
Computation-time efficient and robust attribute tree mining with
DRYADEPARENT

Alexandre Termier1, Marie-Christine Rousset2, Michèle Sebag2, Kouzou Ohara1, Takashi Washio1, and
Hiroshi Motoda1

1 I.S.I.R., Osaka University
8-1, Mihogaoka, Ibarakishi, Osaka, 567-0047, Japan termier@ar.sanken.osaka-u.ac.jp

2 CNRS & Université Paris-Sud (LRI) & INRIA (Futurs)
Building 490, Université Paris-Sud, 91405 Orsay Cedex, France

Abstract. In this paper, we present a new tree mining algorithm, DRYADEPARENT, based on the hooking prin-
ciple first introduced in DRYADE [1]. In the experiments, we demonstrate that the branching factor and depth of
the frequent patterns to find are key factor of complexity for tree mining algorithms, even if often overlooked in
previous work. We show that DRYADEPARENT outperforms the current fastest algorithm, CMTreeMiner, by orders
of magnitude on datasets where the frequent patterns have a high branching factor.

1 Introduction

In the last ten years, the frequent pattern discovery task of data mining has expanded from simple itemsets
to more complex structures: for example sequences, episodes, trees or graphs. In this paper we focus on tree
mining, that is finding frequent tree-shaped patterns in a database of tree-shaped data. Tree mining can lead
to many practical applications in the areas of computer networks, bioinformatics, XML documents databases
mining, and hence have received a lot of attention from the research community in recent years. Most of
the well-known algorithms use the same generate-and-test principle that made the success of frequent item
set algorithms. The main adaptation to the tree case is the design of efficient candidate tree enumeration
algorithms in order to avoid generating redundant candidates, and to enable efficient pruning. However, the
search space of tree candidates is huge, particularly when the frequent trees to find have both high depth
and high branching factor. Especially the high branching factor case has received very little attention by
the tree mining community. However, performances of existing algorithms are dramatically affected by the
branching factor of the patterns to find, as shown in our experiments.

Starting from this observation, we have developped the DRYADEPARENT algorithm. This algorithm is
an adaptation of our earlier algorithm DRYADE [1]. DRYADE is based on a more general tree inclusion
definition appropriate for mining highly heterogeneous collections of tree data. DRYADEPARENT follows
the same principles of DRYADE, but uses a standard inclusion definition [3, 2] to make possible perfor-
mance comparison with other existing systems based on different principles. We will show in this paper that
DRYADEPARENT outperforms the up-to-date CMTreeMiner algorithm [2], and conduct a thorough study
on the influence of structural characteristics of the patterns to find, like depth and branching factor, on the
computing time performance of both algorithms.

The outline of the paper is as follows. Section 2 introduces the notations and definitions used throughout
the paper. Section 3 presents and discusses the state of the art in tree mining. Section 4 gives an overview
of the DRYADEPARENT algorithm. Section 5 reports detailed comparative experiments, both on real and
artificial datasets. In section 6, we conclude and give some directions for future work.

2 Formal Background

Let L = {l1, ..., ln} be a set of labels. A labelled tree T = (N,A, root(T), ϕ) is an acyclic connected graph,
where N is the set of nodes, A ⊂ N × N is a binary relation over N defining the set of edges, root(T) is a

distinguished node called the root, and ϕ is a labelling function ϕ : N 7→ L assigning a label to each node
of the tree. We assume without loss of generality that edges are unlabelled: as each edge connects a node to
its parent, the edge label can be considered as part of the child node label.

A tree is an attribute tree if ϕ is such that two sibling nodes cannot have the same label (more details on
attribute trees can be found in [3]).

Let u ∈ N and v ∈ N be two nodes of a tree. If there exists an edge (u, v) ∈ A, then v is a child of u,
and u is the parent of v. If there exists a path from u to v in the tree, then v is a descendant of u, and u is an
ancestor of v.

Tree inclusion

Let AT = (N1, A1, root(AT), ϕ1) be an attribute tree and T = (N2, A2, root(T), ϕ2) be a tree. AT is an
induced subtree of T if there exists an injective mapping µ : N1 7→ N2 such that:

1. µ preserves the labels: ∀u ∈ N1 ϕ1(u) = ϕ2(µ(u))
2. µ preserves the parent relationship: ∀u, v ∈ N1 (u, v) ∈ A1 ⇔ (µ(u), µ(v)) ∈ A2

This relation will be written AT v T , and we will sometimes say that AT is included into T .

A11

C19

F20

I21

A22

B23 C25

H26G24

A

B C

P3

Locc = {1, 11, 22, 27}

A

B C

P2

G H

Locc = {22, 27}

A

B C

D E F

G H I

P1

A1

A12 B13

D14

I15

E16

G17 H18

K10 G24

A27

B28

K30

C31

H32

D33

T1 T2 T3 T4
T5

Patterns:

Datatree

Locc = {1, 11}

C

F

I

P4

J34

C35

F36

I37

Locc = {7, 19, 35}

B2

D3 E4 F8

I9H5 G6

C7

Fig. 1: Datatree example (node identifiers are subscripts of node labels), and patterns for ε = 2

If we have AT v T and T 6v AT then we say that AT is strictly included into T and we denote it by
AT @ T .

If AT v T , the set of mappings supporting the inclusion is denoted EM(AT, T). The set of occurrences
of AT in T , denoted Locc(AT, T), is the set of nodes of T onto which the root of AT is mapped by a
mapping of EM(AT, T).

We also introduce the notion of image of an attribute tree AT in a tree T . The set of images of AT into T

is the set of (attribute) trees obtained by mapping AT onto T by applying the mappings from EM(AT, T).

Frequent attribute trees

We can now define the problem of finding frequent attribute trees in a tree database. Let TD = {T1, ..., Tm}
be a tree database. The datatree DTD is the tree whose root is an unlabelled node, having the trees {T1, ..., Tm}
as its direct subtrees.

The support of an attribute tree AT in the datatree can be defined in two ways:

– supportd(AT) =
∑m

i=1
σd(AT, Ti) where σd(AT, Ti) = 1 if AT v Ti, 0 otherwise. (document sup-

port)
– supporto(AT) =

∑m
i=1

σo(AT, Ti) where σo(AT, Ti) = |Locc(AT, Ti)| (occurrences support)

In this paper, we are interested in finding attribute trees frequent by document support. The term support
will now be used for document support. But for sake of completeness, our algorithm needs to keep track of
all frequent occurrences, and will use the occurrences support for processing.

Let ε be an absolute frequency threshold. AT is a frequent attribute tree of DTD if supportd(AT) ≥ ε.
The set of all frequent attribute trees is denoted by F(DTD, ε), and by abuse of notation we will only denote
it as F in the rest of this paper.

In the example of Fig. 1, with a support threshold of ε = 2, the attribute trees P1, P2, P3, P4 are all
frequent by document support in the datatree.

Closed trees

A frequent attribute tree is closed if it is maximal, according to inclusion, for its set of occurrences.

Definition 1. A frequent attribute tree AT ∈ F is closed either if it is not included into any other fre-
quent attribute trees, or if it is included into a frequent attribute tree AT ′ ∈ F , there exists a mapping in
EM(AT,DTD) which is not in the mappings of EM(AT ′, DTD).

We will denote the set of all closed frequent attribute trees as C, with the same abuse of notation as
before.

In our example P1 and P2 are closed because they are not included into any other frequent attribute tree,
P3 is closed because even if it is included into P1 and P2, neither the occurrences of P1 nor the occurrences
of P2 can cover all the occurrences of P3, and in the same way P4 is also closed as even if it is included into
P1, its mapping starting at occurrence 35 is not contained in any mapping of P1.

Tree mining problem

The tree mining problem we are interested in is to find all the closed frequent attribute trees for a given
datatree and support threshold. The merit of this problem is that the number of closed frequent attribute
trees is smaller than the number of all frequent attribute trees, but the amount of information is the same in
both cases: all the frequent attributes trees can be easily deduced from the closed frequent attribute trees.
Thus finding such closed trees enables faster mining without loss of information.

From now on, we will refer to the closed frequent attribute trees as patterns.

3 Related work

Most tree mining algorithms deal with finding all the frequent subtrees from a collection of trees. One pio-
neering work is Asai & al.’s Freqt algorithm [4], discovering all frequent induced subtrees with preservation
of the order of the siblings. The other pioneering work is Zaki’s TreeMiner [5], using a more relaxed inclu-
sion definition where the order still has to be preserved, but instead of the parent relationship the mapping
has only to preserve the ancestor relationship. Both these algorithms extend the Apriori algorithm [9] prin-
ciple to trees: they use efficient candidate tree generation procedures, that cover all the search space without
generating twice the same tree, and for each candidate test its frequency against the data. The enumeration
technique builds a new candidate by adding one edge to a previously found frequent tree, along its rightmost
branch.

The second generation of tree mining algorithms has been designed to get rid of the order preservation
constraint. This was realised by basing the enumeration procedures on canonical forms, one canonical form
representing all trees that are isomorphic except for the order of siblings. Such work include the Unot
algorithm by Asai & al. [6], the work of Nijssen & al. [7] and the recent Sleuth algorithm by Zaki [8].

There are still very few algorithms mining closed frequent trees. We already mentioned our DRYADE
algorithm [1], which relies on a very general tree inclusion definition and a new hooking principle. The only
algorithm mining closed frequent induced subtrees is the CMTreeMiner algorihm of Chi & al. [2]. It uses the
same generate and test principle as other tree mining algorithms, extended to handle closure. This algorithm
has shown excellent experimental results. Recently, Arimura & Uno proposed the CLOTT algorithm [3] for
mining closed frequent attribute trees, in the same settings as those of this paper. This algorithm has a proved
output-polynomial time complexity, which should also give excellent performances. Up to now there is not
yet an implementation available.

It is clear that the generate and test method used by all these algorithms (except DRYADE) has an effi-
ciency which depends heavily on the structure of the patterns to find. In case of big patterns with high depth
and high branching factor, many edge-adding steps are needed to find these patterns, and each step can be
computationally expensive because of the number of possible expansions and of the necessary frequency
testing.

4 The DRYADEPARENT algorithm

We propose in this section an improved way of exploring the search space, namely the DRYADEPARENT
algorithm. This method provides important perfomance gains for complex patterns.

Our goal is to find all the patterns in C. Instead of discovering them edge by edge as done by most
algorithms, we are interested in discovering the patterns depth level by depth level, starting with the root and
finishing with the deepest leaves in a breadth-first fashion. An example of this discovery process is shown
in Fig. 2a.

G H I

A

B C

D E F

Target pattern

A

B C

D E F

A

B C

Step 1 Step 2 Step 3

(a) Construction process

B C G H

E

F

C

I

F

A

D E

B

Ti1 Ti2 Ti3

{1, 11, 22, 27} {2, 13} {4, 16}

Ti4

C

H

Ti7

B

G

Ti6Ti5

{23, 28} {25, 31}

Locc:

Locc: {8, 20, 36}{7, 19, 35}

(b) Tiles of our example

A

B C B

G

C

HD E F

A

Target pattern P2

(c) Hookings at iteration 1

Fig. 2: Tiles and hookings

We call tiles the attribute trees that must be added to discover a new depth level of a pattern. In Fig. 2a
such tiles are enclosed in shaded boxes. A tile is a frequent attribute tree made from a node of a pattern of C
and all its children. The set of all tiles is noted T .

The essence of the DRYADEPARENT algorithm is to first discover all the tiles that are in the datatree,
and then apply a fast levelwise strategy to hook these tiles together and compute the patterns of C.

4.1 Discovering the tiles

Let us denote by F1 the subset of F made of the frequent attribute trees of depth 1. The set of closed frequent
attribute trees of depth 1, denoted by C1, is the closure of F1, defined with Definition 1 where F is replaced
by F1. DRYADEPARENT relies on the following property:

Property 1. The set of tiles is exactly the set of closed frequent attribute trees of depth 1, i.e.: T = C1

Proof (sketch): (T ⊆ C1) Consider a tile T ∈ T , we have T ∈ F1, and by negation if there was a
T ′ ∈ F1 preventing the closure of T , then the pattern of C which T comes from would not be closed as well,
hence the negation. (T ⊇ C1) Let C ∈ C1, as C is frequent it is included in at least one pattern of C, so there
exists a tile T ∈ T such that C v T and the occurrences of C are included in those of T , but by negation if
C is different of T , then T contests the closure of C , hence the negation. �

Computing such closed frequent attribute trees of depth 1 can be efficiently done by constructing for
each label l a matrix Ml where each line corresponds to a node of label l in the datatree, and with as many
columns as labels in L, so that a 1 in cell (i, j) indicates that the node corresponding to line i has a child with
label lj . Applying a closed frequent itemset discovery algorithm like LCM2 [10] on matrix M l will discover
all the closed frequent attribute trees of depth 1 with a root of label l (to comply with document support,
one only has to prune the occurence-frequent trees that do not meet the document frequency constraint). By
repeating the process for all the labels of L, all the closed frequent attribute trees of depth 1, i.e. all the tiles,
are discovered. The Fig. 2b shows the tiles for our example.

4.2 Hooking the tiles

Having found the tiles, the goal of DRYADEPARENT is to compute efficiently all the patterns through hook-
ings of these tiles. We have chosen a levelwise strategy, where each iteration computes the next depth level
for the patterns being constructed.

Root tiles To begin with, the tiles that correspond to the depth levels 0 and 1 of the patterns must be found
in the set of tiles. Such tiles are called root tiles, for they are the starting point of pattern construction by
our hooking principle. Some of these root tiles can be found in a straightforward manner: these are the tiles
whose root cannot be mapped to the same node as the leaves of any other tiles. We call them initial root
tiles. In our example T i1 is the only initial root tile because its occurrences 1, 11, 22 and 27 are never leaves
in any other tile.

The other root tiles are not as easily found. As some of their root nodes can be mapped to the leave
nodes of other tiles, these tiles are subtrees in some patterns, and root in some other patterns. For example,
T i4 is as well a subtree in P1, and the root tile of P4. For sake of efficiency, it must be avoided as much as
possible to identify incorrectly a tile as a root tile, this would lead to the construction of an attribute tree that
would in fact only be a subtree of a pattern, i.e. having done redudant computation and getting an unclosed
result. To avoid this, the starting points of DRYADEPARENT are the initial root tiles, and at the end of each
iteration new root tiles are looked for. We will explain how in the “Preparing next iteration” subsection.

In the following, we will denote by RP i the attribute trees actually constructed by the algorithm at
iteration i, and by CRPi

the patterns that will be obtained by successive hookings on the attributes trees of
RP i at the end of the algorithm. CRPi

is for illustration purposes, and is not actually constructed by the
algorithm. In the example, RP0 = {T i1} and CRP0

= {P1, P2, P3} of Fig. 1.

Hooking The initial root tiles are the entry point to the main iteration of DRYADEPARENT. In iteration i, for
each element T of RP i the algorithm will discover all the possible ways to add one depth level to T w.r.t.

Alx
Root tiles To begin with, the tiles that correspond to the depth levels 0 and 1 of the patterns must be found
in the set of tiles. Such tiles are called root tiles, for they are the starting point of pattern construction by
our hooking principle. Some of these root tiles can be found in a straightforward manner: these are the tiles
whose root cannot be mapped to the same node as the leaves of any other tiles. We call them initial root
tiles. In our example Ti1 is the only initial root tile because its occurrences 1, 11, 22 and 27 are never leaves
in any other tile.
The other root tiles are not as easily found. As some of their root nodes can be mapped to the leave
nodes of other tiles, these tiles are subtrees in some patterns, and root in some other patterns. For example,
Ti4 is as well a subtree in P1, and the root tile of P4. For sake of ef�ciency, it must be avoided as much as
possible to identify incorrectly a tile as a root tile, this would lead to the construction of an attribute tree that
would in fact only be a subtree of a pattern, i.e. having done redudant computation and getting an unclosed
result. To avoid this, the starting points of DRYADEPARENT are the initial root tiles, and at the end of each
iteration new root tiles are looked for. We will explain how in the ìPreparing next iterationî subsection.
In the following, we will denote by RPi the attribute trees actually constructed by the algorithm at
iteration i, and by CRPi the patterns that will be obtained by successive hookings on the attributes trees of
RPi at the end of the algorithm. CRPi is for illustration purposes, and is not actually constructed by the
algorithm. In the example, RP0 = fTi1g and CRP0 = fP1; P2; P3g of Fig. 1.

the patterns to get. This is done via the hooking operation: for an integer i, let T be an element of RP i, and
C ∈ CRPi

such that the structures of T and C are isomorphic for all depth until i. The hooking operation
consists in constructing a new attribute tree T ′ by hooking a set of hooking tiles {T i1, ..., T ik} on the leaves
of T such that the occurrences of T ′ include those of C , and the structures of T ′ and C are isomorphic for
all depths until i + 1.

The subtle point is to find all the frequent hooking tile sets for an element T of RP i. The potential hook-
ing tiles on T are all tiles whose root is mapped to a leaf node of T . In our example, the potential hooking
tiles on T i1 are {T i2, T i4, T i6, T i7}. Among all these potential hooking tiles, we want to find those which
frequently appear together according to the occurrences of T . This is a closed frequent itemset discovery
problem, and we can solve it by creating a matrix M whose each line k corresponds to an occurrence ok of
T , and each column j corresponds to a potential hooking tile T ij . M [i, j] = 1 iff. for the occurrence ok of
T , a leaf of T is mapped to the same node as the root of T ij . Applying a closed frequent itemset discovery
algorithm like LCM2 on M enables discovering efficiently all the closed frequent hooking tile sets.

In our example, the frequent hooking tile sets on T i1 are {T i2, T i4} and {T i6, T i7}. These hookings
are illustrated in Fig. 2c. It can be seen that the pattern P2 has been discovered.

The frequent attribute trees discovered that are not yet patterns are inserted into RP i+1 for further
expansion in the next iteration.

Preparing next iteration Next level root tiles: Once all the uses of a tile as a hooking tile have been
discovered, either all the occurrences of this tile have been involved in a hooking for the creation of a
particular attribute tree, or some occurrences have never been used together in a hooking. In the latter case,
this tile becomes a root tile at the next iteration, for we are sure that starting from all the occurrences of
this tile will produce a new closed attribute tree. For example at the end of the first iteration, all the possible
hookings of T i4 have been discovered. But the occurrence 35 of this tile has never been used, so tile T i4

becomes a root tile in iteration 2, enabling the discovery of pattern P4.
This way all the patterns of C are discovered by DRYADEPARENT (this is proved in an even more general

case in [11]).
Closure checking: Another important point is that in some cases hooking can lead to attribute trees that

are not closed. Such cases can be detected quickly by analysing the hookings, for this purpose DRYADEPAR-
ENT keeps a database of all the hookings performed so far. When a new hooking is proposed, the algorithm
checks that this new hooking satisfies the closure property w.r.t. the hookings of the database. Two non-
closure cases can arise: 1) the new hooking is included into an existing hooking, then the new hooking is
discarded; 2) the new hooking includes an existing hooking, then the existing hooking and the corresponding
pattern are erased from the database, and a new pattern is created from the new hooking, which is registered
into the hooking database.

The whole algorithm is summed up in Algorithm 1.

5 Experiments

This section reports on the experimental validation of DRYADEPARENT on real-world and artificial datasets.
All runtimes are measured on 2.8 GHz Intel Xeon processor with 2GB memory (Rocks 3.3.0 Linux).
DRYADEPARENT is written in C++, involving the closed frequent itemset algorithm LCM2 [10], kindly
provided by Takeaki Uno. Reported results are wall-clock runtimes, including data loading and preprocess-
ing.

Alx
Preparing next iteration Next level root tiles: Once all the uses of a tile as a hooking tile have been
discovered, either all the occurrences of this tile have been involved in a hooking for the creation of a
particular attribute tree, or some occurrences have never been used together in a hooking. In the latter case,
this tile becomes a root tile at the next iteration, for we are sure that starting from all the occurrences of
this tile will produce a new closed attribute tree. For example at the end of the �rst iteration, all the possible
hookings of Ti4 have been discovered. But the occurrence 35 of this tile has never been used, so tile Ti4
becomes a root tile in iteration 2, enabling the discovery of pattern P4.
This way all the patterns of are discovered by DRYADEPARENT (this is proved in an even more general

Alx
closure property
is included
existing hooking,

Alx
hooking includes an
database, and

Algorithm 1 The DRYADEPARENT algorithm
Input: A datatree DTD and an absolute frequency threshold ε

Output: The set C of all the patterns in DTD with frequency ≥ ε

1: RP0 ← initial root tiles of DTD

2: i← 0 ; C ← ∅
3: whileRPi 6= ∅ do
4: RPi+1 ← ∅
5: for all RT ∈ RPi do
6: if no hooking is possible on RT then
7: C ← C ∪RT

8: else
9: RPi+1 ←RPi+1 ∪Hookings(RT) // Closure detection is performed in the Hookings procedure

10: end if
11: end for
12: RPi+1 ←RPi+1 ∪DetectNewRootT iles

13: i← i + 1
14: end while
15: Return C

5.1 Real datasets

In the tree mining litterature, two real-world datasets are widely used for testing: the NASA dataset sampled
by Chi & al. from multicast communications during a shuttle launch event [12], and the CSLOGS dataset
consisting of web logs collected over one month at the CS department of Rensselaer Institute [5].

The runtimes obtained for various frequency thresholds for both DRYADEPARENT and CMTreeMiner
are displayed on Fig. 3.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ti
m

e(
s)

Support

Nasa/Multicast
DryadeParent
CMTreeMiner

 0

 2

 4

 6

 8

 10

 12

 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Ti
m

e(
s)

Support

CSLOGS
DryadeParent
CMTreeMiner

Fig. 3: Running time w.r.t. support for the Nasa/Multicast and CSLOGS datasets.

DRYADEPARENT is more than twice faster than CMTreeMiner on the CSLOGS dataset. For the NASA
dataset the performances are similar for high and medium support values, DRYADEPARENT having a distinct
advantage for the lowest support values. Note that we obtained similar results with simplified CSLOGS and
NASA datasets consisting only of attribute trees. We were interested to know why DRYADEPARENT and
CMTreeMiner have a bigger performance difference on the CSLOGS dataset than on the NASA dataset.
Analysing the structure of the computed patterns in both cases, we found that in the CSLOGS dataset, for
the support value 0.003 (lowest value tested), there are 924 patterns, with 3 nodes on average, and an average
branching factor of 1.6. For the NASA dataset, the picture is different: at the support value 0.1, there are
737 patterns, with 42 nodes on average, an average depth of 12 and an average branching factor of 1.2.
So patterns of NASA and patterns of CSLOGS have very different characteristics, and lead to different
performance results for CMTreeMiner and DRYADEPARENT. Artificial datasets will be used to get a deeper
understanding of the influence of the structure of the patterns on performance of these two algorithms.

5.2 Artificial datasets
In the usual tree mining algorithms studies, at most the length (i.e. the number of nodes) of the found patterns
is reported, without any information about the structure of these patterns. However, branching factor and
depth of the patterns intervene directly in the candidate generation process, so they are likely to play a major
role w.r.t. the computation time. To ascertain this hypothesis, we wrote a random tree generator that can
generate trees with a given node number N and a given average branching factor b. Nodes are labelled with
their pre-order identifier, so there are no couples of nodes with the same label in a tree. We generated trees
with N = 100 nodes and b ∈ [1.0; 5.0], b increasing by increment of 0.1. For each value of b, 10000 trees
were generated. Let T be such a tree. For each T a dataset DT was generated, consisting simply of 200
identical copies of T (we perform this 200-times duplication of each T to increase the processing time for
DT and so reduce the error rate on time measurement). Each DT was processed by both algorithms, with
a support threshold of 200 (hence the pattern to find is the tree T), and the processing time was recorded.
Eventually, for each value of b we regrouped the trees by their depth d, and got a point (b, d) by averaging
the processing times for all the trees of average branching factor b and depth d. Fig. 4a shows the logarithms
of these averaged time values w.r.t. the average branching factor b, and Fig. 4b shows the logarithms of these
averaged time values w.r.t. the depth d.

�����
�����
�����
�����

�����
�����
�����
�����

 1.5 1 2 2.5 3 3.5 4 4.5 5

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

100 nodes trees
DryadeParent
CMTreeMiner

Average branching factor

Lo
g(

tim
e)

 4

 3

 2

 1

 0

−1

−2

−3

(a) Log(time)/average branching factor

	
	
	�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

−3

−2

−1

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60 70 80 90 100

Lo
g(

tim
e)

Depth

100 nodes trees

DryadeParent
CMTreeMiner

(b) Log(time)/depth

Fig. 4: Random trees with 100 nodes

The Fig. 4a shows that DRYADEPARENT is orders of magnitudes faster than CMTreeMiner as long as
the branching factor exceeds 1.3, that is the case in most of the experiments space. For lower branching
factor values, CMTreeMiner has a small advantage. Patterns with such a low branching factor necessarily
have a high depth, this is confirmed by Fig. 4b. This figure shows that DRYADEPARENT exhibits a linear
dependency on the depth of the patterns. This is not surprising: each iteration of DRYADEPARENT computes
one more depth level of the patterns, so very deep patterns will need more iterations.

CMTreeMiner, on the other hand, shows a dependency on the average branching factor, but for a given
value of b the computation time varies greatly, being especially high for low depth values. Because of the
constraints on the random tree generator, a tree that have a low depth with a high average branching factor
will necessarily have some nodes with a very large branching factor. We plotted in Fig. 5 a new curve,
showing the computation time with respect to the maximal branching factor.

DRYADEPARENT is nearly unaffected by the maximal branching factor, but the computation time of
CMTreeMiner depends strongly on this parameter.

In order to understand how much the behavior of CMTreeMiner and DRYADEPARENT differ, we analyze
below the reasons of the dependency to branching factor of CMTreeMiner, and of the variability of its
performances in general.

������
������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

DryadeParent
CMTreeMiner

−3

−2

−1

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60 70 80

Lo
g(

tim
e)

Maximal branching factor

100 nodes trees

Fig. 5: Random trees with 100 nodes, log(time) w.r.t. maximal branching factor

We give a brief reminder of the candidate enumeration technique of CMTreeMiner, called rightmost
branch expansion. To generate candidates with k nodes from a frequent tree with k−1 nodes, CMTreeMiner
tries to add a new edge leading to a frequent node and starting at a node of the rightmost branch of the k− 1
node tree. All the nodes of the rightmost branch are explored successively in a top-down fashion, from the
root to the rightmost leaf.

1. Branching factor leads CMTreeMiner to generate more unclosed candidates by backtracking.
For a node with high branching factor, finding correctly the set of its frequent children is a classical frequent
itemset mining problem, and the highly combinatorial nature of this problem often leads to the generation
of useless candidates. CMTreeMiner is no exception to this rule: its top-down rightmost branch expansion
technique finds very quickly all the chidren of a node, but then systematically needs to backtrack to check for
frequent subsets of these children. In most cases, this leads to the generation of non-closed candidates. For
example, compare the two patterns of Fig. 6. The linear pattern P1 is found without generating any unclosed
candidates. But the flat pattern P2 is found after the generation of 3 unclosed candidates, so according to our
experiments finding P2 needs 7% more time than finding P1 in this simple setting with 4 nodes, and 100%
more time in a similar setting with 11 nodes.

A

B

C

D

A

B C D

A

B

C

A

B

C

D

A

B

A

A

B

A

B C DB C

AA

B

A

D

A

A

C

D Backward enumeration step

Candidates

Candidates

Forward enumeration step

C0 C1 C2 C3

C0 C1 C2 C3

C4C5

C6

P1

P2

Fig. 6: CMTreeMiner candidate enumeration for a linear pattern and for a flat pattern

DRYADEPARENT also has to confront such a combinatorial problem in high branching factor cases,
but it does so by using the LCM2 closed frequent itemset mining algorithm, which provides as of now the
most efficient way to explore the search space of closed frequent itemsets. Furthemore, by discovering the
tiles once and for all at the beginning of the algorithm, DRYADEPARENT avoids to repeat these complex
computations if the same tile appears more than once in the patterns.

On this problem, CMTreeMiner could probably be improved by modifying its enumeration technique
in order to use LCM2 for sibling enumeration. Such a modified algorithm should be similar to the recent
CLOTT algorithm by Arimura and Uno, which is an extension of the LCM2 principles to the closed attribute
tree case.

2. Candidate generation asymmetry The previous problem explains partly why CMTreeMiner is
slower than DRYADEPARENT in most cases. As we have seen, this problem can theoretically be overcome.
However, another problem remains, that cannot be overcome easily, and this problem is essential to the
superior performances of our hooking strategy over any algorithm based on rightmost branch expansion.

Consider the simple pattern of Fig. 7. As it can be seen, during candidate enumeration, unwanted can-

A

A

C

A

B
B C

A

B C

A

D

expand B

expand B

expand A

B C

A

D E

B C

A

D E

A

B

D E

A

B

D

A

B

E

Backward enumeration step

Candidates

expand A

expand A

Pattern

Forward enumeration step

C0 C1

C2

C3

C8

C7

C4

C5 C6

Fig. 7: CMTreeMiner enumeration for a left-balanced pattern

didates are generated, because the rightmost leaf expansion technique has to test “blindly” all the potential
expansions on the rightmost branch, but can only grow good candidates for certain expansions. For example,
the candidate C2 contains correct information: it corresponds to the first level of the pattern to find. But as
some expansions must be made on the node labelled B, which is not on the rightmost branch of C2, then C2

is eliminated. In the same way, C4 is computed for nothing. The children with label C of the root node will
have to be recomputed in candidate C6, even if it could have been discovered much earlier.

This behavior is not only sub-optimal, it also undermines the robustness of CMTreeMiner. Consider the
two patterns of figure 8.

Except for the names of labels, both these patterns exhibit the same tree structure, so it is expected that
they are discovered in exactly the same amount of time. However, assuming that the sibling processing order
is the ascending order of labels (this is the case in the actual implementation of CMTreeMiner), pattern R,
which is right-balanced, is an ideal case for enumeration by rightmost tree expansion. CMTreeMiner will
check 43 candidates to discover it. Oppositely, the left-balanced pattern G is a worst case, and CMTreeM-
iner will require to check 79 candidates for its discovery. The computation times reflect this difference in
candidates checking: time for finding G is 50 % higher than time for finding R, as shown in Tab. 1.

A

D ECB

F G H I

K L M N

A

D ECB

F G H I

K L M N

L R

Fig. 8: L: left-balanced pattern, R: right-balanced pattern
Pattern R L

CMTreeMiner 0.0010 s 0.0015 s
DRYADEPARENT 0.0013 s 0.0013 s

Table 1: Computation time for finding patterns R and G

On the other hand, thanks to its tree-orientation neutral hooking technique, DRYADEPARENT requires
exactly the same amount of time for processing these two patterns. For both L and R, DRYADEPARENT will
generate 3 candidates: first the initial tile with root A, then a candidate generated by hooking of a tile on
respectively B or E, and then the pattern L or R by hooking of another tile on respectively F or I .

Last, we compared the scalability of DRYADEPARENT and CMTreeMiner both on time and space in
Fig. 9. The dataset consists of 1000 to 10000 copies of a unique perfect binary tree of depth 5. We can see

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ti
m

e
(s

)

Number of instances

Binary trees, depth 5
DryadeParent
CMTreeMiner

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
em

or
y

(M
B)

Number of instances

Binary trees, depth 5
DryadeParent
CMTreeMiner

Fig. 9: Scalability tests, binary trees (time - memory)

that both on time and space, DRYADEPARENT scales linearly. The memory usage is higher for DRYADE-
PARENT, but here the reason is mostly implementation specific: for example DRYADEPARENT integer type
is “integer” whereas CMTreeMiner’s one is “short”, which is 4 times smaller on our 64 bit machine. And
DRYADEPARENT internal representation for trees is based on trees of pointers, which uses the most memory,
especially on a machine where the pointers are 8 bytes long.

Discussion: Our artificial experiments have shown that the structure of the patterns to find, and espe-
cially their branching factor, is a crucial performance factor. The closed tree mining algorithm CMTreeM-
iner, based on candidate enumeration by rightmost branch expansion, has performances which vary consid-
erably with the branching factor of the patterns, and even with their balance. The fact that CMTreeMiner and
DRYADEPARENT have similar performances on the NASA dataset, with patterns having quite low branch-
ing factor, and that CMTreeMiner is slower than DRYADEPARENT on the CSLOGS dataset, with patterns
having a higher branch factor, is consistent with our experiment on artificial data.

Experiments have shown that the new method for finding closed frequent attribute trees of our DRYADE-
PARENT algorithm is not only computation-time efficient but also robust w.r.t. tree structure, delivering good
performances with most tree structure configurations. Such a robustness is a desirable feature for most appli-

cations, especially the applications which deal with trees having a great diversity of structure, which cannot
predict what will be the typical structure of patterns.

6 Conclusion and perspectives

In this paper, we have presented the DRYADEPARENT algorithm, based on the computation of tiles (closed
frequent attribute trees of depth 1) in the data, and on an efficient hooking strategy that reconstructs the
patterns from these tiles.

Thorough experiments have shown that DRYADEPARENT is faster than CMTreeMiner in most settings,
and that its performances are robust w.r.t. the structure of the patterns to find.

We have proposed new benchmarks taking into account the structure of the patterns to test the behavior
of tree mining algorithms. As far as we know, such kind of tests are new in the tree mining community.

Improving these benchmarks and making more detailed analyses is one of our future research directions.
We think that our experiments proved that such tools are valuable for the tree mining community. We also
plan to extend DRYADEPARENT to structures more general than attribute trees.

Acknowledgements: We wish to thank especially Takeaki Uno for the LCM2 implementation, and Yun
Chi for making available the CMTreeMiner implementation and giving us the Nasa dataset. This work is
partly supported by the grant-in-aid of scientific research No. 16-04734.

References

1. Termier, A., Rousset, M., Sebag, M.: Dryade : a new approach for discovering closed frequent trees in heterogeneous tree
databases. In: International Conference on Data Mining ICDM’04, Brighton, England. (2004) 543–546

2. Chi, Y., Yang, Y., Xia, Y., Muntz, R.R.: Cmtreeminer: Mining both closed and maximal frequent subtrees. In: The Eighth
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’04). (2004)

3. Arimura, H., Uno, T.: An output-polynomial time algorithm for mining frequent closed attribute trees. In: 15th International
Conference on Inductive Logic Programming (ILP’05). (2005)

4. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient substructure discovery from large semi-
structured data. In: In Proc. of the Second SIAM International Conference on Data Mining (SDM2002), Arlington, VA. (2002)
158–174

5. Zaki, M.J.: Efficiently mining frequent trees in a forest. In: In Proc. 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. (2002)

6. Asai, T., Arimura, H., Uno, T., ichi Nakano, S.: Discovering frequent substructures in large unordered trees. In: the Proc. of
the 6th International Conference on Discovery Science (DS’03). (2003) 47–61

7. Nijssen, S., Kok, J.N.: Efficient discovery of frequent unordered trees. In: First International Workshop on Mining Graphs,
Trees and Sequences, 2003. (2003)

8. Zaki, M.J.: Efficiently mining frequent embedded unordered trees. Fundamenta Informaticae, special issue on Advances in
Mining Graphs, Trees and Sequences 65 (2005) 33–52

9. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th VLDB Conference, Santiago,
Chile (1994)

10. Uno, T., Kiyomi, M., Arimura, H.: Lcm v.2: Efficient mining algorithms for frequent/closed/maximal itemsets. In: 2nd
Workshop on Frequent Itemset Mining Implementations (FIMI’04). (2004)

11. Termier, A.: Extraction of frequent trees in an heterogeneous corpus of semi-structured data: application to xml documents
mining. Technical Report 1388, LRI (2004) http://www.lri.fr/∼termier/publis/phdTermierEN.ps.gz.

12. Chalmers, R., Almeroth, K.: Modeling the branching characteristics and efficiency gains of global multicast trees. In: Pro-
ceedings of the IEEE INFOCOM’2001. (2001)

