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Abstract. We propose a method of detecting the points at which the speed of
information difusion changed from an observedfdsion sequence data over a
social network, explicitly taking the network structure into account. Thus, change
in diffusion is both spatial and temporal. This iffeient from most of the existing
change detection approaches in which all théudion information is projected

on a single time line and the search is made in this time axis. We formulate this
as a search problem of change points and their respective change rates under the
framework of maximum log-likelihood embedded in MDL. Time complexity of
the search is almost proportional to the number of observed data points and the
method is very fficient. We tested this using both a real Twitter date (ground truth
not known) and the synthetic data (ground truth known), and demonstrated that
the proposed method can detect the change poffitseatly and the results are
very different from the existing sequence-based (time axis) approach (Kleinberg’s
method).
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1 Introduction

Recent technological innovation and popularization of high performance nfsrbidet
phones has drastically changed our communication style and the use of various social
media such as Twittérand Facebodkhas been substantiallyfacting our daily lives.
It is fresh to our memory that Twitter played a very important role as the information
infrastructure during the recent natural disaster, both domestic and abroad, including
the 2011 To-hoku earthquake and tsunami in Japan.

In reality, the way information diuses depends on both the content and the interest
of the people. Being able to detect changes in the way information propagates allows us

1 httpsy/twitter.cony
2 httpsy/www.facebook.corh
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to analyze peoples behavior, e.g. finding a community of people with a similar interest,
and deepens our understanding of the world around us. This brings in an important
and interesting problem, which is to accurately afittiently detect the change points
(where in the network the changes take place and how big the respective changes in the
diffusion speed are) from the observed informatidfudion data.

There are substantial number of studies on change detection in informafion di
sion process. Most of them treat change detection along the time axis alone in which all
the difusion information is projected on a single time line and the detection is formu-
lated as a search problem in this time axis. These include [9], [8], [2], [1], [3], [7]. We
have also approached this problem by directly dealing with the change of time interval
between occurrences of a target event [6], and showed that our method outperformed
Kleinberg’s method [3] which is considered to be the state of the art. However, in re-
ality information dffusion takes place along afidision path. Each path has multiple
descendants (child nodes) and new paths start only from the children that are in the
observed data. Thus, change iffasion is both spatial and temporal. The above tra-
ditional sequence-based (time axis) approaches may be good enough to know a global
trend over a long period of time, but is definitely not good enough to detect the correct
change points. Informationfilises diterently within diferent communities just as the
sound velocity changes within féiérent substances. Thus it is important to take both
spatial and temporal factors into account in detecting changesyhere and when the
change takes place.

We model these changes as changes in the time-delay parameter, where the delay
is assumed to follow an exponential distribution. More precisely, we assume that the
parameter changes are approximated by a step function along €ardodi path and
propose an optimization algorithm that maximizes the likelihood of generating the ob-
served difusion sequence, and the number of change points are determined by MDL
principle. The time complexity of the algorithm is almost proportional to the number of
observed data points (candidates of possible change points).

We first demonstrate that the proposed method can detect the bursts using a real
Twitter data quite iciently. The results were veryf@rent from Kleinberg’s method [3]
which is considered to be the state of the art for burst detection along the time axis. This
confirmed the need to explicitly use the network structure. Since we do not know the
ground truth for the Twitter data, we generated synthetic data and embedded the change
points of varying number using the same network structure with the Twitter data. The
proposed method could successfully detect the correct change points for all cases with
one very minor mis-detection, while Kleinberg’'s method again performed very poorly
and the detected many incorrect change points.

2 Proposed Method

We consider information éfusion over a social network whose structure is defined as a
directed grapi® = (V, E), whereV andE (c VxV) represent a set of all nodes and a set
of all links, respectively. Suppose that we observe a sequence of informafiosiati

C = {(vo,t0), (V1,t1), - - - , (Vn, tn)} that arose from the information released at the source
nodev at timety. Here v, is anactivenode where the information has been propagated
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andt, is its time. We assume, as a standard setting, that the actual informafimsiati
paths of a sequencgcorrespond to a treg; that is embedded in the directed graph
representing the social network [5], i.e., the parent node which passed the information
to a nodev, is uniquely identified to beyy) if n > 0. Here,p(n) is a function that
returns the node identification number of the parent,of the range of0,--- ,n—1}.

By setting that the time delay of informationfilision is represented as the simple
exponential distributiom(t, — tom); r) = r expEr(ty — tprn)), we mathematically define
the change point detection problem. For the actual informatifliusion paths of a
sequence€, we consider the corresponding set of integers definefd by{0, 1, - - - , N}.
Let the node of theg-th change point ba(j) € D, then we assume that the delay
parameter switches fromtor . for the descendant nodes\gfj) until another change
took place. Namely, we are assuming a step function as a shape of parameter changes.
Let the set comprising change points b&; = {n(1),---,n(J)}, and we sen(0) = 0
for the sake of conveniencéng-1y < tn(j). Let the division ofD by S; be D, i.e.,
D =DoUD1U---UDy, whereD; is a set of the descendant nodesgj, until another
change happens, an®;| represents the number of observed point®in Here, we
request thatD;| # O for anyj € {0, , J}.

We consider the problem of detecting change points as a problem of finding a subset
S; ¢ D when the set of nodes of informationfidision resultC is given. For this
purpose, we consider maximizing the following objective function.

R 3 1
L(CiT341,83) = -N - ; 1Dl Iog[@ Z (th— tp(n))] . 1)

ney;

Here, as shown in [6], we can obtain this objective function by substituting the maxi-
mum likelihood estimate of the paramefgr; to the log-likelihood forC for a given

set of change pointS;. We first describe the simple method which is applicable when
the number of change pointsis large. This is a progressive binary splitting without
backtracking. Below we describe the details of this algorifkrmafter initializing j « 1
andS, < 0 (stepAl), we fix the already selected set ¢f{ 1) change points$;_; and
search for the optimaj-th change point(j) (stepA2), and add it taS;_; (stepA3).

We repeat this procedure froin= 1 to J. Here note that in the stef3 elements of
the change point se§; are reindexed to satisfy;_1y < thg fori = 2,---, j. Clearly,

the time complexity of the simple method@{N J) which is fast. Thus, it is possible
to obtain the result within a reasonable computation time for a ltgéowever, since
this is a greedy algorithm, it can be trapped easily to a poor local optimal.

By inheriting the basic idea of our previous method [6], we propose a method which
is computationally almost equivalent to the simple method but gives a solution of much
better quality. Below we describe the details of this algoriBmWe start with the
solution obtained by the simple meth&qd (stepB1), pick up a change poimt(j) from
the already selected points, fix the ré&st\ {n(j)} and search for a better valumgj)’
(stepB2), where- \ - represents set fierence. We repeat this frofn= 1 to J. If no
replacement is possible for gli(j = 1,---J), i.e.n(j) = n(j) for all j, then no better
solution is expected and the iteration stops.

So far, we have fixed the number of change poihtand proposed a method of
finding the optimal parameter vectds,; and inferring the change point$; for the
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observed dat&. Now, we present a method of estimating the value éfom C for
solving the change points detection problem. To this end, we employ MDL (Rissanen’s
Minimum Description Length) [4]. More specifically, in order to describe the informa-
tion diffusion model based on the obtained re§yltwe need the set af+1 time-delay
parameters 1, as well as the set af change pointsS;, which amounts to 2+ 1 pa-
rameters. Thus we can consider the following MDL formula for the caskatfange
points:

MDL(J) = -L(C;f3,S341) + %(2J+1) log(N). 2

Below we describe the details of this algoritt®n after initializing J « 0 andSy «

0 (stepC1l), we computeS;,; by the proposed algorithm& and B, and Calculate
MDL(J+1) from Equation (2) (stef22). We repeat this procedure frodn= 0 by setting

J « J+1untiMDL(J+1) < MDL(J). Here, we note that for model selection, we can
consider employing various methods other than the MDL criterion and the likelihood
ratio test, although we used the MDL criterion as a candidate.

3 Experiments

We applied the proposed method to the real-world informatifasiopn sequence which
takes a form of tree and investigated how it can detect reasonable change points on the
tree by visualizing the resulting change points and corresponding time-delay parame-
ters estimated by it. To this end, we used a sequence of retweets extracted from Twitter
3, and formed a correspondingfiiision tree that has 477 nodes (tweets) and 476 edges
(retweet actions). We refer to this dataset as the Retweet dataset.

3.1 Results for Real Data

We applied our proposed method to the Retweet dataset, and obtained the result that the
number of change points underlying in the tree is 4. Actually, the log-likelihoods for
J = 4 and 5 are-335964 and—33539, respectively, and the corresponding MDL val-
ues are 3384 and 338, respectively. We can observe that those values do not change
significantly betweerd = 4 and 5, but it does not hold ¥ is smaller. Figure 1(a) visu-
alizes the result fod = 4, in which nodes of the ffusion tree are denoted byfidirent
colors and dierent markers according to the estimated time-delay parameter values
associated to them and the four change points detected are indicated with squares.
From these results, we can find that the givefugion tree is clearly divided into 5
subtrees which have a certain number of nodes and whose root nodes are either the root
node of the whole tree or change points detected by the proposed method. In addition,
it can be observed that thefiilision speed clearly changes betwedtedént subtrees.
Thus, these subtrees are likely to be consideredféereint communities in which in-
formation difusion speed of a certain topic idi@irent. Analyzing these subtrees more
in depth is one of the future directions of this work.
Next, we compared the proposed method with conventional sequence-based meth-
ods [3, 6] that detect change points by considering only a time seffesidn sequence

3 httpsy/twitter.comny
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(a) Proposed (b) KLBG1

Fig. 1. Visualization of changes of fluision time on the information fiusion tree by the proposed
and KLBG1 methods.

without using any structural information of the network behind théudion. In this
paper, we chose Kleinberg’s method [3] as a representative one among them. It is based
on hidden Markov model and has two parametgrands. The parametey is used

in its cost function, and we employed= 1 in this experiment. The parameteis a
scaling parameter and determines the delay parameter at thg bjate= s'ro where

the parametery is estimated by, = N/ty as described in [3]. We set the scaling pa-
rameters to 5 based on the observations obtained by applying our proposed method
to the original dataset. Hereafter, we refer to Kleinberg’'s method with this setting as
the KLBG1 method. In addition, we consider an alternative Kleinberg’s method with
another setting in whichy is fixed to 10, and refer to it as the KLBG2 method, which

is used only for the experiments on the synthetic datasets discussed below.

Figure 1(b) shows, in the same manner as in Fig. 1(a), the result obtained by ap-
plying the KLBG1 method to the Retweet dataset. Comparing to Fig. 1(a), it is found
that the number of change points detected by the KLBG1 method is substantially larger
than the one by the proposed method. In addition, there are multiple small subtrees
with an identical time delay parameter and they spread across a wide range of the dif-
fusion tree. This is because the sequence-based methods use only a sequence of time
stamps projected on a single time axis and do not take into account any structural in-
formation behind the dliusion process. Consequently, we cannot utilize this result to
extract meaningful node groups or communities that coffettithe information dfu-
sion speed, which is possible by the proposed method.

3.2 Results for Synthetic Data

We constructed a synthetic sequence of informatidiusiion by utilizing the Retweet
dataset. More specifically, to systematically regenerate the observation time points in
which J change points are embedded, we divideaf the Retweet dataset intb+ 1
subset®y, - - - , Dy so that the original diusion tree is decomposed inla- 1 subtrees

each of which has at least 20 nodes. Then, we set the time-delay paranteteod for

j = 0and 5x rpyj) for j > 0, wherept(j) means the index such thpfn(j)) € Dpyj)-

Itis noted that this cd@icient of 5 is equivalent to the value of the scaling parameter of
the KLBG1 and KLBG2 methods. After that, we generated observation time of nodes
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Fig. 2. Learning performance by the proposed, KLBG1, and KLBG2 method3 fof to 5.

(a) Proposed (b) KLBG1 (c) KLBG2

Fig. 3. Visualization results using the true change points and those estimated by the proposed,
KLBG1, and KLBG2 methods for a synthetic dataset haurg 3 change points.

in eachD; according to the exponential distribution with the parameggvarying J
from 1 to 5, and generated 1(f@irent datasets for each valuelof

To quantitatively evaluate the proposed method, we applied the proposed, KLBG1,
and KLBG2 methods to the synthetic datasets, and compared their learning perfor-
mance in terms of two criteria: the number of detected change points and the estimation
error of the time-delay parameter. For each valud,ofie applied each method to the
10 different synthetic datasets, each embedded vithange points, and computed an
average over these 10 trials for each criterion. Figure 2(a) shows the number of change
points detected by each method. It is obvious that the proposed method can almost ex-
actly detect the number of embedded change points regardless of the valuénof
contrast, both the KLBG1 and KLBG2 methods overestimated the number of embed-
ded change points. The KLBG2 method detected much more change points than the
KLBG1 method did although the KLBG2 method used the true valug of addition
to the true scale parametethat was available for the KLBG1 method.

Next, we investigated the err@ between the estimated time-delay parameter and
the true one, defined &= N1 Z,’Ll [F(n)—r(n)|, wherer{n) is a parameter value that is
estimated to have generated the time délayty), andr(n) is its true value. Since both
the KLBG1 and KLBG2 methods do not use any structural information of tfiesiibn
tree, we definegh(n) asp(n) = arg maxep{tmltm < tn} for these two methods so that
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gets to a small value if they exactly detect change points and estimate the corresponding
parameter values within small deviations. The results for each valdeus shown in

Fig. 2(b), from which it is clear that the proposed method achieved extremely small
errors, and thus can accurately estimate the parameter value for any vadluerothe

other hand, the errors for the KLBG1 and KLBG2 methods are extremely large and
increase in proportion to the number of embedded change pbints

Figure 3 visualizes, in the way similar to the case of Fig. 1(a), results for a syn-
thetic dataset in whicll = 3 change points were embedded. Figures. 3(a) to 3(c) show
the results of the proposed, KLBG1, and KLBG2 methods, respectively. The same 3
true change points illustrated by circles in Fig. 2(c) were used for the three methods.
Comparing Figs. 2(c) and 3(a), we can see that the proposed method almost exactly
detected the 3 true change points in the tree. In contrast, from Figs. 3(b) and 3(c), we
see that they are muchftiérent from Fig. 2(c), and thefflision speed changes at many
nodes other than the true change points. The KLBG1 method is slightly better than the
KLBG2 method, but the number of states it detected is 3 that is one less than the true
value 4. The KLBG2 method that uses the true valueyafetected 5 states and there
are many more change points than the true ones.

4 Conclusion

We addressed the problem of detecting the points at which the speed of information
diffusion changed from a single observeffuion sequence under the assumption that
the delay of the information propagation follows the exponential distribution. Most of
the existing change detection methods focus on changes in the time axis, ignoring the
path along which information ffuses within the network. The proposed method is
different and unique in that it explicitly takes the underlying network structure into
account. It can deal with both spatial and temporal changes in informatioision.

We formulated this problem as an optimization problem of maximizing the like-
lihood of generating the observed data. In doing so the change detected at a node is
passed only to its descendants, arfedent information dfusion paths are handled in
parallel. We devised arfficient iterative search algorithm whose time complexity is al-
most linear to the number of data points, and determined the optimal number of change
points using MDL criterion. We tested the algorithm against the real Twitter data for
which we do not know the ground truth and a synthetic data for which we know the
ground truth.

The results for the real Twitter data revealed that the proposed method can detect
change pointsféciently. We also tested the other method that does not use the network
structure data, choosing Kleinberg'’s burst detection method as one of the representative
methods of this kind. The results were veryfeient, which confirmed the need to
explicitly use the network structure. The results for the synthetic data reveled that the
proposed method could successfully detect the correct change points for all cases with
one very minor mis-detection, while Kleinberg’s method again performed very poorly
and the detected many incorrect change points.
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