameter of
the KLBG1 and KLBG2 methods. After that, we generated observation time of nodes
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Fig. 2.Learning performance by the proposed, KLBG1, and KLBG2 methods forJ = 1 to 5.

(a) Proposed (b) KLBG1 (c) KLBG2

Fig. 3. Visualization results using the true change points and those estimated by the proposed,
KLBG1, and KLBG2 methods for a synthetic dataset havingJ = 3 change points.

in eachD j according to the exponential distribution with the parameterr j , varying J
from 1 to 5, and generated 10 different datasets for each value ofJ.

To quantitatively evaluate the proposed method, we applied the proposed, KLBG1,
and KLBG2 methods to the synthetic datasets, and compared their learning perfor-
mance in terms of two criteria: the number of detected change points and the estimation
error of the time-delay parameter. For each value ofJ, we applied each method to the
10 different synthetic datasets, each embedded withJ change points, and computed an
average over these 10 trials for each criterion. Figure 2(a) shows the number of change
points detected by each method. It is obvious that the proposed method can almost ex-
actly detect the number of embedded change points regardless of the value ofJ. In
contrast, both the KLBG1 and KLBG2 methods overestimated the number of embed-
ded change points. The KLBG2 method detected much more change points than the
KLBG1 method did although the KLBG2 method used the true value ofr0 in addition
to the true scale parameters that was available for the KLBG1 method.

Next, we investigated the errorE between the estimated time-delay parameter and
the true one, defined asE = N−1∑N

n=1 |r̂(n)−r(n)|,where ˆr(n) is a parameter value that is
estimated to have generated the time delaytn− tp(n), andr(n) is its true value. Since both
the KLBG1 and KLBG2 methods do not use any structural information of the diffusion
tree, we definedp(n) asp(n) = arg maxm∈D{tm|tm < tn} for these two methods so thatE
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gets to a small value if they exactly detect change points and estimate the corresponding
parameter values within small deviations. The results for each value ofJ are shown in
Fig. 2(b), from which it is clear that the proposed method achieved extremely small
errors, and thus can accurately estimate the parameter value for any value ofJ. On the
other hand, the errors for the KLBG1 and KLBG2 methods are extremely large and
increase in proportion to the number of embedded change pointsJ.

Figure 3 visualizes, in the way similar to the case of Fig. 1(a), results for a syn-
thetic dataset in whichJ = 3 change points were embedded. Figures. 3(a) to 3(c) show
the results of the proposed, KLBG1, and KLBG2 methods, respectively. The same 3
true change points illustrated by circles in Fig. 2(c) were used for the three methods.
Comparing Figs. 2(c) and 3(a), we can see that the proposed method almost exactly
detected the 3 true change points in the tree. In contrast, from Figs. 3(b) and 3(c), we
see that they are much different from Fig. 2(c), and the diffusion speed changes at many
nodes other than the true change points. The KLBG1 method is slightly better than the
KLBG2 method, but the number of states it detected is 3 that is one less than the true
value 4. The KLBG2 method that uses the true value ofr0 detected 5 states and there
are many more change points than the true ones.

4 Conclusion

We addressed the problem of detecting the points at which the speed of information
diffusion changed from a single observed diffusion sequence under the assumption that
the delay of the information propagation follows the exponential distribution. Most of
the existing change detection methods focus on changes in the time axis, ignoring the
path along which information diffuses within the network. The proposed method is
different and unique in that it explicitly takes the underlying network structure into
account. It can deal with both spatial and temporal changes in information diffusion.

We formulated this problem as an optimization problem of maximizing the like-
lihood of generating the observed data. In doing so the change detected at a node is
passed only to its descendants, and different information diffusion paths are handled in
parallel. We devised an efficient iterative search algorithm whose time complexity is al-
most linear to the number of data points, and determined the optimal number of change
points using MDL criterion. We tested the algorithm against the real Twitter data for
which we do not know the ground truth and a synthetic data for which we know the
ground truth.

The results for the real Twitter data revealed that the proposed method can detect
change points efficiently. We also tested the other method that does not use the network
structure data, choosing Kleinberg’s burst detection method as one of the representative
methods of this kind. The results were very different, which confirmed the need to
explicitly use the network structure. The results for the synthetic data reveled that the
proposed method could successfully detect the correct change points for all cases with
one very minor mis-detection, while Kleinberg’s method again performed very poorly
and the detected many incorrect change points.
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