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Abstract. We address a problem of efficiently estimating value of a centrality
measure for a node in a large social network only using a partial network gen-
erated by sampling nodes from the entire network. To this end, we propose a
resampling-based framework to estimate the approximation error defined as the
difference between the true and the estimated values of the centrality. We ex-
perimentally evaluate the fundamental performance of the proposed framework
using the closeness and betweenness centralities on three real world networks,
and show that it allows us to estimate the approximation error more tightly and
more precisely with the confidence level of 95% even for a small partial network
compared with the standard error traditionally used, and that we could potentially
identify top nodes and possibly rank them in a given centrality measure with high
confidence level only from a small partial network.

Keywords: Error estimation, resampling, node centrality, social network analy-
sis

1 Introduction

Recently, Social Media such as Facebook, Digg, Twitter, Weblog, Wiki, etc. becomes
increasingly popular on a worldwide scale, and allows us to construct large-scale so-
cial networks in cyberspace. An article that is posted on social media can rapidly and
widely spread through such networks and can be shared by a large number of people.
Since such information can substantially affect our thought and decision making, a large
number of studies have been made by researchers in many different disciplines such as
sociology, psychology, economy, and computer science [8, 4] to analyze various aspects
of social networks and information diffusion on them.

In the domain of social network analysis, several measures called centrality have
been proposed so far [7, 5, 1, 3, 13]. They characterize nodes in a network based on
its structure, and give an insight into network performance. For example, a centrality
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provides us with the information of how important each node is through node ranking
derived directly from the centrality. It also provides us with topological features of a
network. For example, scale free property is derived from the degree distribution. As
a social network in World Wide Web easily grows in size, it is becoming pressingly
important that we are able to efficiently compute values of a centrality to analyze such
a large social network. However, if a centrality measure is based not only on local
structure around a target node, e.g. its neighboring nodes, but also on global structure
of a network, e.g. paths between arbitrary node pairs, its computation becomes harder
as the size of the network increases. Thus, it is crucial to reduce the computational cost
of such centralities for large social networks. Typical examples are the closeness and
the betweenness centralities which we consider in this paper (explained later).

It is worth noting that such a centrality is usually defined as a summarized value
of more primitive ones that are derived from node pairs in a network. For example, the
closeness centrality is defined as the average of the shortest path lengths from a target
node to each of the remaining nodes in a network. Considering this fact, it is inevitable
to employ a sampling-based approach as a possible solution of this kind of problem on
scalability. It is obvious that using only a limited number of nodes randomly sampled
from a large social network can reduce the computational cost. However, the resulting
value is an approximation of its true value, and thus it becomes important to accurately
estimate the approximation error. It is well known from the statistical view point that
the margin of error (difference between sample mean and population mean) is ±2 ×
σ/
√

N with the confidence level of 95%, where σ and N are the standard deviation of a
population and the number of samples, respectively. However, this traditional boundary
does not necessarily give us a tight approximation error.

In this paper, we propose a framework that provides us with a tighter error estimate
of how close the approximation is to the true value. The basic idea is that we consider
all possible partial networks of a fixed size that are generated by resampling nodes
according to a given coverage ratio, and then estimate the approximation error, referred
to as resampling error, using centrality values derived from those partial networks. We
test our framework using two well-known centrality measures, the closeness and the
betweenness centralities, both of which require to use the global structure of a network
for computing the value of each node. Extensive experiments were performed on three
real world social networks varying the sample coverage for each centrality measure.
We empirically confirmed that the proposed framework is more promising than the
traditional error bound in that it enables us to give a tighter approximation error with
a higher confidence level than the traditional one under a given sampling ratio. The
framework we proposed is not specific to computation of node centralities for social
network analysis. It is very generic and is applicable to any other estimation problems
that require aggregation of many (but a finite number of) primitive computations.

The paper is organized as follows. Section 2 gives the formal definitions of both the
resampling-based framework that we propose and the traditional bound of approxima-
tion error. Section 3 explains the closeness and the betweenness centralities we used to
evaluate our framework and presents how to estimate their approximation error. Sec-
tion 4 reports experimental results for these centralities on three real world networks.
Section 5 concludes this paper and addresses the future work.
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2 Related work

As mentioned above, it is crucial to employ a sampling-based approach when analyz-
ing a large social network. Many kinds of sampling methods have been investigated
and proposed so far [6, 11, 10]. Non-uniform sampling techniques give higher proba-
bilities to be selected to specific nodes such as high-degree ones. Similarly, results by
traversal/walk-based sampling are biased towards high-degree nodes. In our problem
setting the goal is to accurately estimate centralities of an original network and thus
uniform sampling that selects nodes of a given network uniformly at random is es-
sential because biased samples might skew centrality values derived from a resulting
network.

This motivates us to propose the framework that ensures the accuracy of the ap-
proximations of centrality values under uniform sampling. Although we use a simple
random sampling here, our framework can adopt a more sophisticated technique such as
MH-sampling [6] in so far as it falls under uniform sampling. In this sense, our frame-
work can be regarded as a meta-level method that is applicable to any uniform sampling
technique.

3 Resampling-based estimation framework

For a given set of objects S whose number of elements is L = |S |, and a function f which
calculates some associated value of each object, we first consider a general problem of
estimating the average value μ of the set of entire values { f (s) | s ∈ S } only from its
arbitrary subset of partial values { f (t) | t ∈ T ⊂ S }. For a subset T whose number of
elements is N = |T |, we denote its partial average value by μ(T ) = (1/N)

∑
t∈T f (t).

Below, we formally derive an expected estimation error RE(N) which is the difference
between the average value μ and the partial average value μ(T ), with respect to the
number of elements N. Hereafter, the estimated error based on RE(N) is referred to as
resampling error.

Now, let T ⊂ 2S be a family of subsets of S whose number of elements is N, that is,
|T | = N for T ∈ T . Then, we obtain the following estimation formula for the expected
error:

RE(N) =
√
〈(μ − μ(T ))2〉T∈T

=

√√√(
L
N

)−1 ∑
T∈T

⎛⎜⎜⎜⎜⎜⎝μ − 1
N

∑
t∈T

f (t)

⎞⎟⎟⎟⎟⎟⎠
2

=

√√√(
L
N

)−1 1
N2

∑
T∈T

⎛⎜⎜⎜⎜⎜⎝∑
t∈T

( f (t) − μ)
⎞⎟⎟⎟⎟⎟⎠

2

=

√√√(
L
N

)−1 1
N2

⎛⎜⎜⎜⎜⎜⎜⎝
(

L − 1
N − 1

)∑
s∈S

( f (s) − μ)2 +

(
L − 2
N − 2

)∑
s∈S

∑
t∈S ,t�s

( f (s) − μ)( f (t) − μ)
⎞⎟⎟⎟⎟⎟⎟⎠

=

√√√(
L
N

)−1 1
N2

⎛⎜⎜⎜⎜⎜⎜⎝
((

L − 1
N − 1

)
−

(
L − 2
N − 2

))∑
s∈S

( f (s) − μ)2 +

(
L − 2
N − 2

) ⎛⎜⎜⎜⎜⎜⎝∑
s∈S

( f (s) − μ)
⎞⎟⎟⎟⎟⎟⎠

2⎞⎟⎟⎟⎟⎟⎟⎠
= C(N)σ. (1)
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Here the factor C(N) and the standard deviation σ are given as follows:

C(N) =
√

L − N
(L − 1)N

, σ =

√
1
L

∑
s∈S

( f (s) − μ)2.

In this paper we consider a huge social network consisting of millions of nodes as
a collection of a large number of objects, and propose a framework in which we use
the partial average value as an approximate solution with an adequate confidence level
using the above estimation formula, Equation (1). More specifically, we claim that for
a given subset T whose number of elements is N, and its partial average value μ(T ),
the probability that |μ(T ) − μ| is larger than 2 × RE(N), is less than 5%. This is because
the estimation error of Equation (1) is regarded as the standard deviation with respect
to the number of elements N. Hereafter this framework is referred to as the resampling
estimation framework.

In order to confirm the effectiveness of the proposed resampling estimation frame-
work, we also consider a standard approach based on the i.i.d. (independently identical
distribution) assumption for comparison purpose. More specifically, for a given subset
T whose number of elements is N, we assume that each element t ∈ T is indepen-
dently selected according to some distribution p(t) such as an empirical distribution
p(t) = 1/L. Then, by expressing elements of T as T = {t1, · · · , tN}, we obtain the fol-
lowing estimation formula for the expected error:

S E(N) =
√
〈(μ − μ(T ))2〉

=

√√√√∑
t1∈S
· · ·

∑
tN∈S

⎛⎜⎜⎜⎜⎜⎝μ − 1
N

N∑
n=1

f (tn)

⎞⎟⎟⎟⎟⎟⎠
2 N∏

n=1

p(tn) =

√√√√
1

N2

∑
t1∈S
· · ·

∑
tN∈S

⎛⎜⎜⎜⎜⎜⎝ N∑
n=1

( f (tn) − μ)
⎞⎟⎟⎟⎟⎟⎠

2 N∏
n=1

p(tn)

=

√√√
1

N2

∑
t1∈S
· · ·

∑
tN∈S

⎛⎜⎜⎜⎜⎜⎜⎝
N∑

n=1

( f (tn) − μ)2 +

N∑
n=1

N∑
m=1,m�n

( f (tn) − μ)( f (tm) − μ)
⎞⎟⎟⎟⎟⎟⎟⎠

N∏
n=1

p(tn)

= D(N)σ, (2)

where D(N) = 1/
√

N and σ is the standard deviation. Hereafter, the estimated error
based on S E(N) is referred to as standard error. The difference between Equations (1)
and (2) is only their coefficients, C(N) and D(N). We can easily see that C(N) ≤ D(N),
C(L) = 0 and D(L) � 0. For more details, we empirically compare these resampling
error RE(N) and standard error S E(N) through experiments on node centrality calcula-
tion of social networks as described below. Note that the standard deviation σ is needed
in both Equations (1) and (2). We are assuming that |S | is too large to compute σ. Oth-
erwise, sampling is not needed. We can use, instead of σ, the standard deviation σ′ that
is derived from a subset S ′ (⊂ S ) such that |S ′| = L′ is small enough to compute σ′

within a reasonable time.

4 Application to node centrality estimation

We investigate our proposed resampling framework on node centrality estimation of a
social network represented by a directed graph G = (V, E), where V and E (⊂ V × V)



Resampling-based Framework for Estimating Node Centrality 5

are the sets of all the nodes and the links in the network, respectively. When there is a
link (u, v) from node u to node v, u is called a parent node of v and v is called a child
node of u. For any node v ∈ V , let A(u) and B(v) respectively denote the set of all child
nodes of u and the set of all parent nodes of v in G, i.e., A(u) = {v ∈ V; (u, v) ∈ E} and
B(v) = {u ∈ V; (u, v) ∈ E}.

4.1 Closeness centrality estimation

The closeness clsG(u) of a node u on a graph G is defined as

clsG(u) =
1

(|V | − 1)

∑
v∈V,v�u

1
splG(u, v)

, (3)

where splG(u, v) stands for the shortest path length from u to v in G. Namely, the close-
ness of a node u becomes high when a large number of nodes are reachable from u
within relatively short path lengths. Here note that we set splG(u, v) = ∞ when node
v is not reachable from node u on G. Thus, in order to naturally cope with this infinite
path length, we employ the inverse of the harmonic average as shown in Equation (3).

The burning algorithm [12] is a standard technique for computing clsG(u) of each
node u ∈ V . More specifically, after initializing a node subset X0 to X0 ← {u}, and path
length d to d ← 0, this algorithm repeatedly calculates a set Xd+1 of newly reachable
nodes from Xd and set d ← d + 1 unless Xd is empty. Here, newly reachable nodes
from Xd−1 is defined by Xd = (

⋃
v∈Xd−1

A(v)) \ (
⋃

c<d Xc). Then the shortest path length
of node v ∈ Xd from u is obtained as splG(u, v) = d. Here recall that splG(u, v) = ∞ if v
is not reachable from u. Since the computational complexity of computing clsG(u) for
each node u ∈ V become O(|E|), it takes a large amount of computation time for a huge
social networks consisting of millions of nodes.

Now, we present a method for computing clsG(u) of each node u ∈ V under our
resampling estimation framework. The method first constructs the reverse network of
G = (V, E) by reversing the direction of each link from (u, v) to (v, u). Namely, the
reverse network is defined by H = (V, F) and F = {(v, u) | (u, v) ∈ E}. Then, by using
the burning algorithm starting from node v over the reverse network, we can calculate
each shortest path length from v to u as splH(v, u). Clearly, splH(v, u) is the shortest
path length from node u to v, i.e., splG(u, v). Namely, for each node u ∈ V , by setting
S u = V \ {u} and fu(v) = splH(v, u), we can calculate partial average value from an
arbitrary subset T ⊂ S u∪{u}. Here note that, due to the nature of the burning algorithm,
we can obtain such partial average value simultaneously for all nodes u ∈ V .

4.2 Betweenness centrality estimation

The betweenness btwG(u) of a node u on a graph G is defined as

btwG(u) =
1

(|V | − 1)(|V | − 2)

∑
v∈V,v�u

⎛⎜⎜⎜⎜⎜⎜⎝ ∑
w∈V,w�u,w�v

nspG(v,w; u)
nspG(v,w)

⎞⎟⎟⎟⎟⎟⎟⎠ , (4)

where nspG(v,w) is the number of the shortest paths from v to w in G and nspG(v,w; u)
is the number of the shortest paths from v to w in G that passes through node u. Namely,
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the betweenness of a node u becomes high when a large number of shortest paths be-
tween two nodes pass through node u. Here note that although clsG(u) and clsH(u) is
not generally equal, since any node pair (v,w) is examined in Equation (4) we can easily
see that btwG(u) = btwH(u).

The Brandes algorithm [2] is a standard technique for computing btwG(u) of each
node u ∈ V . The algorithm utilizes a series of node subsets (X0, · · · , XD) produced
by the burning algorithm described in Section 4.1 starting from node v ∈ V , where D
stands for the maximum burning step. Then, after setting nspG(v,w) ← 1 for w ∈ X1,
the algorithm in turn computes nspG(v,w) ←

∑
x∈B(w)∩Xd−1

nspG(v, x) for w ∈ Xd from
d = 2 to D. Next, we define the following betweenness btwG(u; v) of node u, which
restricts its starting node to v,

btwG(u; v) =
∑

w∈V,w�u,w�v

nspG(v,w; u)
nspG(v,w)

. (5)

Then, after setting btwG(u; v)← 0 for u ∈ XD, the algorithm in turn computes btwG(u; v)
←

∑
x∈A(u)∩Xd+1

(nspG(v, u)/nspG(v, x))(1 + btwG(x; v)) for u ∈ Xd from d = D − 1 to 2.
Finally, by computing and summing btwG(u; v) by changing the starting node v, we
can obtain the betweenness btwG(u) of each node u ∈ V . Again, the computational
complexity of computing btwG(u) for each node u ∈ V become O(|E|).

Now, we present a method based on the Brandes algorithm for computing btwG(u)
of each node u ∈ V under our resampling estimation framework. Namely, for each node
u ∈ V , by setting S u = V \ {u} and fu(v) = btwG(u; v)/(|V | − 2), we can calculate partial
average value from an arbitrary subset T ⊂ S u ∪ {u}. Again note that, due to the nature
of the Brandes algorithm, we can obtain such partial average value simultaneously for
all nodes u ∈ V .

5 Experiments

5.1 Datasets

To experimentally evaluate the methods proposed in the previous sections, we employed
three datasets of real networks, where all networks are represented as directed graphs.
The first one is a reader network extracted from a Japanese blog service site “Ameba”5,
in which each blog can have a list of reader links. A reader link is directional and
a link is constructed from blog u to blog v if blog v registers blog u as her favorite
one. We crawled the lists of 117, 374 blogs of “Ameba” in June 2006, and extracted a
large connected network that has 56, 604 nodes and 734, 737 directed links. We refer
to this network as the Ameblo network. The second one is a network extracted from
“@cosme”6, a Japanese word-of-mouth communication site for cosmetics, in which
each user page can have fan links. A fan link (u, v) means that user v registers user u
as her favorite user. We traced up to ten steps in the fan-link network from a randomly
chosen user in December 2009, and extracted a large connected network consisting

5 http://www.ameba.jp/
6 http://www.cosme.net/
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(a) Ameblo(closeness) (b) Cosme(closeness) (c) Enron(closeness)

(d) Ameblo(betweenness) (e) Cosme(betweenness) (f) Enron(betweenness)

Fig. 1. Results for “centrality value vs. standard deviation”

of 45, 024 nodes and 351, 299 directed links. We refer to this directed network as the
Cosme network. The last one is a network derived from the Enron Email Dataset [9],
in which an email address that appears in the dataset as either a sender or a recipient is
regarded as a node and two email addresses u and v are linked by a directional link (u, v)
if u sent an email to v. We refer to this directed network as the Enron network, which has
19, 603 nodes and 210, 950 links. These three networks are not very huge, i.e., networks
with millions of nodes. We dare chose them to investigate the basic performance from
various angles.

5.2 Statistical Analysis

For each of the three real networks, G = (V, E), we first computed the value of the
closeness centrality clsG(u) and betweenness centrality btwG(u) of each node u ∈ V by
means of the algorithms presented in Sections 4.1 and 4.2, respectively. In addition, we
investigated their standard deviations given by

σcls(u) =

√√
1

|V | − 1

∑
v∈V,v�u

(
1

splG(u, v)
− clsG(u)

)2

for the closeness centrality, and

σbtw(u) =

√√
1

|V | − 1

∑
v∈V,v�u

(
btwG(u; v)
|V | − 2

− btwG(u)
)2
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for the betweenness centrality. Figures 1(a) to 1(c) plot the pair (clsG(u), σcls(u)) for the
Ameblo, Cosme, and Enron networks, and Figs. 1(d) to 1(f) plot the pair (btwG(u), σbtw(u))
for the same three networks. In each figure, the horizontal and vertical axes indicate
the values of corresponding centrality, clsG(u) or btwG(u), and its standard deviation,
σcls(u) or σbtw(u), respectively.

We can observe that there exists positive correlation between the centrality value of
each node and its standard deviation. This tendency can be found more clearly in the
results for the closeness centrality compared to the results for the betweenness centrality
in which nodes are scattered over a larger area. It is noted that, for every network,
higher-ranked nodes in each centrality measure are distinguishable from each other
because of their distinctive values of the centrality, while it looks hard to do the same
for lower-ranked nodes. This implies that there is a possibility that we can detect a
cluster of such high ranked nodes or estimate their ranking with a high confidence level
only using a smaller partial network if we can secure a tight approximation error.

5.3 Results

In this section, we evaluated the fundamental performance of the resampling error
RE(N), i.e., how tightly and accurately it estimates the approximation error, using the
closeness and betweenness centralities on the three networks. To this end, we consid-
ered a problem of estimating μG(u), the true value of a centrality measure for node u in
network G(V, E) using its partial network G′ generated by sampling N nodes from V ,
and empirically investigated whether or not the estimation μG′ (u), the partial average
derived from G′, falls within the range of μG(u) ± 2 × RE(N). Here, μG(u) stands for
either clsG(u) or btwG(u). In addition, we considered the range of μG(u) ± 2 × S E(N)
for comparison.

Figures 2 and 3 show the results for the closeness and betweenness centralities, re-
spectively. In this experiment, we considered the top and second nodes in each network
that respectively have the largest and second largest true values of the corresponding
centrality in Fig. 1. In each figure, the horizontal axis “coverage” means the ratio of the
number of sampled nodes N to the total number of nodes L, i.e., N/L, in each network,
while the vertical axis means the value of the centrality, and how the estimated value
fluctuates as a function of the coverage is depicted. We conducted five independent tri-
als for each of these two nodes in each network, and plotted estimated values μG′ (u) for
a given coverage N/L with green jagged lines. The red horizontal center line in each
figure presents the true value of the centrality μG(u) for node u, while the red broken
and blue chain lines show the ranges of μG(u) ± 2 × RE(N) and μG(u) ± 2 × S E(N),
respectively.

From these results, we can confirm that the boundary determined by RE(N) esti-
mates the approximation error more tightly and converges to 0.0 as the coverage ap-
proaches 1.0, while the boundary by S E(N) is looser and does not converge to 0.0
even if the coverage becomes 1.0. Furthermore, in most cases, the estimated value falls
within the range of μG(u) ± 2 × RE(N) for every network regardless of the centrality
used. From these results, we can say that the resampling error RE(N) provides us with
a better error bound with the confidence level of 95% compared to the standard error
S E(N). Besides, it is found that in Fig. 2(d) the value of the upper-bound of the range
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(a) Ameblo (top) (b) Cosme (top) (c) Enron (top)

(d) Ameblo (second) (e) Cosme (second) (f) Enron (second)

Fig. 2. Fluctuation of the estimated value of the closeness centrality as a function of the coverage
for the top and second nodes that respectively have the largest and second largest true values of
the centrality in the Ameblo, Cosme, and Enron networks.

given by RE(N) is approximately 0.3505 when the coverage is 0.2, and it is smaller than
the corresponding value of the lower-bound of the range given by RE(N) in Fig. 2(a),
which is approximately 0.3628. These observations enable us to decide that in the Ame-
blo network the value of the closeness centrality of node 43702 (the top node) is higher
than the value of node 32968 (the second node) with the confidence level of 95% only
from the results obtained under the coverage of 0.2 because their error bounds derived
from RE(N) for the confidence level of 95% do not overlap each other. The same holds
for the results of the Ameblo network in Fig. 3 although the coverage must be slightly
larger in this case. This may not necessarily generalize to other networks, but it sug-
gests that we could potentially detect top-K nodes and possibly their ranking in a given
centrality measure with such a high confidence level even under a small coverage.

Next, we quantitatively confirmed the accuracy of the proposed resampling error in
Fig. 4, in which it is shown how the difference δ(N) between the true approximation
error and the estimated error fluctuates as a function of coverage in the same fashion as
in Figs. 2 and 3. Here, we computed RMSE (Root Mean Squared Error) by conducting
R = 1, 000 independent trials for each value of N, which is defined as follows:

ERMS E(N) =

√√√
1
R

R∑
r=1

(μG′ ,r(u) − μG(u))2,
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(a) Ameblo (top) (b) Cosme (top) (c) Enron (top)

(d) Ameblo (second) (e) Cosme (second) (f) Enron (second)

Fig. 3. Fluctuation of the estimated value of the betweenness centrality as a function of the cover-
age for the top and second nodes that respectively have the largest and second largest true values
of the centrality in the Ameblo, Cosme, and Enron networks.

where μG′ ,r(u) denotes the estimated value of the centrality of node u for partial graph
G′ in the r-th trial. Then, we used ERMS E(N) as the true approximation error, and RE(N)
and S E(N) as the estimated error.

Namely, in Fig. 4, the difference δ(N) is defined as RE(N) − ERMS E(N) for the
resampling error (the red curves), and S E(N) − ERMS E(N) for the standard error (the
blue broken curves). Here, we only show the results for the top node of each network in
both centralities and omit the results for the second node because the tendency observed
for the second node was quite similar to the one for the top nodes.

From these results, we can observe that the difference fluctuates when the value of
coverage is less than 0.2 in both cases of RE(N) and S E(N), but for a larger coverage
it becomes remarkably stable and almost equal to 0.0 in the case of RE(N), while it
increases as the value of coverage becomes larger in the case of S E(N). This tendency
is common to every network regardless of the centrality used. These results show that
the proposed resampling error can precisely estimate the approximation error from the
true values of a centrality measure if the coverage is larger than a certain threshold, say
0.2, while the standard error tends to overestimate the true approximation error.

Consequently, we can say that the resampling error we proposed is more promising
than the standard error in this kind of estimation problem, and can give a tighter and
more precise estimate of the approximation error with high confidence level than the
standard error does.
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(a) Ameblo(closeness) (b) Cosme(closeness) (c) Enron(closeness)

(d) Ameblo(betweenness) (e) Cosme(betweenness) (f) Enron(betweenness)

Fig. 4. Fluctuation of the difference between the true and the estimated approximation errors as
a function of the coverage for the top node that has the largest true value of the centrality in the
Ameblo, Cosme, and Enron networks.

6 Conclusion

In this paper, we addressed a problem of estimating the value of a centrality measure
for a node in a social network. Centrality measure plays an important role in social
network analysis since it characterizes nodes in a network and its values indicate the
importance of nodes in some respects. Thus, it is crucial to efficiently calculate the
value of a centrality measure for each node, but its computation could be intractable for
those centrality measures that require use of a global network structure for their com-
putation when the network becomes very large. It is inevitable to take a sampling-based
approach to deal with the scalability problem, in which we approximate the true value
of a centrality only from a partial network that can be generated by sampling nodes
from the whole network. What is important is that we ensure the accuracy of the ap-
proximations without knowing the truth. To this end, we proposed a resampling-based
framework to estimate the approximation error of the estimated values of a centrality
measure for each node. We have conducted extensive experiments on three real world
networks varying the coverage ratio of nodes to be sampled, and evaluated the pro-
posed framework by comparing it with the standard error known in statistics using two
typical centrality measures, the closeness and betweenness centralities. We empirically
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confirmed that the proposed framework enables us to estimate the approximation error
more tightly and more precisely with the confidence level of 95% even for a partial
network whose coverage is small, say 0.2, than using the standard error estimate. Fur-
thermore, the experimental results suggest that we could potentially estimate top-K
nodes for a small K, say 10, and possibly their ranking in a given centrality measure
with high confidence level only from a small partial network. It is noted that the frame-
work we proposed is not specific to computation of centrality measures. Indeed, it is
very generic and applicable to any other estimation problems that require aggregation
of many (but a finite number of) primitive computations. We believe that the conclusion
obtained in this paper can generalize but we have yet to test out the proposed framework
in a broader setting and also in different domains, too.
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