Efficient mining of high branching factor attribute trees

Alexandre Termier!, Marie-Christine Rousset?, Michele Sebag?,
Kouzou Ohara', Takashi Washio! & Hiroshi Motoda!

1. L.S.IR., Osaka University
8-1, Mihogaoka, Ibarakishi, Osaka, 567-0047, Japan
{termier, ohara, washio, motoda} @ar.sanken.osaka-u.ac.jp

2. CNRS & Université Paris-Sud (LRI) & INRIA (Futurs)
Building 490, Université Paris-Sud, 91405 Orsay Cedex, France.
{mcr, sebag}@Iri.fr

Abstract

In this paper, we present a new tree mining algorithm,
DRYADEPARENT, based on the hooking principle first in-
troduced in DRYADE [9]. In the experiments, we demon-
strate that the branching factor and depth of the frequent
patterns to find are key factor of complexity for tree mining
algorithms. We show that DRYADEPARENT outperforms
the current fastest algorithm, CMTreeMiner, by orders of
magnitude on datasets where the frequent patterns have a
high branching factor.

1. Introduction

In the recent tree mining research, most algorithms use
the same generate-and-test principle that made the success
of frequent itemset mining algorithms. They usually deal
with finding all the frequent subtrees from a collection of
trees. Pioneering algorithms by Asai & al. [3] and Zaki
[12] extend the Apriori algorithm [1] principle to trees, us-
ing tree inclusion definitions imposing the preservation of
the order of the siblings. The second generation of tree
mining algorithms used canonical forms to get rid of the
order preservation constraint [4, 7, 13]. Newest algorithms
tend to search only closed frequent subtrees, for the com-
putation gains that can be achieved without quality loss:
DRYADE [9], relying on a very general tree inclusion def-
inition, CMTreeMiner [6], mining closed frequent induced
subtrees and the recent CLOTT [2] for mining closed fre-
quent attribute trees (not yet implemented).

We present DRYADEPARENT, a new closed tree mining
algorithm, which replaces the costly generate-and-test ap-
proach followed by most existing algorithms by an elabo-

rate hooking of subtrees of depth 1 to leaves of frequent
trees of depth k.

Experiments show that our approach has faster computa-
tion times, and is nearly unaffected by the structures of the
frequent patterns to find, whereas the state of the art algo-
rithm exhibits a severe dependency on branching factor.

The outline of the paper is as follows. Section 2 intro-
duces notations and definitions. Section 3 gives an overview
of the DRYADEPARENT algorithm. Section 4 reports de-
tailed comparative experiments. In section 5, we conclude
and give some directions for future work.

2. Formal Background

Let L = {l,...,1,} be a set of labels. A labeled tree
T = (N,A,root(T),) is an acyclic connected graph,
where N is the set of nodes, A C N x N is a binary re-
lation over N defining the set of edges, root(T') is a distin-
guished node called the root, and ¢ is a labeling function
¢ : N — L assigning a label to each node of the tree. We
assume without loss of generality that edges are unlabeled.
We assume that the reader is familiar with the notions of
child, parent, ancestor and descendant for the nodes of a
tree.

A tree is an attribute tree if ¢ is such that two sibling
nodes cannot have the same label (more details on attribute
trees can be found in [2]).

Tree inclusion: Let AT = (Ny, Ay, root(AT), p1) be
an attribute tree and 7' = (N2, Aa, root(T), 2) be a tree.
AT is an induced subtree of T if there exists an injective
mapping p : N1 — N such that: 1) p preserves the labels:
Yu € N1 ¢1(u) = p2(u(u)) and 2) p preserves the parent
relationship: Yu,v € Ny (u,v) € 41 < (p(u), pu(v)) €

As. This relation will be written AT T T, and we will
sometimes say that AT is included into 7.

Loce = {1,11,22,27}

Loce = {7,19,35}

Figure 1: Datatree example (node identifiers are subscripts
of node labels), and patterns for e = 2

If AT C T, the set of mappings supporting the inclusion
is denoted EM (AT, T'). The set of occurrences of AT in T,
denoted Locc(AT,T), is the set of nodes of 7" onto which
the root of AT is mapped by a mapping of EM (AT, T).

Frequent attribute tree: Let 7D = {T1,...,T;,} be
a tree database. The datatree D1 p is the tree whose root
is an unlabeled node, having the trees {7171, ..., T, } as its
direct subtrees.

Let € be an absolute frequency threshold. AT is a fre-
quent attribute tree of Dpp if supporty(AT) > e, where
supportq(AT) = S 0q(AT, T;) with o4(AT, T;) = 1
if AT C T;, 0 otherwise. The set of all frequent attribute
trees is denoted by F(Drp, €), abbreviated as F in this pa-
per.

Closed trees: A frequent attribute tree is closed if it is
maximal, according to inclusion, for its set of occurrences,
i.e.: a frequent attribute tree AT € F is closed either if it is
not included into any other frequent attribute tree, or if it is
included into a frequent attribute tree AT’ € F, there exists
amapping in EM (AT, Drp) which is not in the mappings
of 5M(AT/, DTD)-

We will denote the set of all closed frequent attribute
trees as C.

In the example of Figure 1, the frequent attribute trees
P and P, are closed because they are not included into any
other frequent attribute tree, P is closed because though it
is included into P; and P, neither the occurrences of P;
nor the occurrences of P, can cover all the occurrences of
Ps, and in the same way P is also closed.

The tree mining problem we are interested in is to find
all the closed frequent attribute trees for a given datatree and
support threshold. From now on, we will refer to the closed
frequent attribute trees as patterns.

3. The DRYADEPARENT algorithm

The goal of DRYADEPARENT is to find all the patterns
in C, depth level by depth level, starting with the root and
finishing with the deepest leaves in a breadth-first fashion.

Tiy Tiy Tiy

Loce: {1,11,22,27 {2,13}

Tiy Tig Tiz

Loce: {7,19,35) {8,20,36} {23,28} {25,31}

Figure 2: Tiles of our example

Iteration 1
Loce = {1,11,22,27}

Iteration 2 / \

Loce = {1, 11} Loce = {22,927}
Tteration 3 +

Figure 3: DRYADEPARENT discovery process

We only give in the following section the intuition be-
hind the DRYADEPARENT algorithm, the interested reader
is referred to [10] for more details.

3.1 Tiles

The essence of DRYADEPARENT is to build the patterns
depth level by level through proper hookings (defined later)
of the closed frequent attribute trees of depth 1, which we
call tiles.

Finding such tiles can be reformulated as a propositional
frequent itemset mining problem as follows: for each la-
bel, use a closed frequent itemset discovery algorithm like
LCM2 [11] to compute all the closed frequent sets of chil-
dren labels for this label. The Figure 2 shows the tiles for
our example.

3.2 Hooking the tiles

The previously computed tiles can then be hooked to-
gether, i.e. a tile whose root has label [becomes a subtree
of another tile having a leaf of label [, to build more com-
plex trees. A proper strategy is needed to avoid as much
as possible to construct attributes trees that would be found
unclosed in a later iteration. Our strategy consists in con-
structing attributes trees which are isomorphic to the k first
depth levels of the patterns, each iteration adding one depth
level to the isomorphism. For this purpose, the first task
of DRYADEPARENT is to discover in the tiles those corre-
sponding to the depth levels 0 and 1 of the patterns, the root
tiles. Some of these tiles can be found immediately for they
cannot be hooked on any other tile, they will be the starting
point for the first iteration of DRYADEPARENT. This is the
case for T'7; in our example, as show in Figure 3. For the
rest of the root tiles, they can also be used as building blocks
for other patterns: they will be used as root of a pattern only
when it will become clear that they are not only a building
block, to avoid generating unclosed attribute trees. This is
the case for T'i4 in our example, which can be hooked on
T'%;. Only in iteration 2 will this tile be used as a root tile
to construct pattern P4. The computation of the set of tiles
that must be hooked to the root tiles to make closed fre-
quent attribute trees with one more depth level is delegated
to a closed frequent item set mining algorithm. The attribute
trees created by hooking become starting points for the next
iteration.

The whole process is shown for our example in Figure 3.
On the root tile T’ 1, one can either hook the tiles {12, T4}
or the tiles {7, T'i7}, the latter leading to the pattern Ps.
Note the different occurrences of the two constructed at-
tribute trees. From the hooking of {72, T4} on T'i1, one
can then hook the tile 723, leading to the pattern P;. The
tile T'i4 is not only a building block of P, it also have an
occurrence which does not appear in P; (35): itis used as a
root tile, and the only possible hooking on it is T'¢5, leading
to the pattern Pj.

The soundness and completeness of this hooking mech-
anism has been proved in [8].

4. Experiments

This section reports on the experimental validation of
DRYADEPARENT on real-world and artificial datasets. All
runtimes are measured on 2.8 GHz Intel Xeon processor
with 2GB memory (Rocks 3.3.0 Linux). DRYADEPARENT
is written in C++, involving the closed frequent itemset al-
gorithm LCM2 [11], kindly provided by Takeaki Uno. Re-
ported results are wall-clock runtimes, including data load-
ing and preprocessing.

Real datasets: The runtimes obtained for vari-
ous frequency thresholds for both DRYADEPARENT and
CMTreeMiner are displayed on Figure 4, for the widely-
known CSLOGS [12] and NASA [5, 6] tree datasets.

Nasa/Multicast CSLOGS
90 12
DryadeParent ——
80F., CMTreeMiner

DryadeParent ——
10 CMTreeMiner

60 8

6

e
Time(s)

=)
o N »

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Support Support

Figure 4: Running time w.r.t. support for the NASA and
CSLOGS datasets.

DRYADEPARENT is more than twice faster than
CMTreeMiner on the CSLOGS dataset. For the NASA
dataset the performances are similar, DRYADEPARENT hav-
ing an advantage for the lowest support values. We discov-
ered that the patterns found in both datasets were very dif-
ferent: NASA contains deep patterns with low branching
factor, whereas CSLOGS contains shallow patterns with an
higher branching factor. Artificial datasets will be used to
get a deeper understanding of the influence of the structure
of the patterns on compute-time performance of the two al-
gorithms.

Artificial datasets: In the usual tree mining algorithms
studies, at most the length (i.e. the number of nodes) of the
found patterns is reported, without any information about
the structure of these patterns. However, branching factor
and depth of the patterns intervene directly in the candidate
generation process, so they are likely to play a major role
w.r.t. the computation time. To ascertain this hypothesis,
we wrote a random tree generator that can generate trees
with a given node number N and a given average branching
factor b. Nodes are labeled with their pre-order identifier, so
there are no couples of nodes with the same label in a tree.
We generated trees with N = 100 nodes and b € [1.0; 5.0,
b increasing by increment of 0.1. For each value of b we
generated 10,000 random trees and regrouped them by their
depth d, and got a point (b, d) by averaging the process-
ing times for all the trees of average branching factor b and
depth d. Figure 5a shows the logarithms of these averaged
time values w.r.t. the average branching factor b, and Figure
5b shows the logarithms of these averaged time values w.r.t.
the depth d.

The Figure 5a shows that DRYADEPARENT is orders of
magnitudes faster than CMTreeMiner as long as the branch-
ing factor exceeds 1.3, that is the case in most of the experi-
ments space. For lower branching factor values, CMTreeM-
iner has a small advantage. Patterns with such a low branch-
ing factor necessarily have a high depth, this is confirmed by
Figure 5b. This figure shows that DRYADEPARENT exhibits
a linear dependency on the depth of the patterns. This is

10U nodes trees

DryadeParent
CNﬁ'reeMiner B

o0 2 0 4w

50 @ 0 s s w
Depth

(b) Log(time)/depth

25 3 35
Average branching factor

(a) Log(time)/average branching
factor

Figure 5: Random trees with 100 nodes

not surprising: each iteration of DRYADEPARENT computes
one more depth level of the patterns, so very deep patterns
will need more iterations. CMTreeMiner, on the other hand,
shows a dependency on the average branching factor, but for
a given value of b the computation time varies greatly, being
especially high for low depth values. Because of the con-
straints on the random tree generator, a tree that have a low
depth with a high average branching factor will necessarily
have some nodes with a very large branching factor. We
plotted in Figure 6 a new curve, showing the computation
time with respect to the maximal branching factor.

100 nodes trees.

¢ " " " " ™ DryadeParent
TreeM_ip‘g_r__;,.

¥

Log(time)

Figure 6: Random trees with 100 nodes, log(time) w.r.t.
maximal branching factor

DRYADEPARENT is nearly unaffected by the maximal
branching factor, but the computation time of CMTreeM-
iner depends strongly on this parameter.

5. Conclusion and perspectives

In this paper, we have presented the DRYADEPARENT
algorithm, based on the computation of tiles in the data, and
on an efficient hooking strategy that reconstructs the pat-
terns from these tiles. Thorough experiments have shown
that DRYADEPARENT is faster than CMTreeMiner in most
settings, and that its performances are robust w.r.t. the struc-
ture of the patterns to find. We have proposed new bench-
marks taking into account the structure of the patterns to test
the behavior of tree mining algorithms. As far as we know,
such kind of tests are new in the tree mining community.
Improving these benchmarks and making more detailed an-
alyzes is one of our future research directions. We also plan
to extend DRYADEPARENT to structures more general than
attribute trees.

Acknowledgments: We wish to thank especially
Takeaki Uno for the LCM2 implementation, and Yun Chi
for making available the CMTreeMiner implementation and
giving us the Nasa dataset. This work is partly supported by
the grant-in-aid of scientific research No. 16-04734.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. In Proceedings of the 20th VLDB Conference,

Santiago, Chile, 1994.
[2] H. Arimura and T. Uno. An output-polynomial time algo-

rithm for mining frequent closed attribute trees. In 15th
International Conference on Inductive Logic Programming

(ILP’05), 2005.
[3] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto,

and S. Arikawa. Efficient substructure discovery from large
semi-structured data. In In Proc. of the Second SIAM Inter-
national Conference on Data Mining (SDM2002), Arlington,

VA, pages 158—-174, Avril 2002.
[4] T. Asai, H. Arimura, T. Uno, and S. ichi Nakano. Discov-

ering frequent substructures in large unordered trees. In the
Proc. of the 6th International Conference on Discovery Sci-
ence (DS’03), pages 47-61, 2003.

[5] R. Chalmers and K. Almeroth. Modeling the branching char-
acteristics and efficiency gains of global multicast trees. In

Proceedings of the IEEE INFOCOM’2001, April 2001.
[6] Y. Chi, Y. Yang, Y. Xia, and R. R. Muntz. Cmtreeminer:

Mining both closed and maximal frequent subtrees. In The
Eighth Pacific-Asia Conference on Knowledge Discovery and

Data Mining (PAKDD’04), 2004.
[7] S. Nijssen and J. N. Kok. Efficient discovery of frequent

unordered trees. In First International Workshop on Mining

Graphs, Trees and Sequences, 2003, 2003.
[8] A. Termier. Extraction of frequent trees in an heteroge-

neous corpus of semi-structured data: application to xml doc-
uments mining. Technical Report 1388, LRI, May 2004.

http://www.Iri.fr/~termier/publis/phdTermierEN.ps.gz.
[9] A. Termier, M. Rousset, and M. Sebag. Dryade : a new ap-

proach for discovering closed frequent trees in heterogeneous
tree databases. In International Conference on Data Mining

ICDM’04, Brighton, England, pages 543-546, 2004.
[10] A. Termier, M. Rousset, M. Sebag, K. Ohara, T. Washio, and

H. Motoda. Computation-time efficient and robust attribute
tree mining with DRYADEPARENT. In Third International
Workshop on Mining Graphs, Trees and Sequences (MGTS),

2005.
[11] T. Uno, M. Kiyomi, and H. Arimura. Lcm v.2: Efficient

mining algorithms for frequent/closed/maximal itemsets. In
2nd Workshop on Frequent Itemset Mining Implementations

(FIMI’04), 2004.
[12] M.J. Zaki. Efficiently mining frequent trees in a forest. In In

Proc. 8th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, July 2002.
[13] M.J. Zaki. Efficiently mining frequent embedded unordered

trees. Fundamenta Informaticae, special issue on Advances
in Mining Graphs, Trees and Sequences, 65(1-2):33-52,
March/April 2005.

