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Abstract. We propose a method of detecting the period in which a burst of in-
formation diffusion took place from an observed diffusion sequence data over a
social network and report the results obtained by applying it to the real Twitter
data. We assume a generic information diffusion model in which time delay as-
sociated with the diffusion follows the exponential distribution and the burst is
directly reflected to the changes in the time delay parameter of the distribution
(inverse of the average time delay). The shape of the parameter change is ap-
proximated by a series of step functions and the problem of detecting the change
points and finding the values of the parameter is formulated as an optimization
problem of maximizing the likelihood of generating the observed diffusion se-
quence. Time complexity of the search is almost proportional to the number of
observed data points (possible change points) and very efficient. We apply the
method to the real Twitter data of the 2011 To-hoku earthquake and tsunami, and
show that the proposed method is by far efficient than a naive method that adopts
exhaustive search, and more accurate than a simple greedy method. Two inter-
esting discoveries are that a burst period between two change points detected by
the proposed method tends to contain massive homogeneous tweets on a specific
topic even if the observed diffusion sequence consists of heterogeneous tweets on
various topics, and that assuming the information diffusion path is a line shape
tree can give a good approximation of the maximum likelihood estimator when
the actual diffusion path is not known.

1 Introduction

Recent technological innovation and popularization of high performance mobile/smart
phones has changed our communication style drastically and the use of various social
media such as Twitter and Facebook has been affecting our daily lives substantially. In
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these social media, information propagates through the social network formed based on
friendship relations. Especially, Twitter, micro-blog in which the number of characters
is limited to 140, is now very popular among the young generation due to its handiness
and easiness of usage, and it is fresh to our memory that Twitter played a very important
role as the information infrastructure during the recent natural disaster, both domestic
and abroad, including the 2011 To-hoku earthquake and tsunami in Japan.

In these social networks, there have been proposed several measures, called central-
ity, that characterize nodes in the network based on the structure of the network [11,
1, 3]. While such centrality measures can be used to identify those nodes that play an
important role in diffusing information over the network, it has also been shown that
measures based solely on the network structure are not good enough to a such problem
of influence maximization [4, 5] in which the task is to identify a limited number of
nodes which together maximize the information spread and that explicit use of infor-
mation diffusion mechanism is essential [5]. In general, the mechanism is represented
by a probabilistic diffusion model. Most representative and basic ones are the Indepen-
dent Cascade (IC) model [2, 4] and the Linear Threshold (LT) model [12, 13] including
their extended versions that explicitly handle asynchronous time delay, Asynchronous
time delay Independent Cascade (AsIC) model [8] and Asynchronous time delay Lin-
ear Threshold (AsLT) model [9]. In fact, the nodes and links that are identified to be
influential using these models are substantially different from those identified by the
existing centrality measures.

In reality, we observe that the information on a certain topic propagates explosively
for a very short period of time. Because such information affects our behaviour strongly,
it is important to understand the observed event in a timely manner. This brings in an
important and interesting problem which is to accurately and efficiently detect the burst
from the observed information diffusion data and to identify what caused this burst and
how long it persisted. Any of the above mentioned probabilistic models cannot handle
this kind of problem because they assume that information diffuses in a stationary en-
vironment, i.e. model parameters are stationary. Zhu and Shasha [14] approched this
problem without relying on a diffusion model. They detected a burst period for a tar-
get event by counting the number of its occurences in a given time window and cheking
whether it exceeds a predetermined threshold or not. Kleinberg [6] challenged this prob-
lem using a hidden Markov model in which bursts appear naturally as state transitions,
and successfully identified the hierarchical structure of e-mail messages. Sun et al. [10]
extended Kleinberg’s method so as to detect correlated burst patterns from multiple data
streams that co-evolve over time.

We handle this problem by assuming that parameters in the diffusion model changed
due to unknown external environmental factors and devise an efficient algorithm that
accurately detects the changes in the parameter values from a single observed diffusion
data sequence. In particular we note that the parameter related to the time delay is
most crucial in the burst detection and focus on detecting the changes in the time delay
parameter that defines the delay distribution. We modeled the time delay in AsIC and
AsLT models by the exponential distribution, thus we do the same in this paper. This
corresponds to associating the burst with the information diffusion with a shorter time
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delay. By focusing only on this time delay, we can devise a generic algorithm that does
not depend on a specific information diffusion model, e.g. be it either AsIC or AsLT.

More precisely, we assume that time delay parameter changes are approximated by
a series of step functions and propose an optimization algorithm that maximizes the
likelihood ratio that is the ratio of the likelihood of observing the data assuming the
time delay parameter changes (change points and parameter values between the suc-
cessive change points) to the likelihood of observing the data assuming that there is no
changes in the time delay parameter. The algorithm is based on iterative search based on
recursive splitting with delayed backtracking, and requires no predetermined threshold.
The time complexity is almost proportional to the number of observed data points (can-
didates of possible change points). We apply the method to the Twitter data observed
during the 2011 To-hoku earthquake and tsunami and confirm that the proposed method
can efficiently and accurately detect the change points. We further analyze the content
of the tweets and report the discovery that even use of the diffusion sequence data of the
same user ID (not necessarily the data on a specific topic) allows us to identify that a
specific topic is talked intensively around the beginning of the period where the burst is
detected, and the assumption we made that the information diffusion path is a line shape
tree gives a good approximation of the maximum likelihood estimator in this problem
setting. Finally, we discuss that although the detected change points do not correspond
exactly to nodes in a social network that caused the burst period, the detected change
points are useful to find such nodes because we can limit nodes to be considered by
focusing on those around them.

The paper is organized as follows. Section 2 briefly describes the framework of in-
formation diffusion model on which our problem setting is based. Section 3 elucidates
the problem setting, and Section 4 describes the change point detection method includ-
ing two other methods that are used for comparison. Section 5 reports experimental
results using real Twitter data. Section 6 summarizes what has been achieved in this
work and addresses the future work.

2 Information Diffusion Model Framework

We consider information diffusion over a social network whose structure is defined as
a directed graph G = (V, E), where V and E (⊂ V × V) represent a set of all nodes
and a set of all links, respectively. Suppose that we observe a sequence of information
diffusion C = {(v0, t0), (v1, t1), · · · , (vN , tN)} that arose from the information released
at the source node v0 at time t0. Here, vn is a node where the information has been
propagated and tn is its time. We assume that the time points are ordered such that
tn−1 < tn for any n ∈ {1, · · ·N}. We further assume, as a standard setting, that the actual
information diffusion paths of a sequence C correspond to a tree that is embedded in the
directed graph G representing the social network[7], i.e., the parent node which passed
the information to a node vn is uniquely identified to be vp(n). Here, p(n) is a function
that returns the node identification number of the parent of the node vn in the range of
{0, · · · , n − 1}.

The information diffusion model we consider here is any model that explicitly in-
corporates the concept of asynchronous time delay such as AsIC model [8] and AsLT
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model [9] in contrast to the traditional IC model [2, 4] and LT model [12, 13] that do not
consider the time delay. Said differently, it is a model that allows any real value for the
time tn at which the information has been propagated to a node vn and assumes a certain
probability distribution for the time delay tn− tp(n). In this paper, we use the exponential
distribution for the time delay, but any other distribution such as power law is feasible
exactly in the same way.

3 Problem Settings

In this section we formally define the change point detection problem. As mentioned
in Section 1, we assume that some unknown change took place in the course of infor-
mation diffusion and what we observe is a sequence of information diffusion of some
topic in which the change is encapsulated. Thus, our goal is to detect each change point
and how long the change persisted from there. Note that we basically pay attention to a
diffusion sequence of a certain topic. From our previous result that people’s behaviors
are quite similar when talking the same topic [8, 9], we can assume that the time de-
lay parameter ru,v which is in principle defined for each link (u, v) ∈ E takes a uniform
value regardless of the link it passes through. In other word, we set ru,v = r (∀(u, v) ∈ E)
and thus, the time delay of information diffusion is represented by the following simple
exponential distribution p(tn − tp(n); r) = r exp(−r(tn − tp(n))).

With this preparation, we mathematically define the change point detection prob-
lem. Let’s assume that we observe a set of time points of information diffusion sequence
D = {t0, t1, · · · , tN}. Let the time of the j-th change point be T j (t0 < T j < tN). The de-
lay parameter that the distribution follows switches from r j to r j+1 at the j-th change
point T j. Namely, we are assuming a series of step functions as a shape of parame-
ter changes. Let the set comprising J change points be SJ = {T1, · · · , TJ}, and we set
T0 = t0 and TJ+1 = tN for the sake of convenience (T j−1 < T j). Let the division ofD by
SJ be D j = {tn; T j−1 < tn ≤ T j}, i.e., D = {t0} ∪ D1 ∪ · · · ∪ DJ+1, and |D j| represent
the number of observed points in (T j−1, T j]. Here, we request that |D j| � 0 for any
j ∈ {1, · · · , J + 1} and there exists at least one tn and tn ∈ D j is satisfied.

The log-likelihood for the D, given a set of change points SJ , is calculated, by
defining the parameter vector rJ+1 = (r1, · · · , rJ+1), as follows.

L(D; rJ+1,SJ) = log
J+1∏
j=1

∏
tn∈D j

r j exp(−r j(tn − tp(n)))

=

J+1∑
j=1

|D j| log r j −
J+1∑
j=1

r j

∑
tn∈D j

(tn − tp(n)). (1)

Thus, the maximum likelihood estimate of the parameter of Equation (1) is given by

r̂−1
j =

1
|D j|

∑
tn∈D j

(tn − tp(n)), j = 1, · · · , J + 1. (2)
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Further, substituting Equation (2) to Equation (1) leads to

L(D; r̂J+1,SJ) = −N −
J+1∑
j=1

|D j| log

⎛⎜⎜⎜⎜⎜⎜⎜⎝ 1
|D j|

∑
tn∈D j

(tn − tp(n))

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (3)

Therefore, the change point detection problem is reduced to the problem of finding the
change point set SJ that maximizes Equation (3). However, Equation (3) alone does
not allow us to directly evaluate the effect of introducing S j. We, thus, reformulate the
problem as the maximization problem of log-likelihood ratio. If we do not assume any
change point, i.e., S0 = ∅, Equation (3) is reduced to

L(D; r̂1,S0) = −N − N log

⎛⎜⎜⎜⎜⎜⎝ 1
N

N∑
n=1

(tn − tp(n))

⎞⎟⎟⎟⎟⎟⎠ . (4)

Thus, the log-likelihood ratio of the case where we assume J change points and the case
where we assume no change points is given by

LR(SJ) = L(D; r̂J+1,SJ) − L(D; r̂1,S0)

= N log

⎛⎜⎜⎜⎜⎜⎝ 1
N

N∑
n=1

(tn − tp(n))

⎞⎟⎟⎟⎟⎟⎠ −
J+1∑
j=1

|D j| log

⎛⎜⎜⎜⎜⎜⎜⎜⎝ 1
|D j|

∑
tn∈D j

(tn − tp(n))

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (5)

We consider the problem of finding the set of change points SJ that maximizes LR(SJ)
defined by Equation (5).

We note that, in general, it is conceivable that we are not able to acquire the complete
tree structure of the diffusion sequence data. Thus, here, we consider two extreme cases,
one in which the information spreads fastest (star shape tree) and the other in which the
information spread slowest (line shape tree). The function which defines the parent node
becomes p(n) = 0 for the former and p(n) = n − 1 for the latter. In case where there
is no change point, the maximum likelihood estimator is r−1 = (t1 + · · · + tN)/N − t0
for the former and r−1 = (tN − t0)/N for the latter. While we conjecture that in reality
the optimal value lies in between these two extreme values, under the assumption that
the actual tree structure of the diffusion data is unknown, we consider to approximate
the optimal value by using either one of them. Here, note that in the former case, the
maximum likelihood estimator represents the average diffusion delay time between the
source node v0 and each node vi which is assumed to be connected to v0 by a direct
link, while in the latter case, it represents the average time interval between successive
observation time points. Considering that the burst period we want to detect is much
shorter than the other non burst periods, the latter case (line shape tree) seems to be
more suitable for our aim. Therefore, LR(SJ) defined by Equation (5) becomes

LR(SJ) = N log
( tn − t0

N

)
−

J+1∑
j=1

|D j| log
(
T j − T j−1

|D j|
)
. (6)

We compared the bursts detected by using the two extreme values, and found that the
use of line shape tree gave a better results and decided to use Equation (6) in our exper-
iments.
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4 Change Points Detection Method

We consider the problem of detecting change points as a problem of finding a subset
SJ ⊂ D when the set of time points of information diffusion result D = {t0, t1, · · · , tN }
and the number of change points J are given. In other words, we search for J time
points that are most likely to be the change points from a sequence of N observation
points. In what follows, we explain each of the three methods, naive method (an ex-
haustive search), simple method (a greedy search), and the proposed method that is a
combination of a greedy search and a local search.

4.1 Naive Method

The simplest method is to exhaustively search for the best set of J change points SJ .
Clearly the time complexity of this naive approach is O(NJ). Thus, the number of
change points detectable would be limited to J = 2 in order for the solution to be
obtained in a reasonable amount of computation time when N is large enough.

4.2 Simple Method

We describe the simple method which is applicable when the number of change points
J is large. This is a progressive binary splitting without backtracking. We fix the already
selected set of ( j − 1) change points S j−1 and search for the optimal j-th change point
T j and add it to S j−1. We repeat this procedure from j = 1 to J.

The algorithm is given below.

Step1. Initialize j = 1, S0 = ∅.
Step2. Search for T j = arg maxtn∈D{LR(S j−1 ∪ {tn})}.
Step3. Update S j = S j−1 ∪ {T j}.
Step4. If j = J, output SJ and stop.
Step5. j = j + 1, and return to Step2.

Here note that in Step3 elements of the change point set S j are reindexed to satisfy
Ti−1 < Ti for i = 2, · · · , j. Clearly, the time complexity of the simple method is O(NJ)
which is fast. Thus, it is possible to obtain the result within a allowable computation
time for a large N. However, since this is a greedy algorithm, it can be trapped easily to
a poor local optimal.

4.3 Proposed Method

We propose a method which is computationally almost equivalent to the simple method
but gives a solution of much better quality. We start with the solution obtained by the
simple method SJ , pick up a change point T j from the already selected points, fix the
rest SJ \{T j} and search for the better value T ′j of T j, where ·\· represents set difference.
We repeat this from j = 1 to J. If no replacement is possible for all j ( j = 1, · · · J), i.e.
T ′j = T j for all j, no better solution is expected and the iteration stops.

The algorithm is given below.
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Step1. Find SJ by the simple method and initialize j = 1, k = 0.
Step2. Search for T ′j = arg maxtn∈D{LR(SJ \ {T j} ∪ {tn})}.
Step3. If T ′j = T j, set k = k + 1, otherwise set k = 0, and update SJ = SJ \ {T j} ∪ {T ′j}.
Step4. If k = J, output SJ and stop.
Step5. If j = J, set j = 1, otherwise set j = j + 1, and return to Step2.

It is evident that the proposed method requires computation time several times larger
than that of the simple method, but it is much less than that of the naive method. How
much the computation time increases compared to the simple method and how much the
solution quality increases await for the experimental evaluation, which we will report
in Section 5.

5 Experimental Evaluation

We experimentally evaluate the computation time and the accuracy of the change point
detection using the real world Twitter information diffusion sequence data based on
the methods we described in the previous section. We, then, analyze in depth the top
6 diffusion sequences in terms of the log-likelihood ratio based on the detected change
points and burst periods, show that the line shape tree approximation is much better than
the star shape tree approximation, and investigate whether or not we are able to identify
which node in a social network caused the burst from the detected change points.

5.1 Experimental Settings

The information diffusion data we used for evaluation are extracted from 201,297,161
tweets of 1,088,040 Twitter users who tweeted at least 200 times during the three weeks
from March 5 to 24, 2011 that includes March 11, the day of 2011 To-hoku earthquake
and tsunami. It is conceivable to use a retweet sequence in which a user sends out
other user’s tweet without any modification. But there exist multiple styles of retweeting
(official retweet and unofficial retweet), and it is very difficult to accurately extract a
sequence of tweets in an automatic manner considering all of these different styles.
Therefore, in our experiments, noting that each retweet includes the ID of the user who
sent out the original tweet in the form of “@ID”, we extracted tweets that include @ID
format of each user ID and constructed a sequence data for each user. More precisely,
we used information diffusion sequences of 798 users for which the length of sequences
are more than 5,000 (number of tweets). Note that each diffusion sequence includes
retweet sequences on multiple topics. Since we do not know the ground truth of the
change points for each sequence if there are changes in it, we used the naive method
which exhaustively search for all the possible combinations of the change points as
giving the ground truth. We had to limit the number of change points to 2 (J = 2) in
order for the naive method to return the solution in a reasonable amount of computation
time. The experimental results explained in the next subsection is obtained by using a
machine with Intel(R) Xeon(R) CPU W5590 @3.33GHz and 32GB memory.
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Fig. 1: Comparison of computation time among the three (naive, simple, and proposed) methods.

5.2 Main Results

Performance Evaluation Figure 1 shows the computation time that each method
needed to produce the results. The horizontal axis is the length of the information dif-
fusion data sequences, and the vertical axis is the computation time in second. The
results clearly indicate that the naive method requires the largest computation time.
The computation time is quadratic to the sequence length as predicted. In contrast, the
computation time for the simple and the proposed methods is much shorter and it in-
creases almost linearly to the increase of the sequence length for both. The proposed
method requires more computation time due to the extra iteration needed for delayed
backtracking. In fact, the number of extra iteration is 2.2 on the average and 7 at most.

Figure 2 shows the accuracy of the detected change points. We regarded that the
solution obtained by the naive method is the ground truth. The horizontal axis is the
sequence ranking of the log-likelihood ratio for the naive method (ranked from the top
to the last), and the vertical axis is the logarithm of the likelihood ratio of the solution of
each method. The results indicate that the simple method has lower likelihood ratio for
all the range, meaning that it detects change points which are different from the optimal
ones, but the proposed method can detect the correct optimal change points except for
the low ranked sequences for which the likelihood ratio is small as is evident from
the result in that the red curve representing the proposed method is indistinguishable
from the blue curve representing the naive method. The reason why the accuracy of the
proposed method for sequences with low likelihood decreases may be because the burst
period is not clear for these sequences. In summary, out of the 798 sequences in total,
the proposed method gave the correct results for 713 sequences (98.4%), whereas the
simple method gave the correct results for only 171 sequences (21.4%). The average
ratio of the likelihood ratio of the proposed method to that of the naive method (optimal
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Fig. 2: Comparison of accuracy among the three (naive, simple, and proposed) methods.

solution) is 0.976, whereas the corresponding ratio for the simple method is 0.881,
revealing that the proposed method gives much closer ratio to the optimal likelihood
ratio. These results confirm that the proposed method can increase the change point
detection accuracy to a great extent compared to the simple method with only a small
penalty for the increased computation time.

In Depth Analyses on Detected Change Points and Burst Periods Next, we had
a closer look at the top 6 diffusion sequences in terms of the log-likelihood ratios.
Table 1 shows the total number of tweets included in the sequence, the starting and the
ending time of the burst period, and the main topics that appeared near the beginning
of the burst. Figure 3 shows how the cumulative number of tweets increases as time
goes for each diffusion sequence. The horizontal axis is time and the vertical axis is
the cumulative number of tweets. The two red vertical lines in the graph are the change
(starting and ending) points detected by the proposed method, and the interval between
them is the burst period.

As is understood from Table 1, explosive retweeting of the information of urgent
need about the earthquake for a short period of time triggered the start of the burst
(with the exception of the 4th ranked sequence). The 4th ranked sequence is for the
account called “ordinary timeline” which was set up for allowing to tweet everyday
topics by adding “@itsumonoTL” at the beginning of the tweet when people are in
voluntary restraint mood after the disastrous earthquake. We can say, with the exception

1 NHK is the government operated broadcaster.
2 Great Hanshin-Awaji Earthquake occurred on January 17, 1995 in Kobe area and 6,434 people

lost their lives.



10 Kazumi Saito, Kouzou Ohara, Masahiro Kimura, and Hiroshi Motoda

Table 1: Major topics appearing at the beginning of the burst periods of the top 6 diffusion results
in terms of log-likelihood ratio

Detected burst periodRanking Length
Start End

Major topics at the beginning of the burst period

1 450,739 2011/3/11 2011/3/13
14:48:13 23:13:04

Retweets of the earthquake bulletin posted by
the PR department of Japan Broadcasting Cor-
poration, NHK (@NHK PR).1

2 27,372 2011/3/11 2011/3/11
15:13:57 16:19:26

Retweets of the article on to-do list at the time of
earthquake onset posted by a victim of the Great
Hanshin-Awaji Earthquake. 2

3 167,528 2011/3/12 2011/3/14
00:18:19 22:08:20

Retweets of the article on measures against cold
at an evacuation site posted by the news depart-
ment of NHK (@nhk seikatsu).

4 423,594 2011/3/13 2011/3/19
18:38:50 02:20:58

Ordinary tweets irrelevant to the earthquake
posted to a special account “@itsumonoTL”.

5 63,485 2011/03/11 2011/03/12
15:05:08 01:52:13

Retweets of the earthquake bulletin posted by
the Fire and Disaster Management Agency
(@FDMA JAPAN).

6 18,299 2011/3/11 2011/3/11
15:45:17 17:19:02

Retweets of a call for help posted by a user who
seemed to be buried under a server rack (later
found to be a false rumor).

of such a special case of “ordinary timeline”, that we are able to detect efficiently a time
period where tweets on a specific topic (of urgent need in this example) are intensively
retweeted by looking at the change points detected by the proposed method even from
the diffusion sequence that contains multiple topics.

We note that the cumulative number of the tweets for the 2nd and 6th ranked diffu-
sion sequences is smaller than the other 4 sequences from Table 1, and the burst period
of these 2 sequences are much shorter than others and there is little changes in the num-
ber of tweets before and after the burst from Figure 3. This difference is considered to
come from whether the account is private or public. Among these 4 sequences, except
for the exceptional 4th one, the remaining 3 are all from the public organization ac-
counts (1st and 3rd are NHK and 5th is FDMA). Information posted by these accounts
tends to disseminate widely everyday. Thus, considering this situation, it is natural to
observe that the cumulative number of tweets shows a relatively smooth increase as seen
in Figure 3 by adding multiple bursts of short periods about the earthquake-related in-
formation of urgent need as shown in Table 1. Figure 3(e) has only one smooth change
during the burst period, which indicates that the earthquake bulletin in Table 1 is the
only source of the burst. On the other hand, we see multiple smooth changes with dis-
continuity of the gradient at each boundary during the burst period in Figures 3(a) and
(c). This implies that there can be other sources of the burst than shown in Table 1.
Indeed, it is possible to identify these change points by increasing the value of J (an
example explained later). On the other hand, Figures 3(b) and (f) shows that the infor-
mation posted by an individual that is rarely retweeted in ordinary situations can be
propagated explosively if it is of urgent need, e.g. timely information about earthquake.
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Fig. 3: Temporal change of cumulative number of tweets in the top 6 diffusion results in terms of
the highest log-likelihood ratio

Here, we report the result when we increase the number of change points. Figure 4
shows the result for the 3rd ranked sequence in Figure 3(c) when J is set to 9. There
are 9 vertical lines corresponding to each change point, but the first two change points
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Fig. 4: Finer burst detection for the 3rd ranked sequence in Figure 4(c) when J is set to 9

are too close and indistinguishable. Note that horizontal axis is enlarged and the range
shown is different from that in Figure 3(c). We see that the detected change points are
located at the boundary points where the gradients of the curves change discontinuously.
Those 4 broken lines in green are considered to indicate the end of the burst because
the gradient change across each boundary is rather smaller. In fact, we investigated the
most recent 10 tweets for these 4 change points and confirmed that no more than half
of the retweets is talking about the same topic except the one second from the last in
which 7 of them are on the same topic. The remaining 5 change points (red lines) all
contain at least 7 retweets (10, 8, 7, 7, 9) that are on the same topic. From this fact, we
can reconfirm that there appear many tweets on the same topic during the burst period.

Line Shape Tree vs. Star Shape Tree Note that all of these results were obtained by
assuming that the information diffuses along the line shape tree as discussed in Sec-
tion 3. Here, we show that use of line shape tree gives better results than use of star
shaped tree. To this end, we compared the bursts detected for the 2nd and 6th ranked
information diffusion sequences which include only one burst.

The results are illustrated in Figure 5, where red solid and green broken vertical
lines denote the change points detected by the naive method with the line shape and star
shape settings, respectively. Only the time range of interest is extracted and shown in
the horizontal axis. From these figures, we observe that use of line shape tree detects
the change points more precisely as expected, which means that line shape tree gives a
better approximation of the maximum likelihood estimator than star shape tree even if
the actual tree shape of the diffusion path is not known to us.
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Fig. 5: Comparison of bursts detected by use of line shape tree and star shape tree for the 2nd and
6th ranked information diffusion sequences in Table 1.

Change Points in a Time Line and Nodes in a Network Remember that each ob-
served time point corresponds to a node in a social network. In this sense, it can be
said that the proposed method detects not only the change points in a time line, but also
the change points in a network. However, unfortunately, those nodes do not necessarily
correspond to those which actually caused the burst period. For example, in the second
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ranked sequence in Table 1, we observed at least 1 retweet of the article described in
Table 1 per second after the start of the burst, 2011/3/11 15:13:57, while we observed
at most 20 per minute before the burst started. This shows the accuracy of the detected
change point, but it also means that the node that actually influenced nodes within the
burst period could exist in the period before the change point. Indeed, we observed the
first retweet at 2011/3/11 15:07:05 and 69 retweets thereafter before the change point. It
is natural to think that some of them played an important role on the explosive diffusion
of the article. We need to know the actual information diffusion path to find such im-
portant nodes, but detecting change points in a time line would significantly reduce the
effort needed to do so because the search can be focused on the limited sub-sequences
around the change points. Devising a method to find such important nodes is one of our
future work.

6 Conclusion

We addressed the problem of detecting the period in which information diffusion burst
occurs from a single observed diffusion sequence under the assumption that the delay
of the information propagation over a social network follows the exponential distribu-
tion. To be more precise, we formulated the problem of detecting the change points and
finding the values of the time delay parameter in the exponential distribution as an op-
timization problem of maximizing the likelihood of generating the observed diffusion
sequence. We devised an efficient iterative search algorithm for the change point detec-
tion whose time complexity is almost linear to the number of data points. We tested the
algorithm against the real Twitter data of the 2011 To-hoku earthquake and tsunami,
and experimentally confirmed that the algorithm is much more efficient than the ex-
haustive naive search and is much more accurate than the simple greedy search. By
analyzing the real information diffusion data, we revealed that even if the data contains
tweets talking about plural topics, the detected burst period tends to contain tweets on
a specific topic intensively. In addition, we experimentally confirmed that assuming the
information diffusion path to be the line shape tree results in much better approximation
of the maximum likelihood estimator than assuming it to be the star shape tree. This is a
good heuristic to accurately estimate the change points when the acutal diffusion path is
not known to us. These results indicate that it is possible to detect and identify both the
burst period and the topic diffused without extracting the tweet sequence for each topic
and identifying the diffusion paths for each sequence, and the proposed method can be
a useful tool to analyze a huge amount of information diffusion data. Our immediate
future work is to compare the proposed method with existing burst detection methods
that are designed for data stream. We also plan to devise a method of finding nodes that
caused the burst based on the change points detected.
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