
Communicability Criteria of
Law Equations Discovery

Takashi Washio and Hiroshi Motoda

Institute of Scientific and Industrial Research, Osaka University,
8-1, Mihogaoka, Ibarakishi, Osaka, 567-0047, Japan

Phone: +81-6-6879-8541 Fax: +81-6-6879-8544
washio@sanken.osaka-u.ac.jp

Abstract. The “laws” in science are not the relations established by
only the objective features of the nature. They have to be consistent
with the assumptions and the operations commonly used in the study
of scientists identifying these relations. Upon this consistency, they be-
come communicable among the scientists. The objectives of this litera-
ture are to discuss a mathematical foundation of the communicability
of the “scientific law equation” and to demonstrate “Smart Discovery
System (SDS)” to discover the law equations based on the foundation.
First, the studies of the scientific law equation discovery are briefly re-
viewed, and the need to introduce an important communicability cri-
terion called “Mathematical Admissibility” is pointed out. Second, the
axiomatic foundation of the mathematical admissibility in terms of mea-
surement processes and quantity scale-types are discussed. Third, the
strong constraints on the admissible formulae of the law equations are
shown based on the criterion. Forth, the SDS is demonstrated to discover
law equations by successively composing the relations that are derived
from the criterion and the experimental data. Fifth, the generic criteria to
discover communicable law equations for scientists are discussed in wider
view, and the consideration of these criteria in the SDS is reviewed.

1 Introduction

Various relations among objects, events and/or quantity values are observed in
natural and social behaviors. Especially, scientists call the relation as a “law”
if it is commonly observed over the wide range of the behaviors in a domain.
When the relation of the law can be represented in form of mathematical for-
mulae constraining the values of some quantities characterizing the behaviors,
the relation is called “law equations”. In popular understanding, the relations
of the laws and the law equations are considered to be objective in the sense
that they are embedded in the behaviors independent of our processes of ob-
servation, experiment and interpretation. However, the definition of the laws
and the law equations as communicable knowledge shared by scientists must
be more carefully investigated. Indeed, they are not the relations established
by only the objective features of the nature as discussed in this chapter. They
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have to be consistent with the assumptions and the operations commonly used
in the study of scientists identifying these relations. Upon this consistency, they
become communicable among the scientists.

On the other hand, the studies to develop automated or semi-automated
systems to discover scientific law equations have been performed in the last two
decades. As the main goal of the studies is to discover law equations representing
meaningful relations among quantities for scientists, i.e., communicable with sci-
entists, the systems must take into account the communicability criteria to some
extent. The objectives of this chapter are to discuss a mathematical foundation of
the communicability of the “scientific law equation” and to demonstrate “Smart
Discovery System (SDS)” to discover the law equations based on the foundation.
Through the demonstration of the scientific law equation discovery and the sub-
sequent discussion, the communicability criteria of law equation discovery are
clarified.

2 Study of Law Equation Discovery

First, we briefly review the past studies of the scientific law equation discovery
from the view point of the equation formulae having the communicability in sci-
ence. The most well known pioneering system to discover scientific law equations
under the condition where some quantities are actively controlled in a laboratory
experiment is BACON [13]. FAHRENHEIT [9] and ABACUS [6] are successors
that basically use similar algorithms to BACON to discover law equations. LA-
GRANGE [5] and LAGRAMGE [19] are another type of scientific law equation
discovery systems based on the ILP-like generate and test reasoning to discover
equations representing the dynamics of the objects.

Many of these succeeding systems introduced the constraint of the unit di-
mension of physical quantities to prune the search space of the equation formulae.
The constraint is called “Unit Dimensional Homogeneity” [2, 3] that all additive
terms in a law equation formula must have an identical unit dimension. For ex-
ample, a term having a length unit [m] is not additive to another term having a
different unit [kg] in a law equation, even if the formula including their addition
well fits to given data. Though the main purpose of the use of this constraint
in these systems was to reduce the ambiguity in their results under noisy mea-
surements and the high computational cost of their algorithms, the introduction
also had an effect to increase the communicability of the discovered equations
with scientists because the discovered equations are limited to more meaningful
formulae. A law equation discovery system COPER [10] more intensively applied
the constraints deduced from the unit dimensional analysis. The limitation of
the constraints is so strong that some parts of the equation formulae are almost
predetermined without using the measurement data set, and the derived equa-
tions has high communicability with scientists. LAGRANGE and LAGRAMGE
are also capable of introducing these constraints in principle. However, the main
purpose of these works is to provide an elegant measure to implement the con-
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straints in the scientific law equation discovery but not to propose the contents
of the constraints to enhance the communicability.

A strong limitation of the use of the unit dimensional constraints is its narrow
applicability only to the quantities whose units are clearly known. To overcome
this drawback, a law equation discovery system named “Smart Discovery Sys-
tem (SDS)” has been proposed [20, 21]. It discovers scientific law equations by
limiting its search space to “Mathematically Admissible” equations in terms of
the constraints of “scale-type” and “identity”. They represent the important
assumptions and operations commonly used in measurement and modeling pro-
cesses identifying the relations among quantities by scientists. Since the use of
scale-types and identity is not limited by the availability of the unit dimensions,
SDS is applicable to non-physical domains including biology, sociology, and eco-
nomics. In the following section, the axiomatic foundation of the mathematical
admissibility in terms of measurement processes and quantity scale-types are
discussed.

3 Scale-types of Quantities

“Mathematical Admissibility” includes the constraints of some fundamental no-
tions in mathematics such as arithmetic operations, but they are very weak to
constrain the shape of the law equation formulae. Stronger constraints are de-
duced from the assumptions and operations used in measurement process. The
value of a quantity is obtained through a measurement in most of the scientific
domains, and some features of the quantity are characterized by the measure-
ment process. Though the unit dimension is an example of such features, a more
generic feature is called “scale-types”. S.S. Stevens defined that a measurement
is to assign a value to each element in a set of the objects and/or events under
given rules, and claimed that the rule set defines the “scale type” of the mea-
sured quantity. He categorized the scale-types into “nominal”, “ordinal”, “inter-
val” and “ratio” scales [18]. In the later study, another scale-type called absolute
scale is added. Subsequently, D.H. Krantz et al. axiomatized the measurement
processes and the associated scale-types [12]. In this section, their theory on the
scale-types is reviewed.

Definition 1 (A Relation System) The following series of finite length α is
called “a relation system”.

α =< A,R1, R2, ..., Rn >

where A: a non-empty set of elements, Ri: Ri(a1, a2, ..., ami) which is a relation
of a1, a2, ..., ami

∈ A.

Definition 2 (Type and Similarity) Given a relation system α, when each
Ri is the relation of mi elements in A, the series of positive integers < m1,m2, ...,
mn > is called “type” of α. If the types of two relation systems α and β =<
B,S1, S2, ..., Sn > are identical, they are “similar”.
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Definition 3 (Isomorphism (Homomorphism)) Given two relation systems
α and β, if the following conditions are met, they are called “isomorphic (homo-
morphic)”.

(1) α and β are similar.
(2) A bijection（surjection）f from A to B exists where

Ri(a1, a2, ..., ami
) ⇔ Si(f(a1), f(a2), ..., f(ami

))．

Definition 4 (Numerical and Empirical Relation Systems) When a re-
lation system α satisfies the following conditions, α is called a “numerical rela-
tion system”.

(1) The domain A ⊆ �.
(2) Ri(i = 1, 2, ..., n) is a relation among values in �.

A relation system which is not a numerical relation system is called an “empirical
system”.

Next, the “extensional measurement” and the “scale-types” are defined.

Definition 5 (Extensional Measurement) “Extensional measurement” is that
an empirical relation system consisting of some operations and relations among
elements in the objective behaviors is isomorphic or homomorphic with a nu-
merical relation system consisting of arbitrary chosen operations and relations
among numerals and/or symbols.

Extensional measurement is the measurement done by using a facility to directly
map each element in an empirical relation system to a numeral in a numerical
relation system while preserving the relations in each system. For example, the
measurement of length and the measurement of weight are the extensional mea-
surements respectively since a ruler and a balance map the lengths and the
weights of objects to numerals directly.

Definition 6 (Scale-type in Extensional Measurement) < α, βf , f > is
called a “scale-type” where

α: an empirical relation system,
βf : a full numerical relation system,
f：isomorphic or homomorphic mapping from α to the subsystem of βf .

Here, the “full numerical relation system” is the system which domain is the
entire �, and the “subsystem” is the system where its domain is the sub-domain
of the original system, and all relations of the subsystem have one-to-one corre-
spondence to the relations of the original system.

When an empirical relation system α =< A, I > is the following classification
system, the measurement by “nominal scale” is applicable.

Definition 7 (Classification System) Given α =< A, I >, if I is a binary
relation on A, α is called a “binary system”. Furthermore, if the following three
axioms hold for I, I is called an “equivalence relation”, α a “classification sys-
tem” and the set of elements where I holds “I-equivalence class”.

Reflexive law: ∀a ∈ A, I(a, a)
Symmetric law: ∀a,∀b ∈ A, I(a, b) ⇒ I(b, a)
Transitive law: ∀a,∀b,∀c ∈ A, I(a, b) ∧ I(b, c) ⇒ I(a, c)
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Fig. 1. Example of extensional measurement.

An example of the classification system and the measurement in the nominal
scale is explained through the empirical relation system α depicted in Fig. 1.
The domain A is the power set of the set of 6 weights {a, b1, b2, c1, c2, c3}. The
equivalence relation I is that two sets of the weights are balanced. The reflexive
law holds since two identical weight sets balance. The symmetric law also holds
because the balance of the following pair wise sets is invariant for the exchange
of their positions between the left dish and the right dish.

({b1}, {b2}), ({c1}, {c2}), ({c2}, {c3}), ({c3}, {c1}),
({c1, c2}, {c2, c3}), ({c2, c3}, {c3, c1}), ({c3, c1}, {c1, c2}),
({a}, {b1, b2}), ({b1, b2}, {c1, c2, c3}), ({c1, c2, c3}, {a})

In addition, if a pair of sets in the following combinations balance, then the rest
pairs also balance. Thus, the transitive law holds.

({c1}, {c2}, {c3}), ({c1, c2}, {c2, c3}, {c3, c1}), ({a}, {b1, b2}, {c1, c2, c3})
Accordingly, this empirical relation system α is a classification system. For this
α, given a numerical relation system β and its domain B ⊆ �, a surjection f
which maps any weight sets in I-equivalence class to an identical number on B
is introduced as follows.

wa = f({a}) = f({b1, b2}) = f({c1, c2, c3}),
wb = f({b1}) = f({b2}),
wc = f({c1}) = f({c2}) = f({c3}),
dwc = f({c1, c2}) = f({c1, c3}) = f({c2, c3})
where wa, wb, wc, dwc ∈ B.

If a relation of β, which is the equality of two numbers, is considered, the reflexive
law holds as the equality of identical numbers is trivial. Also, the symmetric
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law and the transitive law hold for the equality of wa, wb, wc, dwc. Hence, β is
a classification system. Therefore, the homomorphic mapping f to assign an
identical number to balanced weights is a measurement in nominal scale.

When an empirical relation system α =< A,P > is the following series, the
measurement in “ordinal scale” is possible.

Definition 8 (Series) Given a binary system α =< A,P >, if the following
three axioms hold for P , P is called “inequivalence relation” and α “series”.

Asymmetric law: ∀a,∀b ∈ A,P (a, b) ⇒ ¬P (b, a)
Transitive law: ∀a,∀b,∀c ∈ A,P (a, b) ∧ P (b, c) ⇒ P (a, c)
Law of the excluded middle: ∀a,∀b ∈ A, one of P (a, b) and P (b, a) holds.

In case that the relation I holds on some of the elements in A, i.e., α =<
A, I, P >, the elements in each I-equivalence class are grouped, and A is re-
placed by the “quotient set” A/I. Then, α/I =< A/I, P > is a series, and
it can be measured in ordinal scale. In the example of Fig. 1, the domain of
α/I =< A/I, P > is A/I where the sets of the weights which mutually bal-
ance are grouped. Then, given two elements r and s in A/I, the binary relation
P (r, s) is defined that the dish on which s is put comes down. This P (r, s) sat-
isfies the conditions of the aforementioned series. On the other hand, given the
binary relation P (wr, ws) which is inequality wr < ws between two numbers in
the domain B of a numerical relation system β. This also satisfies the condi-
tions of the series. Then we define a surjection f which assigns real numbers
wa, wb, wc, dwc to the elements in A/I respectively where wr < ws holds for r
and s under P (r, s). This definition of f which holds wc < wb < dwc < wa is the
measurement in ordinal scale.

Furthermore, when an empirical relation system α =< A,D > is the following
“difference system”, the measurement in “interval scale” is possible.

Definition 9 (Difference System) Given α =< A,D >, if the relation D
is a quadruple relation on A, α is called a “quadruple system”. Moreover, α is
called a “difference system” if the following axioms holds for {a, b, c, d, e, f} ⊆ A.

P (a, b) ⇔/D(a, b, a, a),
I(a, b) ⇔ D(a, b, b, a) ∧ D(b, a, a, b),
D(a, b, c, d) ∧ D(c, d, e, f) ⇒ D(a, b, e, f),
One of D(a, b, c, d) and D(c, d, a, b) holds,
D(a, b, c, d) ⇒ D(a, c, b, d),
D(a, b, c, d) ⇒ D(d, c, b, a),
∃c ∈ A,D(a, c, c, b) ∧ D(c, b, a, c),
P (a, b) ∧ ¬D(a, b, c, d) ⇒ ∃e ∈ A,P (a, e) ∧ P (e, b) ∧ D(c, d, a, e),
∃e,∃f ∈ A,∃ an integer n, P (a, b) ∧ D(a, b, c, d) ⇒ Mn(c, e, f, d).

Here, Mn is the relation to locate e and f between c and d in A where the
distance between c and e and that between f and d are identical and one n-th of
the distance between c and f . Even if some elements in A satisfy the equivalence
relation I, α/I =< A/I,D > is a difference system, and α/I can be measured by
an interval scale quantity. In the example of Fig. 1, let the relation D(r, s, t, u)
on A/I be that the left dish comes down when two sets of weights r and u are
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put on the left dish and s and t on the right dish. Then α/I is a difference
system. Let D(wr, ws, wt, wu) on the domain B of a numerical relation system β
be (ws −wr) ≤ (wu −wt), and let a surjection f be the assignment of numerals
wa, wb, wc, dwc to the sets of weights in such a way that D(wr, ws, wt, wu) holds
in β when D(r, s, t, u) holds in α/I. In this example, wa = wc + 4(wb − wc)
and dwc = wc + 2(wb − wc) are obtained, and the numerals mapped by the
surjection f are interval scale. The f which satisfies this relation is not unique.
The different mappings f1 and f2 for two numerical relation systems β1 and β2

which are homomorphic with α/I respectively have a linear relation f2 = k·f1+c
where k and c are constants, and this is the admissible unit conversion. The
interval scale quantities follow the axioms of the classification system, the series
and the difference system, but do not have any absolute origins. The examples
are position, time and musical sound pitch since the origins of their coordinate
systems are arbitrarily introduced.

The quantities of ratio scale are derived by the extension of the difference
system. Given two difference systems α/I and β, define a surjection f from
A/I × A/I to B × B satisfying f(r, s) = ws − wr and f(φ, r) = wr. Under this
mapping, α/I is measured by a ratio scale quantity. In the example of Fig. 1,
the two weights c1 on the left dish and the weights c2 and c3 on the right dish
balance in α/I, and this is homomorphic with the following relation in β.

f(φ, {c1}) = f({c1}, {c2, c3}),

where f(φ, {c1}) = wc and f({c1}, {c2, c3}) = dwc−wc. This deduces the relation
dwc = 2wc. By substituting this relation to the aforementioned wa = wc+4(wb−
wc) and dwc = wc + 2(wb − wc), 2wb = 3wc and wa = 3wc are deduced, and
the ratio scale of weight is derived. f satisfying these relations are not unique.
Given two numerical relation systems β1 and β2 which are homomorphic with
α/I, the corresponding f1 and f2 have a similarity relation f2 = k · f1, i.e., the
admissible unit conversion. The ratio scale quantities have absolute origins. The
examples are distance, elapsed time and physical mass.

Besides the quantities defined in the extensional measurement, another sort
of quantities which can not be directly measured by any facilities but indirectly
measured by functions of the other quantities exit. The process of this indirect
measurement is called “intentional measurement”, and the quantities measured
through this measurement are “derivative quantities” obtained from the other
quantities. The nature of each scale-type in the intentional measurement is very
similar to that of the extensional measurement, and the admissible unit conver-
sion is identical for each scale-type. The descriptions on the rigorous definitions
of this measurement and its scale-types are omitted due to the space limitation.
An example of the derivative quantity obtained through the intentional measure-
ment is the temperature. It can be measured only through some other measured
quantities such as the expansion length of mercury. The other representative
derivative quantities are density, energy and entropy.

An important scale-type which is defined by the intentional measurement is
absolute scale-type. Given a quantity g defined by the other ratio scale quantities
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Table 1. Admissible relations between two quantities.

scale-types

No. independent
quantity x

dependent
quantity y(x)

admissible
relation

1 ratio ratio y(x) = αxβ

2.1 ratio interval y(x) = αxβ + δ
2.2 y(x) = α log x+β
3 interval ratio impossible
4 interval interval y(x) = αx + β

f1, f2, ..., fn through g =
∏n

i=1 fγi

i , when the relation
∏n

i=1 kγi

i = 1 holds under
any unit conversions of f1, f2, ..., fn, the scale-type of g is called “absolute scale”.
Because the value of g is invariant for any unit conversions, it is uniquely defined
and called “dimensionless number”. Its admissible unit conversion follows the
identity group g′2 = g1. The examples are the ratio of two masses and angle in
radian.

4 Admissible Formulae of Law Equations

In this section, we review some important theorems on the relations among
observed quantities, and show their extension for the discovery of law equations
as communicable knowledge.

R.D. Luce claimed that the group structure of each scale-type is conserved
through the unit transformation, and this fact strongly limits the mathematically
admissible relations among quantities having interval and ratio scale-types [14].
For example, when x and y are ratio scale, the admissible unit conversions are
x′ = kx and y′ = Ky respectively. When we assume the relation between x and
y to be y = log x, and apply a unit conversion on x, then the unit of y should
be also converted as y′ = log x′ = log kx = log x + log k. This consequence
that the origin of y is changed is contradictory to the above admissible unit
conversions of y. Thus, the logarithmic relation between two ratio scale quantities
is not admissible. R.D. Luce further proceeded this discussion, and derived the
admissible binary relations between ratio and interval scale quantities depicted
in Table 1.

On the other hand, an important theorem called “Product Theorem” on the
relation formula among multiple measured quantities had been presented in the
unit dimensional analysis which was independently studied by old scientists [2].
However, this theorem addresses on the relation among ratio scale quantities
only. We derived the following “Extended Product Theorem” [20] to the case
where the quantities of ratio, interval and absolute scales are included in the
formula by introducing the consequences of R.D. Luce.

Theorem 1 (Extended Product Theorem). Given a set of ratio scale quan-
tities R and a set of interval scale quantities I, a derivative quantity Π is related
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with each xi ∈ R ∪ I through one of the following formulae.

Π = (
∏

xi∈R

|xi|ai)(
∏

Ik∈C

(
∑

xj∈Ik

bkj |xj | + ck)ak),

Π =
∑

xi∈R

ai log |xi| +
∑

Ik∈Cḡ

ak log(
∑

xj∈Ik

bkj |xj | + ck) +
∑

x�∈Ig

bg�|x�| + cg,

where R or I can be empty, and C is a covering of I, Cḡ a covering of I − Ig

(Ig ⊆ I). Π can be any of interval, ratio and absolute scale, and each coefficient
is constant.

Here, a “covering” C of a set I is a set of finite subsets Isis of I where I = ∪iIsi.
The same definition applies to Cḡ for I − Ig. When the argument quantities
appearing in a law equation are ratio scale and/or interval scale, the relation
among the quantities sharing arbitrary unit dimensions has one of the above
formulae.

Another major theorem called “Buckingham Π-theorem” on the structure of
a law equation consisting of ratio scale quantities only had also been presented in
the old work in the unit dimensional analysis [3]. We further extended this the-
orem to include the interval, ratio and absolute scale quantities in the argument
[20].

Theorem 2 (Extended Buckingham Π-theorem). Given a complete equa-
tion φ(x, y, z, ...) = 0, if every argument of this equation is either of interval,
ratio and absolute scales, then the equation can be rewritten in the following
form.

F (Π1,Π2, ...,Πn−r−s) = 0

where n is the number of the arguments of φ, r and s are the numbers of the
basic unit and the basic origin contained in x, y, ..., and Πi is absolute scale for
all i and represented by the formulae of the regime defined by Extended Product
Theorem.

Here, the basic unit is the unit dimension which defines the scaling independent
of the other unit in φ as length [L], mass [M ] and time [T ], and the basic origin
is the origin which is artificially chosen in the measurement of an interval scale
quantity, for example, the origin of temperature in Celsius defined as the melting
point of water under the standard atmosphere pressure. Each Πi = ρi(x, y, ...)
defining Πi is called a “regime” and F (Π1,Π2, ...,Πn−r) = 0 an “ensemble”.
Because all arguments of F = 0 are absolute scale, i.e., dimensionless, the shape
of the formula does not constrained by the theorem 1, and the arbitrary formula
is admissible for F = 0 in terms of the scale-type.

The following example of the nuclear decay of a radioactive element is an
example of the theorem 1 and the theorem 2.

N = N0 exp[−λ(t − t0)] (1)
where t[s] : time, t0[s] : time origin, λ[s−1] : decay speed constant,

N [kg] : current element mass, N0[kg] : t0original element mass
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t and t0 are interval scale, and λ, N and N0 are ratio scale. By introducing
dimensionless Π1 and Π2, the equation can be rewritten as

Π1 = exp(−Π2), (2)
Π1 = N/N0, (3)
Π2 = λ(t − t0), (4)

which are an ensemble and two regimes. The regimes (3) and (4) follow the
first formula in the theorem 1. The number of the original arguments n is 5.
r is equal to 2 because t, t0 and λ share a basic unit of time [s] and N and
N0 share the basic unit of mass [kg]. s is equal to 1 since t and t0 share a
basic origin of time. Thus n − r − s = 2 holds, and this satisfies the theorem 2.
As indicated in the above example, the scale-type of measurement quantities
strongly constrains the formulae of the law equations which are communicable
among scientists. Empirical equations which relate the measurement quantities
in arbitrary formulae do not provide excellent knowledge representation for the
understanding and the communication among domain experts.

5 Algorithm of Smart Discovery System (SDS)

In this section, an algorithm of our “Smart Discovery System (SDS)” to discover
a law equation based on the mathematical admissibility and the experiments on
the objective behaviors is explained. An important point to perform these pro-
cedures is to establish a method to check if an equation holds for all behaviors
which can be occurred in the experiments on the objective behaviors. A natural
approach is to collect all possible combinations of the values of the controllable
quantities in experiments and to fit the various candidate equations to the col-
lected data. However, this generate and test approach faces the combinatorial
explosion in the data collection and the candidate equation generation. To avoid
this difficulty, we introduce the following assumptions.

(a) The objective behaviors are represented by a complete equation, and all
quantities except one dependent quantity are controllable at least.

(b) The objective behaviors are static, or the time derivatives of some quantities
are directly observable if the behaviors are dynamic.

(c) Given a pair of any quantities observed in the objective behaviors, the bi-
variate relation on the pair can be identified while fixing the values of the
other quantities in experiments.

5.1 Discovery of regime equations

bi-variate fitting: If the objective behaviors and the experimental conditions
satisfy these assumptions, “bi-variate fitting” which searches a pair wise relation
of two observed quantities can be applied to reduce the data for the search. In
addition, the mathematical admissibility criterion on the scale-type is used to
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limit the equation formula to be fitted to the observed data. Initially, for a pair
of interval scale quantities {xi, xj}, a linear relation

bijxi + xj = dij

is searched in the fitting based on the constraints in the table 1 where bij should
be a constant coefficient. For a pair of ratio scale quantities, a power relation

xi
aij xj = dij

is searched. In case of a pair of an interval scale xi and ratio scale xj , the following
two candidate relations are searched.

bijxi + x
aij

j = dij , bijxi + log xj = dij .

The goodness of fitting is checked in every fitting by the statistical F -test [1].
The same experiments are repeated m = 10 times. Then the bi-variate fittings to
the data obtained in each experiment are conducted to check the reproducibility
of the coefficient bij , i.e., its constancy, through χ2-test, and the effect of noise
and error on their values are reduced by averaging the coefficients over m = 10
results. By applying these fitting to every pair of quantities in the data, all
bi-variate relations satisfying the constraints in the table 1 are identified. The
mathematical complexity of the bi-variate fitting is O(mn2) where n is the total
number of the quantities in the given data.

triplet test: In the next step, the mutually consistent bi-variate relations are
composed to multiple regime equations shown in the theorem 1. Each regime
equation is composed in bottom up manner which searches the equation relat-
ing less number of quantities in the data. The consistent composition is made
through the following “triplet test”. The consistency among the values of the
constant coefficients in a triplet of the bi-variate relations for three observed
quantities is checked under the assumption of a linear relation among the inter-
val scale quantities as indicated in the theorem 1.

For example, given a set of three interval scale quantities {xi, xj , xk}, if the
following three bi-variate relations among them are mutually consistent,

bijxi + xj = dij , bjkxj + xk = djk, bkixk + xi = dki

the following relation holds among the coefficients.

1 = bijbjkbki.

This condition can be tested by the normal distribution test considering the error
bounds of the coefficients. The error bounds of bij , bjk and bki, i.e., ∆bij ,∆bjk

and ∆bki, can be statistically evaluated based on the errors of the m least square
fittings of each relation. Then the total error bound ∆brhs of the right hand side
of the above relation is derived by the following formula of error propagation.

∆brhs =
√

(bjkbki∆bij)2 + (bijbki∆bjk)2 + (bijbjk∆bki)2
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This standard deviation error bound is used to judge if the value of the product
of the three coefficients are sufficiently close to 1 under the normal distribution
test.

The principle of this test can be applied to the other triplets containing of
ratio and/or interval scale quantities. If the consistency is confirmed, they can
be merged into a relation. In the above example, they are merged into

xi + bjkbkixj + bkixk = πijk,

where πijk is an intermediate derivative quantities composed by bjk and bki

which are known to be dependent of the other quantities, i.e., constants.
This procedure is continued for another quantity x� and any two quantities

in {xi, xj , xk}. If every triplet among the bi-variate relations of {xh, xi, xj , x�} is
consistent, they can be merged to a relation among the four quantities since all
constant coefficients in a linear formulae are mutually consistent. In this case,
the following linear relation is obtained.

xi + bj�b�jxj + bk�b�kxk + b�ix� = πijk�,

This procedure further repeated until no larger sets of quantities having con-
sistency are found. This is similar to the generalization of bi-variate relations
to multi-variate relations in BACON [13]. However, the computational com-
plexity of the triplet test O(n3) is lower than the conventional approach. This is
because of the use of the mathematical admissibility constraints and the system-
atic triplet consistency test. Through this procedure, the set of regime equations
relating the many original quantities with less number of dimensionless quanti-
ties {Πi|i = 1, ..., n − r − s} can be discovered, and this efficiently reduces the
computational cost for the discovery of a complete law equation.

5.2 Discovery of ensemble equation

term merge: Once all regimes to define Πis are discovered, an ensemble equa-
tion among Πis is searched. Because the ensemble equation does not follow the
scale-type constraints, it can take any arbitrary formula. Accordingly, we intro-
duce an assumption that the ensemble equation consists of only the arithmetic
operators and elementary functions among Πis to limit the search space of the
formula. The most of the law equations follows this assumption, and it is widely
used in the other equation discovery approaches [6].

In our approach, a set CE of candidate binary relations such as addition,
multiplication, linear, exponential and logarithmic relations is given. Then by
the technique of the bi-variate fitting, each relation in CE is applied to the data
of Πis calculated by the regime equations. For example, the following bi-variate
product form and linear form are applied.

Π
aij

i Πj = bij (product form) and, aijΠi + Πj = bij , (linear form).

First, the former product form is adopted to the least square fitting to every
pair of Πi and Πj(i, j = 1, ..., n− r− s). Then, the statistical F -tests mentioned
earlier are applied.
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This process is repeated over the k = 10 different data sets obtained in the
random experiments. The bi-variate equations passed all these tests are stored,
and the invariance of the exponent aij of each bi-variate relation against the
value changes of any other quantities are checked by examining the k = 10
values of aij obtained in the experiments through χ2-test. If aij is invariant,
we observe a high possibility that aij is a constant characterizing the nature of
the objective system within the scope of the experiment. The relations having
the invariant aijs are marked, and every maximal convex set MCS of quantities
is searched where all pairs of quantities in MCS are related by the bi-variate
relations marked as having the invariant aij . Then the quantities in every MCS
are merged into the following term.

Θi =
∏

xj∈MCSi

xj
aj .

Similar procedure is applied to the linear bi-variate form, in which case the
merged term of an MCS is as follows.

Θi =
∑

xj∈MCSi

ajxj .

This procedure is recursively repeated for all bi-variate relations in CE among
Πis and Θis until no new term becomes available. A Θi is a unique derivative
term in each relation which is dependent of the values of the other Πis outside
the relation.

identity constraint: If all terms are merged into one in the above term merge
process, the relation is the ensemble equation. Otherwise the following proce-
dure to merge the Θis further continues by applying an extra mathematical
constraint based on the “identity” of the relations. The basic principle of the
identity constraints comes by answering the question that “what is the relation
among Θh, Θi and Θj , if Θi = fΘj

(Θh) and Θj = fΘi
(Θh) are known?” For

example, if a(Θj)Θh + Θi = b(Θj) and a(Θi)Θh + Θj = b(Θi) are given, the
following identity equation is obtained by solving each for Θh.

Θh ≡ − Θi

a(Θj)
+

b(Θj)
a(Θj)

≡ − Θj

a(Θi)
+

b(Θi)
a(Θi)

Because the third expression is linear with Θj for any Θi, the second must be
so. Accordingly, the following must hold.

1/a(Θj) = α1Θj + β1, b(Θj)/a(Θj) = −α2Θj − β2.

By substituting these to the second expression,

Θh + α1ΘiΘj + β1Θi + α2Θj + β2 = 0

is obtained.
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This principle is generalized to various relations among multiple terms. Ta-
ble 2 shows such relations for multiple linear relations and multiple product
relations. The relation is used to fit to the data and to merge Θis further into
another new term Θ which is a coefficient of the relation dependent of the val-
ues of the other Θis outside the relation. Similarly to the bi-variate fitting, the
goodness of fitting is checked by the statistical F -test. These merging operations
are repeated until a complete ensemble equation among the terms is obtained
where all coefficients are constant in a relation.

Table 2. Identity constraints

bi-variate re-
lation

general relation

ax + y = b
∑

(Ai∈2LQ)&(p⊆/Ai∀p∈L)
ai

∏
xj∈Ai

xj = 0

xay = b
∏

(Ai∈2P Q)&(p⊆/Ai∀p∈P )
exp(ai

∏
xj∈Ai

log xj) = 0

L is a set of pair wise terms having a bi-variate linear
relation and LQ = ∪p∈Lp. P is a set of pair wise terms
having a bi-variate product relation and PQ = ∪p∈P p.

6 Application to Law Equation Discovery

6.1 Discovery of law based models

The aforementioned principles have been implemented to “Smart Discovery Sys-
tem (SDS)” [20]. SDS receives the data and the scale-type information of the
quantities observed in model simulations, and tries to discover a complete law
equation governing the simulation without knowing the model.

First, the application of SDS to a circuit depicted in Fig. 2 is demonstrated.
This is a circuit of photometer to measure the rate of increase of photo inten-
sity within a certain time period. This is represented by the following complete
equation containing 18 quantities.

(
R3hfe2

R3hfe2 + hie2

R2hfe1

R2hfe1 + hie1

rL2

rL2 + R1
)(V1 − V0) − Q

C
− Khie3X

Bhfe3

= 0 (5)

Here, L and r are photo intensity and sensitivity of the Csd device which is
one of popular optical sensors. X,K and B are the position of indicator, spring
constant and the intensity of magnetic field of the current meter respectively.
hiei

is the input impedance of the base of the i-th transistor. hfei
is the gain

ratio of the currents at the base and the collector of the i-th transistor. The
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definitions of the other quantities follow the standard symbolic representations
in the electric circuit domain.

The electric voltage levels V1 and V2 are interval scale and hfei
s absolute

scale. Thus, the set of interval scale quantities is IQ = {V1, V2}, that of ratio
scale quantities RQ = {L, r,R1, R2, R3, hie1 , hie2 , hie3 , Q,C,X,K,B} and that
of absolute scale quantities AQ = {hfe1 , hfe2 , hfe3}. In the following equation
fitting, the value of each coefficient is rounded into the nearest integer or the
nearest inverse of integer, if the value is close enough to it within the error
bound. This is due to the empirical observation that the coefficients are often
the integers or their inverses in a law equation.

Initially, the bi-variate fitting was applied to IQ, and a binary relation Π1 =
V1 − V0 was obtained. Since IQ includes only the two quantities, the search for
Πs in IQ was stopped. In the next step, the bi-variate fitting was applied to the
quantities in RQ and Π1. Because the basic origin of the voltage level has been
cancel out between V1 and V0, Π1 became a ratio scale quantity. The resultant
binary relations were as follows.

L2r = b1, L
−2R1 = b2, r

−1R1 = b3, R
−1
2 hie1 = b4, R

−1
3 hie2 = b5, Q

−1C = b6,

hie3X = b7, hie3K = b8, h
−1
ie3

B = b9,XK = b10,X
−1B = b11,K

−1B = b12

Subsequently, the triplet tests were applied to these relations, and the fol-
lowing regime equations were obtained.

Π1 = V1 − V0,Π2 = R1r
−1.0L−2.0,Π3 = hie1R

−1.0
2 ,

Π4 = hie2R
−1.0
3 ,Π5 = hie3XKB−1.0,Π6 = QC−1.0

Then, the merge of these Πs and the quantities in AQ was performed by applying
the binary relations in CE, and the following new terms were derived.

Θ1 = Π2hfe1 = R1r
−1.0L−2.0hfe1 ,

Θ2 = Π3hfe2 = hie1R
−1.0
2 hfe2 ,

Θ3 = Π4hfe3 = hie2R
−1.0
3 hfe3 ,

Θ4 = Π5 + Π6 = hie3XKB−1.0 + QC−1.0,

Θ5 = Π1Θ
−1.0
4 = (V1 − V0)(hie3XKB−1.0 + QC−1.0)−1.0

Thus, the quantities were merged into five terms {Θ1, Θ2, Θ3, Θ5}.
Furthermore, the identity constraint was applied to these terms since the

binary linear relations were found in the combinations of {Θ1, Θ5}, {Θ2, Θ5}
and {Θ3, Θ5}. This derived the following multi-linear formula.

Θ1Θ2Θ3 + Θ1Θ2 + Θ2Θ3 + Θ1Θ3 + Θ1 + Θ2 + Θ3 + Θ5 + 1 = 0

Because every coefficient is independent of any terms, this is considered to be
the ensemble equation. The equivalence of this result to Eq.(5) is easily checked
by substituting the intermediate terms to this ensemble equation.

SDS has been also applied to non-physics domain. For example, given a sound
frequency f and a musical sound pitch I where the former is ratio scale and the
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Fig. 2. A circuit of photometer.

latter interval scale, the following two candidate relations have been derived by
SDS.

I = αfβ + γ, or I = α log f + β

Because both equations show similar accuracy, and the latter contains less pa-
rameters, SDS prefers the latter by following the criterion of parsimony which
will be discussed later. This equation has been called “Fechner’s Law” in psy-
chophysics. Another example is the law of spaciousness of a room in psychophysics
[8].

Sp = c
n∑

i=1

RL0.3
i W 0.3

i ,

where Sp, R, Li and Wi are average spaciousness of a room, room capacity, light
intensity and solid angle of window at the location i in the room. Though the
unit dimension of Sp is unclear, its scale-type is known to be ratio scale since it
was evaluated through the method of magnitude estimation which is a popular
method to derive a ratio scale quantity in psychophysics. L and R are ratio scale,
and W is absolute scale. SDS easily obtained the above expression.

6.2 Basic Performance of SDS

Table 3 shows the performance of SDS to discover various physical law equa-
tions. The relative CPU time of SDS normalized by the first case shows that its
computational time is nearly proportional to n2. For reference, the relative CPU
time of ABACUS is indicated for the same cases except for the circuit examples
of this paper [6]. Though ABACUS applies various heuristics including the in-
formation of unit dimension, its computational time is non-polynomial, and it
could not derive the law equations for the complicated circuits within a tractable
time.

The robustness of SDS against the noisy experimental environment has been
also evaluated. The upper limitation of the noise level to obtain the correct result
in the cases of more than 80% of 10 trials was investigated for each physical law,
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Table 3. Performance of SDS and ABACUS in reconstructing physical laws.

Example n TC(S) TC(A) NL(S)

Ideal Gas 4 1.00 1.00 ±40%
Momentum 8 6.14 22.7 ±35%
Coulomb 5 1.63 24.7 ±35%
Stoke’s 5 1.59 16.3 ±35%
Kinetic Energy 8 6.19 285. ±30%
Circuit*1 17 21.6 - ±20%
Circuit*2 18 21.9 - ±20%

n: Number of Quantities, TC(S): Total CPU time of SDS, TC(A): Total CPU
Time of ABACUS, NL(S): Limitation of Noise Level of SDS, *1: Case that
electronic voltage is represented by a ratio scale V , *2: Case that electronic
voltage is represented by two interval scale V0 and V1.

and they are indicated in the last column of Table 3. The noise levels shown
here are the standard deviation of Gaussian noise relative to the real values of
quantities, and were added to both controlled (input) quantities and measured
(output) quantities at the same time. Thus actual noise level is higher than
these levels. The results show the significant robustness of SDS. This is due to
the bottom up approach of the bi-variate fitting where the fitting is generally
robust because of its simplicity. SDS can provide appropriate results under any
practical noise condition.

As shown in the above results, SDS can discover quite complex law based
models containing more than 10 quantities under practical conditions. As the
modeling of the objective behaviors represented by many quantities is a difficult
and time consuming task for scientists and engineers, the approach presented in
this chapter provide a significant advantage.

7 Generic Criteria to Discover Communicable Law
Equations

As we have seen in the previous sections, the “Mathematical Admissibility”
plays an important role to discover the law equations as communicable knowl-
edge shared by scientists, since it is based on the assumptions and the operations
commonly used in the study of scientists. However, this is merely one of the crite-
ria for the communicability. Many other important criteria must be considered
in the process of the law equation discovery, and in fact the SDS takes these
criteria into account under the environment where the data are experimentally
obtained. In this section, the extra and important criteria are discussed. Prob-
ably, the complete axiomatization of the definitions and the conditions of law
equations without any exception may be difficult since some relations might be
named as “laws” in purely empirical manner. However, the clarification of its
criteria is considered to be highly important to give a firm basis of the science.
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Some of the important conditions on the scientific proposition are given by
R. Descartes. They are clarity, distinctness, soundness and consistency in the
deduction of the proposition [4], and these conditions should be also take into
account to clarify the scientific law criteria. I. Newton also proposed some con-
ditions of the law equations [15]. The first condition is the objectiveness where
the relation reflects only the causal assumptions of the nature while excluding
any human’s mental effects, the second the parsimony of the causal assumptions
supporting the relation, the third the generality where the relation holds over
the various behaviors in a domain and the forth the soundness where the relation
is not violated by any experimental result performed under the environment fol-
lowing the causal assumptions. H.A. Simon also claimed the importance of the
parsimony of the law description [17]. In the modern physics, the importance
of the mathematical admissibility of the relation formulae under the nature of
the time and the space also became to be stressed by some major physicists
including R.P. Feynman [7].

We introduce the following definitions and propositions associated with the
criteria for the law equations discovery based on the above claims.

Definition 10 (A Scientific Region) A scientific region T is represented by
the following quadruplet.

T =< S,A,L, P >

where
S = {sh|sh is a rule in syntax, h = 1, ..., p},
A = {ai|ai is an axiom in semantics, i = 1, ..., q},
L = {�j |�j is a postulate in semantics, j = 1, ..., r},
P = {ok|ok is an objective behavior, k = 1, ..., s}.

S is the syntax of T , and for example its elements are the coordinate system,
the definitions of quantities such as velocity and energy and the definitions of
the algebraic operators in physics. The axioms in A are the set of the mathe-
matical relations independent of objective behaviors, for example, the relations
of distances among points in an Euclidean space. A postulate �j(∈ L) is a law
equation where its validity is empirically believed under some conditions which
will be described later. An example is the following law of gravity in physics.

F = G
M1M2

R2
, (6)

where F [kg·m/s2] is the gravity force interacting between two mass points
M1[kg] and M2[kg] when their interval distance is R[m]. G[m3/(kg·s2)] is the
gravity constant. A and L give the semantics of T .

In addition, the definition of T involves a set of objective behaviors P which
is analyzed in the scientific domain, since the scientific domain is established for
the purpose to study some limited part of the universe. In other words, S,A
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and L must be valid within the analysis of P , and hence each �j is requested to
satisfy the conditions of the law equations for P but not requested outside of P．

Moreover, an �j is used in the analysis of a part of P but not necessarily
used for all of P . For example, the law of gravity is not necessarily used in the
analysis of a spring behavior.

Definition 11 (Objective Behaviors of a Relation) Given a mathematical
relation e, if all quantities in e appear in the description of a behavior as mutually
relevant quantities, the behavior is called an “objective behavior of e”. A subset of
P , in which the behaviors are the objective of e, is called “the set of the objective
behaviors of e” Pe(⊆ P ).

For example, the gravity interaction between mass points characterized by the
quantities of F,M1,M2 and R is an objective behavior of the aforementioned
law of gravity.

Definition 12 (Satisfaction and Consistency of a Relation) Given a math-
ematical relation e and its objective behavior, if the behavior is explicitly con-
strained by e, e is said to be “satisfactory” in the behavior. On the other hand,
if the behavior does not explicitly violate e, e is said to be “consistent” with the
behavior.

When we consider the kinematic momentum conservation in the collision of two
mass points, if the mass points are very heavy, this behavior is analyzed under
the requirement that the law of gravity should be satisfactory. Otherwise, the
law of gravity is ignored. But, it should be consistent in both cases.

Based on these definitions and the aforementioned claims of some major
scientists, the criteria of a relation e to be a law equation are described as
follows

(1) Objectiveness: All quantities appearing in e are observable directly
and/or indirectly in the behaviors in Pe.

(2) Generality: The satisfaction of e is widely identified in the test on
the behaviors included in Pe.

(3) Reproducibility: For every behavior in Pe, the identical result on the
satisfaction and the consistency is identified in repeated
tests.

(4) Soundness: The consistency of e is identified in the test on every
behavior in Pe.

(5) Parsimony: e includes the least number of quantities to characterize
the behaviors in Pe.

(6) Mathematical:
Admissibility

e follows the syntax S and the axioms of the semantics
A.

Here, the “test” is an experiment or an observation, and the “identification” is to
confirm a fact in the test while considering the uncertainty and/or the accuracy
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of the test. Though the objectiveness and the generality include the criteria of
(3), (4) and (5) in wider sense, each criterion is more specifically defined in this
literature to reduce their ambiguity.

Some widely known scientific relations are not identified as law equations
among scientists. For example, given the enforced turbulence flow in a circu-
lar pipe, the heat transfer behavior from the flow liquid to the pipe wall is
represented by the following Dittus-Boelter equation which is called as an “ex-
perimental equation” but not a “law equation” in thermo-hydraulics domain.

Nu = 0.023Re0.8Pr0.4, (7)

where Nu = hd/λ, Re = ρud/η, and Pr = ηcp/λ. h[W/(m2·◦K)] is the coeffi-
cient of the heat transfer rate between the liquid and the wall, d[m] the diameter
of the circular pipe, λ[W/(m·◦K)], ρ[kg/m3], u[m/s], η[Pa·s], cp[J/(kg·◦K)] the
heat conductance, density, velocity, viscosity and specific heat of the liquid under
a constant pressure respectively [11].

This relation stands objectively independent of our interpretation. The set of
the objective behaviors of the thermo-hydraulics P includes all behaviors over
all value ranges of Nu,Re and Pr. Thus, according to the definition 11, Pe of
the Dittus-Boelter equation is the set of all behaviors represented in some value
ranges of Nu,Re and Pr in P . This equation meets the criterion of the objec-
tiveness because Nu,Re and Pr are observable through some experiments. It is
general over various enforced turbulence flows in circular pipes and reproducible
for the repetition of the tests. It also has a parsimonious shape, and satisfies the
unit dimensional constraint in terms of the mathematical admissibility. However,
this equation is not sound in Pe, because it stands for only the value ranges of
104 ≤ Re ≤ 105 and 1 ≤ Pr ≤ 10, and is explicitly violated outside of these
ranges. In this regard, this equation is not a law equation.

On the other hand, P of the classical mechanics includes the behaviors over
all value ranges of mass, distance and force, and thus Pe of the law of gravity
is the set of all behaviors represented in some value ranges of these quantities.
This equation also meets the criteria of objectiveness, generality, reproducibility,
parsimony and mathematical admissibility in Pe. Furthermore, as any behaviors
in Pe do not violate this relation, it is sound.

Strictly speaking, the verifications of the generality and the soundness are
very hard since they require the experimental knowledge on various behaviors.
However, these can be checked if we relax the requirements to limit the verifi-
cation within a given set of the objective behaviors. Under this premise, SDS
seeks an equation having the generality to explain all behaviors shown by the
combinations of the values of some quantities in the experiments on the objec-
tive behaviors. It also seeks the equation having the soundness not to contradict
with all behaviors observed in the experiments. Eventually, the generality is
subsumed by the soundness by limiting the behaviors for the verification. The
objectiveness is ensured by seeking the relation among directly and indirectly
observed quantities. The reproducibility is also ensured by checking if identical
bi-variate relations are obtained multiple times in the repeated statistical tests.



Lecture notes in Artificial Intelligence ???, pp.??-?? 21

The parsimony is automatically induced in the algorithm to compose the equa-
tion in bottom up manner. The mathematical admissibility is well addressed as
mentioned earlier.

8 Summary

In this chapter, the criteria on the relation among quantities observed in objec-
tive behaviors to be a the law equation as the communicable knowledge among
domain experts were discussed through the demonstration of a law discovery
system SDS. Especially, the criterion of the mathematical admissibility has been
analyzed in detail on the axiomatic basis. The definitions of scale-types of quan-
tities and the admissibility conditions on their relations based on the character-
istics of the scale-types have been introduced, and the extension of the major
theorems in the unit dimensional analysis was shown. Through these analyses,
the communicability criteria of the law equation have been clarified.

Moreover, the superior performance of SDS was demonstrated through some
simulation experiments. In the evaluation, the validity of the presented prin-
ciples has been confirmed, and its power to systematically discover candidate
law equations over various domains along the communicability criteria has been
shown.

In the recent study, the function and ability of SDS have been further ex-
tended. It became to discover law based models consisting of simultaneous equa-
tions [22]. Moreover, the most recent version of SDS can discover the law based
models from the data which are passively observed not in the artificial experi-
ments but the natural environment [23]. These developments extend the practical
domains where communicable law equations are discovered for scientists.
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