
2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 2101

Combining Activity-evaluation Information with
NMF for Trust-link Prediction in Social Media

Kanji Matsutani∗, Masahito Kumano∗, Masahiro Kimura∗, Kazumi Saito†, Kouzou Ohara‡ and Hiroshi Motoda§¶
∗Department of Electronics and Informatics, Ryukoku University, Japan
†School of Administration and Informatics, University of Shizuoka, Japan

‡Department of Integrated Information Technology, Aoyama Gakuin University, Japan
§Institute of Scientific and Industrial Research, Osaka University, Japan

¶School of Computing and Information Systems, University of Tasmania, Australia

Abstract—Acquiring a network of trust relations among users
in social media sites, e.g., item-review sites, is important for
analyzing users’ behavior and efficiently finding reliable infor-
mation on the Web. We address the problem of predicting trust-
links among users for an item-review site. Non-negative matrix
factorization (NMF) methods have recently been shown useful for
trust-link prediction in such a site where both link and activity
information is available. Here, a user activity in an item-review
site means posting a review and giving a rating for an item. In this
paper, for better trust-link prediction, we propose a new NMF
method that incorporates people’s evaluation of users’ activities
as well as trust-links and users’ activities themselves. We further
apply it to an analysis of users’ behavior. Using two real world
item-review sites, we experimentally demonstrate the effectiveness
of the proposed method.

Keywords—social media mining; trust-link prediction; behav-
ioral analysis; non-negative matrix factorization

I. Introduction

Recently, Social Media such as Digg, eBay, Epinions,
Facebook, etc. has become popular, and allowed us to construct
a large-scale network of trust relations in an online world. A
trust network among social media users is a kind of social
network, and helps efficiently find reliable information on the
Web. News and opinions that are posted on social media sites
can rapidly and widely spread through such a social network,
and can be shared by a large number of people. This way, a
trust network plays an important role for people’s daily life.
Thus, for mining a trust network (social network), researchers
have made a variety of studies including information diffusion
analysis (see e.g., [1], [2] [3], [4], [5], [6], [7]), and social-link
prediction (see e.g., [8], [9], [10], [11], [12], [13], [14]).

For analyzing users’ behavior in a social media site, it
is indispensable to acquire the network of trust relations
among users in the site. However, it is generally hard to
obtain a complete trust network structure at a specified time-
point for analysis, since a trust network continually evolves
as time passes and there arise also privacy issues. In an
online world, people’s behavioral patterns and preferences may
largely change over a long period of time. In this paper, we
aim to develop an effective solution method for the problem of
predicting trust-links to be created among recent active users in
the very near future. Here, we note that the developed method
is also applicable to the missing-link prediction problem.

Many of social media sites offer a rich set of activities
as well as the opportunity for connecting trust-links, where

users can select and perform one from a given set of activities.
Examples include item-review sites, where as an activity, a
user can post a review and give a rating for an item in a
given set of items. For the trust-link prediction problem in
a social media site offering trust-links and activities, Tang et
al [14] presented a non-negative matrix factorization (NMF)
method employing both link and activity information, where
they exploited a social theory called homophily. Here, the
homophily effect suggests that similar users (i.e., users per-
forming similar activities) have a higher likelihood to establish
trust relations [10], [15]. Their method called hTrust is based
on NMF, where NMF [16] has been shown to be useful for
many applications including collaborative filtering, document
clustering and link prediction. Using real data of product-
review sites, they experimentally demonstrated that hTrust
outperforms conventional methods [14].

As is the case with Tang et al [14], we also focus on item-
review sites. Recently, in many of item-review sites, people can
post their appreciation messages to a review of a user for an
item if they think it useful. In order to improve NMF methods
for trust-link prediction, we consider combining such infor-
mation with NMF. In this paper, for the trust-link prediction
problem, we propose a new NMF method that incorporates
people’s evaluations of users’ activities as well as trust-links
and users’ activities themselves, and also apply it to analysis of
users’ behavior in a social media site. We extensively evaluate
the proposed method using real data of two item-review sites.
First, we statistically analyze the datasets, and in particular
confirm that the number of appreciation messages received
correlates with the number of trust-links received, suggesting
that incorporating the activity-evaluation information can be a
promising approach. Next, we demonstrate that the proposed
method outperforms hTrust and its variants for solving the
trust-link prediction problem. Moreover, for the datasets, we
present the analysis results for users’ behavior in terms of
creating trust-links.

The rest of the paper is organized as follows: In Section II,
we formulate the trust-link prediction problem, and revisit
the NMF methods that exploit both the link and activity
information for trust-link prediction. We present the proposed
NMF method in Section III, and report the results for the
evaluation experiments in Section IV. We conclude the paper
by summarizing the main results in Section V.
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II. NMF for Trust-link Prediction

Non-negative matrix factorization (NMF) has been shown
to be useful for trust-link prediction in social media by Tang
et al [14]. They proposed hTrust, an NMF method employing
both link and activity information for trust-link prediction in
social media. A similar NMF method was presented by Zhu et
al [17]. They proposed Joint Link-Content Matrix Factorization
(JLCMF), an NMF method employing both link and content
information for web page classification. In this section, we first
formulate our problem of trust-link prediction in social media,
and recall hTrust and JLCMF.

A. Problem Formulation

For a social media site offering trust-links and activities,
we address a problem of predicting trust-links to be created
among recent active users in the very near future. Here, we
assume that an activity of a user in this site is to post a review
and give a rating for an item in a given set of items. Moreover,
we assume that people can post their appreciation message to
a review of a user for an item in the site if they like it, that
is, information of people’s evaluations of users’ activities is
observable in the site.

We focus on a set V of recent active users: A recent active
user is defined as a user who created at least n1 trust-links
and received at least n2 trust-links during the most recent Δt0
months (referred to as the observation period I0), where it is
assumed that the period I0 is not long (for example, Δt0 is
about five or six). We set

V = {v1, . . . , vN}.
We denote by

G = (Gi, j)i, j= 1,...,N

the N × N matrix representing trust-links to date in V, that
is, Gi, j = 1 if there exists a trust-link from user vi to user v j
until now, and Gi, j = 0 otherwise. In this paper, we deal with
the problem of predicting trust-links that are to be created in
V during the next Δt1 months (referred to as the prediction
period I1), where it is assumed that the period I1 is short (for
example, Δt1 is about two or three). Here, note that the values
of Δt0 = |I0| and Δt1 = |I1| are set by taking into account the
fact that users’ behavioral patterns do not largely change in a
short period of time (e.g., several months). In particular, we
consider solving this prediction problem by the NMF approach
that factorizes matrix G.

There is more information that is available for our trust-link
prediction problem. Let

A = {a1, . . . , aM}
be the set of all the items for which users belonging to V
have posted reviews and given ratings until now. Let X = (Xi,α)
denote the N × M matrix representing users’ activities to date
in V, where Xi,α is the rating score which user vi gave for item
aα. Here, we set Xi,α = 0 if user vi did not post a review for
item aα. Let Y = (Yi,α) denote the N × M matrix representing
information of people’s evaluations of users’ activities to date
inV, where Yi,α is the number of appreciation messages which
user vi received for the review of item aα. In this paper, we
exploit both matrices X and Y as well as matrix G while hTrust
and JLCMF only exploit matrices G and X.

B. hTrust

The NMF approach seeks high-quality feature representa-
tions using latent spaces. hTrust exploits only one latent space.
Let K be the dimension of the latent space. hTrust introduces a
non-negative N×K matrix U = (Ui,k) and a non-negative K×K
matrix H = (Hk,�), where Ui,k represents the strength of user vi
for latent factor k, and Hk,� represents the relationship strength
from latent factor k to latent factor � for creating trust-links.
We consider minimizing the following function F0(U,H) of U
and H:

F0(U,H) =
∥∥∥G − UHUT

∥∥∥2
+ λU ‖U‖2 + λH ‖H‖2

+ λX Tr
(
UT S XU

)
, (1)

where λU , λH and λX are positive constants (hyper-parameters).
For any matrix B, BT , ‖B‖ and Tr(B) stand for the transposed
matrix of B, the Frobenius norm of B and the trace of B,
respectively. S X = ((S X)i, j) is the N × N symmetric matrix
defined by

(S X)i, j = ξ̄i δi, j − ξi, j, (2)

where δi, j is the Kronecker delta,

ξi, j =

∑M
α=1 Xi,α Xj,α√∑M

α=1 Xi,α
2
√∑M

α=1 X j,α
2
, (3)

and

ξ̄i =

N∑
j=1

ξi, j. (4)

Note that

Tr
(
UT S XU

)
=

1
2

N∑
i, j=1

ξi, j

K∑
k=1

(Ui,k − U j,k)2, (5)

and the term Tr
(
UT S XU

)
is called homophily regulariza-

tion [14]. This term is introduced for incorporating the property
that users with higher similarity are more likely to establish
trust relations. Here, ξi, j is a similarity measure between users
vi and v j in terms of activity. Note that other choices for ξi, j are
possible, and we can use various similarity measures including
Jaccard coefficient and Pearson correlation coefficient.

For the problem of minimizing the function F0(U,H) under
the condition of non-negative matrices U ≥ 0 and H ≥ 0,
hTrust provides an iterative update algorithm of U and H (see
[14] for more details). Let U∗ = (U∗i,k) and H∗ = (H∗k,�) denote
the optimal U and H derived by the algorithm, respectively.
We refer to a pair (i, j) with Gi, j = 0 as a link-candidate. hTrust
predicts trust-links that are to be created in the period I1 by
ranking link-candidate (i, j) according to the value

G∗i, j =
K∑

k,�=1

U∗i,k H∗k,� U∗j,�.

C. Joint Link-Content Matrix Factorization

JLCMF also exploits only one latent space. Let K be the
dimension of the latent space. JLCMF introduces not only a
non-negative N × K matrix U = (Ui,k) and a non-negative
K × K matrix H = (Hk,�), but also a non-negative M × K
matrix Φ = (Φα,k), where Φα,k represents the relationship
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strength between item aα and latent factor k from the point
of view of posting reviews for items. We consider minimizing
the following function F1(U,H,Φ) of U, H and Φ:

F1(U,H,Φ) =
∥∥∥G − UHUT

∥∥∥2
+ λH ‖H‖2 + λΦ ‖Φ‖2

+ λX

∥∥∥X − U ΦT
∥∥∥2

(6)

where λH , λΦ and λX are positive constants (hyper-parameters).

For the problem of minimizing the function F1(U,H,Φ)
under the condition U ≥ 0, H ≥ 0 and Φ ≥ 0, we can
easily derive an iterative update algorithm of U, H and Φ
by applying hTrust [14] and an ordinary NMF [16]. Although
JLCMF aims at classifying web pages, it can also be applied
to the prediction of trust-links. Thus, in this paper, we regard
JLCMFas an alternative NMF method exploiting both link and
activity information for trust-link prediction.

III. ProposedMethod

We propose a new NMF method that incorporates informa-
tion of trust-links, users’ activities and people’s evaluations of
users’ activities, that is, an NMF method employing matrices
G, X and Y . First, we propose a novel NMF model for trust-
link prediction. Next, we derive an optimization algorithm for
the proposed NMF model. Finally, we present a method of
applying the proposed NMF model to an analysis of users’
behavior.

A. NMF Model for Trust-link Prediction

We consider distinguishing a concept of fields which users
prefer and a concept of fields for which users gain trust. The
former fields are referred to as P-fields, and the latter fields are
referred to as T-fields. Unlike hTrust and JLCMF, the proposed
NMF model employs two latent spaces. One corresponds to
the space of P-fields (called the PF-space), and the other
corresponds to the space of T-fields (called the TF-space).
Thus, P-field and T-field are also referred to as latent P-factor
and latent T-factor, respectively.

Let K be the dimension of the PF-space and L the dimen-
sion of the TF-space. The proposed NMF model introduces a
non-negative N × K matrix U = (Ui,k), a non-negative N × L
matrix W = (Wi,�), and a non-negative K×L matrix H = (Hk,�),
where Ui,k represents the strength of user vi for latent P-factor
k, Wi,k represents the strength of user vi for latent T-factor
k, and Hk,� represents the relationship strength from latent P-
factor k to latent T-factor � for creating trust-links. We consider
minimizing the following function F (U,W,H) of U, W and H:

F (U,W,H) =∥∥∥G − UHWT
∥∥∥2
+ λU ‖U‖2 + λW ‖W‖2 + λH ‖H‖2

+ λX Tr
(
UT S XU

)
+ λY Tr

(
WT S YW

)
, (7)

where λU , λW , λH , λX and λY are positive constants (hyper-
parameters). S X = ((S X)i, j) is the N × N symmetric matrix
defined by Equations (2), (3) and (4). S Y = ((S Y )i, j) is the
N × N symmetric matrix defined by

(S Y )i, j = η̄i δi, j − ηi, j,

where

ηi, j =

∑M
α=1 Yi,α Yj,α√∑M

α=1 Yi,α
2
√∑M

α=1 Y j,α
2

and

η̄i =

N∑
j=1

ηi, j.

Note that

Tr
(
WT S YW

)
=

1
2

N∑
i, j=1

ηi, j

L∑
�=1

(Wi,� −Wj,�)2. (8)

The proposed method incorporates information of both users’
activities and people’s evaluations of users’ activities through
the regularization terms Tr

(
UT S XU

)
and Tr

(
WT S YW

)
. Here,

ξi j is a similarity measure between users vi and v j in terms of
activity, and ηi j is a similarity measure between users vi and v j
in terms of activity-evaluation. Note again that other choices
for ξi, j and ηi, j are possible. Equations (5) and (8) imply
that users of similar activities have similar representations
in terms of latent P-factors, and users of similar activity-
evaluations have similar representations in terms of latent T-
factors. Moreover, the terms ‖U‖2, ‖W‖2 and ‖H‖2 are added
to avoid overfitting as smoothness regularizations.

We present an iterative update algorithm of U, W and H
(see Section III-B) to minimize the function F (U,W,H) under
the condition U ≥ 0, W ≥ 0 and H ≥ 0. Let U∗ =

(
U∗i,k

)
,

W∗ =
(
W∗i,�

)
and H∗ =

(
H∗k,�

)
denote the optimal U, W and

H found by the algorithm, respectively. The proposed method
predicts trust-links to be created in the period I1 by ranking
link-candidate (i, j) according to the value

G∗i, j =
K∑

k=1

L∑
�=1

U∗i,k H∗k,�W∗j,�.

B. Optimization Algorithm

For non-negative N × K matrix U = (Ui,k), non-negative
N × L matrix W = (Wi,�) and non-negative K × L matrix
H = (Hk,�), we consider the problem of minimizing the
function F (U,W,H) defined by Equation (7). In what follows,
we present an iterative update algorithm of U, W and H for
solving this optimization problem. Hereafter, for any matrix
B, Bp,q denotes the (p, q) entry of B.

Let Û, Ŵ and Ĥ be the current estimates of U, W and H,
respectively. Below, we derive update formulas of U, W and
H. First, we define three auxiliary functions EU(U, Û; W,H),
EW (W, Ŵ; U,H) and EH(H, Ĥ; U,W) as follows:

EU(U, Û; W,H) =

‖G‖2 +
N∑

i=1

K∑
k=1

(
ÛHWT WHT

)
i,k

Ûi,k
Ui,k

2

− 2
N∑

i=1

K∑
k=1

(
GWHT

)
i,k

Ûi,k

(
1 + log

Ui,k

Ûi,k

)
+ λU‖U‖2

+ λX

N∑
i, j=1

ξi, j

K∑
k=1

⎧⎪⎨⎪⎩Ui,k
2 − Ûi,kÛ j,k

⎛⎜⎜⎜⎜⎝1 + log
Ui,kU j,k

Ûi,kÛ j,k

⎞⎟⎟⎟⎟⎠
⎫⎪⎬⎪⎭

+ λW‖W‖2 + λH‖H‖2 + λYTr
(
WT S YW

)
, (9)
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EW (W, Ŵ; U,H) =

‖G‖2 +
N∑

i=1

L∑
�=1

(
ŴHT UT UH

)
i,�

Ŵi,�
Wi,�

2

− 2
N∑

i=1

L∑
�=1

(
GT UH

)
i,�

Ŵi,�

(
1 + log

Wi,�

Ŵi,�

)
+ λW‖W‖2

+ λY

N∑
i, j=1

ηi, j

L∑
�=1

⎧⎪⎨⎪⎩Wi,�
2 − Ŵi,�Ŵ j,�

⎛⎜⎜⎜⎜⎝1 + log
Wi,�Wj,�

Ŵi,�Ŵ j,�

⎞⎟⎟⎟⎟⎠
⎫⎪⎬⎪⎭

+ λU‖U‖2 + λH‖H‖2 + λXTr
(
UT S XU

)
, (10)

EH(H, Ĥ; U,W) =

‖G‖2 +
K∑

k=1

L∑
�=1

(
UT UĤWT W

)
k,�

Ĥk,�
Hk,�

2 + λH‖H‖2

− 2
K∑

k=1

L∑
�=1

(
UT GW

)
k,�

Ĥk,�

(
1 + log

Hk,�

Ĥk,�

)
+ λU‖U‖2

+ λW‖W‖2 + λXTr
(
UT S XU

)
+ λYTr

(
WT S YW

)
. (11)

Then, we can prove the following inequalities and equations
(see Lemma 1 in Appendix):

EU(U, Û; W,H) ≥ F (U,W,H),
EW (W, Ŵ; U,H) ≥ F (U,W,H),
EH(H, Ĥ; U,W) ≥ F (U,W,H),
F (U,W,H) = EU(U,U; W,H) = EW (W,W; U,H)

= EH(H,H; U,W). (12)

Thus, from Equations (9) and (12), we can derive an update
formula for U = (Uik) by minimizing EU(U, Û; W,H) with
respect to U as follows (see Lemma 2 in Appendix for more
details):

Ui,k = Ûi,k

√√√√ (
GWHT )

i,k + λX
∑N

j=1 ξi, jÛ j,k(
ÛHWT WHT

)
i,k
+ λUÛi,k + λX ξ̄iÛi,k

(13)

Also, from Equations (10) and (12), we can derive an update
formula for W = (Wi�) by minimizing EW (W, Ŵ; U,H) with
respect to W as follows (see Lemma 2 in Appendix for more
details):

Wi,� = Ŵi,�

√√√√ (
GT UH

)
i,� + λY

∑N
j=1 ηi, jŴ j,�(

ŴHT UT UH
)

i,�
+ λWŴi,� + λY η̄iŴi,�

(14)

Likewise, from Equations (11) and (12), we can derive an
update formula for H = (Hk,�) by minimizing EH(H, Ĥ; U,W)
with respect to H as follows (see Lemma 2 in Appendix for
more details):

Hk,� = Ĥk,�

√√√ (
UT GW

)
k,�(

UT UĤWT W
)

k,�
+ λH Ĥk,�

(15)

Now, we explain the iterative update algorithm of U, W
and H, which iteratively uses the update formulas (13), (14)
and (15). For any non-negative integer t, let Ut, Wt and Ht

denote the t-th update values of U, W and H, respectively. We
define Ut+1 by

Ut+1 = arg min
U
EU(U,Ut; Wt,Ht),

which is obtained from Equation (13). Also, we define Wt+1
by

Wt+1 = arg min
W
EW (W,Wt; Ut+1,Ht),

which is obtained from Equation (14). Likewise, we define
Ht+1 by

Ht+1 = arg min
H
EH(H,Ht; Ut+1,Wt+1),

which is obtained from Equation (15). Then, from Equa-
tion (12), we have

F (Ut,Wt,Ht) = EU(Ut,Ut; Wt,Ht) ≥ EU(Ut+1,Ut; Wt,Ht)
≥ F (Ut+1,Wt,Ht) = EW (Wt,Wt; Ut+1,Ht)
≥ EW (Wt+1,Wt; Ut+1,Ht) ≥ F (Ut+1,Wt+1,Ht)
= EH(Ht,Ht; Ut+1,Wt+1) ≥ EH(Ht+1,Ht; Ut+1,Wt+1)
≥ F (Ut+1,Wt+1,Ht+1).

Therefore, the objective function F (U,W,H) is monotonically
decreasing under the iterative update algorithm, and so the
algorithm converges.

C. Application to Behavioral Analysis

Using the optimal U, W and H found by the proposed
algorithm, i.e., U∗ =

(
U∗i,k

)
, W∗ =

(
W∗i,�

)
and H∗ =

(
H∗k,�

)
,

we analyze users’ behavior in the social media site under
consideration. In order to investigate the latent P-factors (i.e.,
P-fields) and the latent T-factors (i.e., T-fields), we introduce
a non-negative M × K matrix Φ = (Φα,k) and a non-negative
M×L matrix Ψ = (Ψα,�), where Φα,k represents the relationship
strength between item aα and latent P-factor k from the point
of view of posting reviews for items, and Ψα,� represents the
relationship strength between item aα and latent T-factor �
from the point of view of receiving appreciation messages for
reviews of items. Here, we consider minimizing the following
functions GX(Φ) and GY (Ψ):

GX(Φ) =
∥∥∥X − U∗ΦT

∥∥∥2
+ λΦ ‖Φ‖2,

GY (Ψ) =
∥∥∥Y −W∗ΨT

∥∥∥2
+ λΨ ‖Ψ‖2,

where λΦ and λΨ are positive constants (hyper-parameters). For
these minimization problems, we can derive iterative update
algorithms of Φ and Ψ in the same way as Section III-B. Let
Φ∗ =

(
Φ∗α,k

)
and Ψ∗ =

(
Ψ∗α,�

)
denote the optimal Φ and Ψ

found by the algorithms, respectively. Using Φ∗ and Ψ∗, we
attempt to interpret the latent P-factors and the latent T-factors
in terms of items. Based on those interpretations, we analyze
the behavior of users in the site from the perspective of trust-
link creation.

IV. Evaluation Experiments

Using real data from two item-review sites, Epinions and
@cosme. we evaluate the proposed method. We begin by
statistically analyzing the datasets, and evaluate the proposed
method for solving the trust-link prediction problem stated in
Section II-A. Next, by applying the proposed method, we try
to analyze the properties of users’ behavior of each site from
the perspective of trust-link creation.



2105

100 101 102 103 104

# of trust-links received

10−5

10−4

10−3

10−2

10−1

100
P

ro
ba

bi
lit

y

(a) Indegree distribution

100 101 102 103 104

# of trust-links created

10−5

10−4

10−3

10−2

10−1

100

P
ro

ba
bi

lit
y

(b) Outdegree distribution

100 101 102 103 104

# of reviews posted

10−5

10−4

10−3

10−2

10−1

100

P
ro

ba
bi

lit
y

(c) Actvity distribution

100 101 102 103 104 105 106

# of appreciation messages received

10−5

10−4

10−3

10−2

10−1

100

P
ro

ba
bi

lit
y

(d) Activity-evaluation distribution

Fig. 1: Fundamental statistical analysis of the Epinions data.
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Fig. 2: Fundamental statistical analysis of the @cosme data.

A. Social Media Data

We collected real data from two item-review sites, Epin-
ions1 and @cosme2, where Epinions is a social media site
of product reviews and consumer reports, and @cosme is a
Japanese word-of-mouth communication site for cosmetics. In
both sites, a user can not only create a trust-link (or fan-
link) to another user, but also post a review and give a rating
for an item in a given set of items. Moreover, people can
post their appreciation messages to a review of a user for an
item if they found it useful. As for Epinions, we traced the

1http://www.epinions.com/
2http://www.cosme.net/
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(b) Results for the @cosme data

Fig. 3: Correlation between the number of activity-evaluations
and indegree.

trust-links by the breadth-first search from a user who was
featured as the most popular user in October 2012 until no
new users appeared, and collected a set of trust-links, a set
of reviews and ratings, and a set of appreciation messages.
In a similar way, we also collected such data for @cosme in
June 2010. The collected data includes 64, 268 users, 509, 293
trust-links, 809, 517 reviews and ratings for 268, 891 items, and
18, 960, 792 appreciation messages for Epinions, and 30, 369
users, 359, 817 trust-links (fan-links), 3, 815, 622 reviews and
ratings for 122, 927 items, and 92, 807 appreciation messages
for @cosme.

For the Epinions data and the @cosme data, we first
investigated the indegree distribution (i.e., the fraction of
the number of trust-links a user received), the outdegree
distribution (i.e., the fraction of the number of trust-links a
user created), the activity distribution (i.e., the fraction of the
number of reviews a user posted) and the activity-evaluation
distribution (i.e., the fraction of the number of appreciation
messages a user received) in order to analyze their fundamental
statistical properties. Figures 1 and 2 display the results for the
Epinions data and the @cosme data, respectively. We observe
that all the distributions exhibit power-law tails. These results
imply that both the Epinions data and the @cosme data satisfy
the typical properties of social data in an online world. Next,
we examined a correlation between the number of activity-
evaluations and indegree. Figure 3 indicates the results for the
Epinions data and the @cosme data. We see that the number
of appreciation messages a user received positively correlates
with the number of trust-links the user received, This suggests
that incorporating the activity-evaluation information can be a
promising approach for improving an NMF method of trust-
link prediction.

B. Experimental Settings

Using the Epinions data and the @cosme data, we eval-
uated the performance of the proposed method for solving
the trust-link prediction problem (see Section II-A). For each
data, we constructed four datasets D1, D2, D3 and D4 in
the following way. First, we set n1 = n2 = 1 Δt0 = 6,
and Δt1 = 3 (see Section II-A). Also, we let the prediction
period I1 be January to March for D1, April to June for
D2, July to September for D3, and October to December for
D4, respectively. By taking into account the stability for the
number of trust-links created, we try to predict the trust-links
created in 2006 for the Epinions data and 2009 for the @cosme
data, respectively. Here, for example, for the dataset D1 of
the Epinions data, I1 is January to March in 2006 and the



2106

observation period I0 is July to December in 2005. Tables I
and II indicate the fundamental statistics of the datasets.

TABLE I: Fundamental statistics of the Epinions datasets
D1 D2 D3 D4

# of users, N 771 722 734 727
# of items, M 56,642 57,886 59,522 61,327

# of observed trust-links 27,154 25,382 26,096 26,581
# of activities 83,786 83,933 86,396 88,980

# of activity-evaluations 1,074,042 1,039,505 1,127,326 1,170,950
# of trust-links created in I1 1,670 1,308 1,441 1,684

TABLE II: Fundamental statistics of the @cosme datasets
D1 D2 D3 D4

# of users, N 2,805 2,945 2,715 2,321
# of items, M 63,304 66,628 65,625 63,388

# of observed trust-links 22,733 27,129 24,497 20,274
# of activities 481,062 518,429 480,477 414,661

# of activity-evaluations 5,708 7,228 9,433 11,129
# of trust-links created in I1 2,618 1,975 2,056 1,748

For the trust-link prediction problem, we compare the
proposed method with hTrust (see Equation (1)) and JLCMF
(see Equation (6)). Also, we define a variant of the proposed
method by extending JLCFM, and compare the proposed
method with it. Here, for a non-negative N×K matrix U, a non-
negative N×L matrix W, a non-negative K×L matrix H, a non-
negative M×K matrix Φ and a non-negative M×L matrix Ψ, we
consider minimizing the following function F2(U,W,H,Φ,Ψ):

F2(U,W,H,Φ,Ψ) =∥∥∥G − UHWT
∥∥∥2
+ λU ‖U‖2 + λW ‖W‖2 + λH ‖H‖2

+ λX

∥∥∥X − U ΦT
∥∥∥2
+ λY

∥∥∥Y −W ΨT
∥∥∥2

+ λΦ ‖Φ‖2 + λΨ ‖Ψ‖2
where λU , λW , λH , λX , λY , λΦ and λΨ are positive constants
(hyper-parameters). For this minimization problem, we can
easily derive an iterative update algorithm of U, W, H, Φ and
Ψ in the same way as the proposed method (see Section III-B).
We refer to this method as JLCMF2.

The hyper-parameters in all the methods can be determined
through cross validation. In this paper, we simply set their
values according to [14]. Specifically, we set λU = λW = λH
= λΦ = λΨ = 0.01, and also set K = L = 10, λX = λY = 10
for the Epinions data, and K = L = 20, λX = λY = 2.5 for the
@cosme data3.

C. Trust-link Prediction

For the trust-link prediction problem (see Section II-A),
we compared the proposed method with hTrust, JLCMF and
JLCMF2. In the experiments, we measured the prediction
performance in terms of the area under the ROC curve (AUC).
Figures 4 and 5 show the results for the Epinions data and the
@cosme data, respectively. Furthermore, Figure 6 indicates the
ROC curves for the Epinions datasets, and Figure 7 indicates
the ROC curves for the @cosme datasets. We observe that
the proposed method performed the best and hTrust followed
the next. The performance difference depends on datasets,

3Our immediate future work includes investigating the effects of hyper-
parameters in detail.

Fig. 4: Performance comparison of trust-link prediction for the
Epinions data.

Fig. 5: Performance comparison of trust-link prediction for the
@cosme data.

but JLCMF and JLCMF2 were always worse than these two
methods. These results show the importance of incorporating
the activity-evaluation information, and demonstrate the effec-
tiveness of the proposed method that appropriately combines
two kinds of latent factors (i.e., two latent spaces): latent P-
factors and latent T-factors.

D. Behavioral Analysis

By applying the proposed method, we try to analyze users’
behavior for trust-link creation in Epinions and @cosme. Here,
we only report the analysis results for the dataset D3.

Figure 8 shows the visualization results of H∗ =
(
H∗k,�

)
for Epinions and @cosme, where the brightness of the entry
in the k-th row and the �-th column indicates the value of

TABLE III: Example of latent P-factor for the Epinions D3
dataset (k = 6).

Item Category
Nintendo Game Cube White Console Video Game Consoles
Sony PlayStation 2 Slimline Console Video Game Consoles
Star Wars Episode III: Revenge of the Sith Movies
Sega Dreamcast Grey Console Video Game Consoles
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(a) Results for dataset D1 (b) Results for dataset D2

(c) Results for dataset D3 (d) Results for dataset D4

Fig. 6: ROC curves for the Epinions datasets.

TABLE IV: Example of latent T-factor for the Epinions D3
dataset (� = 6).

Item Category
Lord of the Rings: The Return of the King Movies
Star Wars Episode III: Revenge of the Sith Movies
The Incredibles by Pixar & Disney Movies
Lord of the Rings: The Fellowship of the Ring Movies

relationship strength H∗k,� from latent P-factor k to latent T-
factor � for trust-link creation. We observe that the maximum
value of H∗k,� is attained at (k, �) = (6, 6) for the Epinions data
and (k, �) = (7, 12) for the @cosme data. Using Φ∗ =

(
Φ∗α,k

)
and Ψ∗ =

(
Ψ∗α,�

)
, we also investigated the set of latent P-factors

{k} and the set of latent T-factors {�}. Here, we note that there
were clear differences between the latent P-factors and the
latent T-factors.

Tables III and IV show the top four items {aα} of the
Epinions data with respect to Φ∗α,6 and Ψ∗α,6, respectively. Note
that these results illustrate latent P-factor k = 6 and latent
T-factor � = 6 for the Epinions data. Thus, we see that trust-
links tend to be created from users who prefer video games

TABLE V: Example of latent P-factor for the @cosme D3
dataset (k = 7).

Item (Brand) Category
Stylo Yeux Waterproof (CHANEL / France) Pencil Eyeliner
Ombres Couleurs (Cle de Peau-Beaute / Japan) Powder Eyeshadow
Les Quatre Ombres (CHANEL / France) Powder Eyeshadow
Decorte Liposome Treatment Liquid (Cosme Decorte / Japan) Beauty Essence

(a) Results for dataset D1 (b) Results for dataset D2

(c) Results for dataset D3 (d) Results for dataset D4

Fig. 7: ROC curves for the @cosme datasets.
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(b) Results for the @cosme data

Fig. 8: Visualization of H∗ =
(
H∗k�

)
for dataset D3.

and science fiction movies to users who gain trust for science
fiction & fantasy movies for the Epinions D3 dataset.

Tables V and VI show the top four items {aα} of the
@cosme data with respect to Φ∗α,7 and Ψ∗α,12, respectively. Note
also that these results illustrate latent P-factor k = 7 and latent
T-factor � = 12 for the @cosme data. Thus, we can observe

TABLE VI: Example of latent T-factor for the @cosme D3
dataset (� = 12).

Item (Brand) Category
Parure Pearly White Brightening Fluid Foundation
(GUERLAIN / France)

Liquid-type Foundation

Double Wear Light Stay-in-Place Makeup SPF10 /
PA++ (Estee Lauder / America)

Liquid-type Foundation

Dior Addict Ultra Gloss Reflect (Christian Dior /
France)

Lip Gloss

Sublimage Eye (CHANEL / France) Eye Care
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that trust-links tend to be created from users who prefer a
group of luxury makeup product to users who gain trust for
another group of luxury makeup product for the @cosme D3
dataset.

V. Conclusion

In this paper, we addressed the problem of predicting trust-
links that are to be created among recent active users of an
item-review site (a social media site) in the very near future.
We adopted an NMF approach for this problem since the
recently reported hTrust that uses an NMF method has been
shown to be effective. hTrust exploits information of trust-
links and users’ activities, where a user activity means posting
a review and giving a rating for an item. In many of item-
review sites, people can post their appreciation messages to a
review of a user for an item if they like it, that is, informa-
tion of people’s evaluations of users’ activities is observable.
Aiming to improve NMF methods for trust-link prediction, we
proposed a new NMF method that incorporates the activity-
evaluation information as well as both trust-link and activity
information. We evaluated the proposed method using real data
of two item-review sites: @cosme and Epinions.

First, we confirmed that the number of appreciation mes-
sages received correlates with the number of trust-links re-
ceived, suggesting that incorporating the activity-evaluation
information is promising. Next, we demonstrated that the
proposed method outperforms hTrust and its variants JLCMF
and JLCMF2 in a trust-link prediction problem. These results
show the importance of employing the activity-evaluation
information for trust-link prediction, and demonstrate the effec-
tiveness of the proposed method that appropriately combines
two kinds of latent factors (i.e., two latent spaces): latent P-
factors and latent T-factors. Further, we applied the proposed
method to an analysis of users’ behavior in an item-review
site, and found several characteristic properties for Epinions
and @cosme from the perspective of trust-link creation.
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Appendix
Properties of Auxiliary Functions

Lemma 1: The following inequalities hold:

EU(U, Û; W,H) ≥ F (U,W,H)
EW (W, Ŵ; U,H) ≥ F (U,W,H)
EH(H, Ĥ; U,W) ≥ F (U,W,H)

Proof: We first prove the inequality

EU(U, Û; W,H) ≥ F (U,W,H).

From the definition of Frobenius norm and Equation (5), the
following equation holds:∥∥∥G − UHWT

∥∥∥2
+ λX Tr

(
UT S XU

)
=

∑
i, j

⎛⎜⎜⎜⎜⎜⎜⎝Gi, j −
∑
k,�

Ui,kWj,�Hk,�

⎞⎟⎟⎟⎟⎟⎟⎠
2

+
λX

2

∑
i, j

ξi, j
∑

k

(Ui,k − U j,k)2
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= ‖G‖2 +
∑
i, j

⎛⎜⎜⎜⎜⎜⎜⎝∑
k,�

Ui,kWj,�Hk,�

⎞⎟⎟⎟⎟⎟⎟⎠
2

− 2
∑
i, j

∑
k,�

Gi, jUi,kWj,�Hk,�

+ λX

∑
i, j

ξi, j
∑

k

(
Ui,k

2 − Ui,kU j,k

)
(16)

Then, we obtain the following inequality:

∑
i, j

⎛⎜⎜⎜⎜⎜⎜⎝∑
k,�

Ui,kWj,�Hk,�

⎞⎟⎟⎟⎟⎟⎟⎠
2

=
∑

i

∑
k,k′

(
HWT WHT

)
k,k′

Ui,kUi,k′

=
∑

i

∑
k,k′

(
HWT WHT

)
k,k′

Ûi,kÛi,k′
Ui,k

Ûi,k

Ui,k′

Ûi,k′

≤
∑

i

∑
k,k′

(
HWT WHT

)
k,k′

Ûi,kÛi,k′
1
2

⎛⎜⎜⎜⎜⎜⎝Ui,k
2

Û 2
i,k

+
Ui,k′

2

Û 2
i,k′

⎞⎟⎟⎟⎟⎟⎠
=

∑
i

∑
k,k′

(
HWT WHT

)
k,k′

Ûi,kÛi,k′
Ui,k

2

Û 2
i,k

=
∑

i

∑
k

(
ÛHWT WHT

)
k,k′

Ui,k
2

Ûi,k
(17)

Here, we used the inequality
√

xy ≤ (x + y)/2 for x, y ≥ 0 and
the symmetric property

(
HWT WHT

)
k,k′
=

(
HWT WHT

)
k′,k

for
1 ≤ k, k′ ≤ K. We also have the following inequality:

−2
∑
i, j

∑
k,�

Gi, jUi,kWj,�Hk,� + λX

∑
i, j

ξi, j
∑

k

(
Ui,k

2 − Ui,kU j,k

)

= −2
∑

i

∑
k

(
GWHT

)
i,k

Ûi,k
Ui,k

Ûi,k

+λX

∑
i, j

ξi, j
∑

k

⎛⎜⎜⎜⎜⎝Ui,k
2 − Ûi,kÛ j,k

Ui,kU j,k

Ûi,kÛ j,k

⎞⎟⎟⎟⎟⎠
≤ −2

∑
i

∑
k

(
GWHT

)
i,k

Ûi,k

(
1 + log

Ui,k

Ûi,k

)
(18)

+λX

∑
i, j

ξi, j
∑

k

⎧⎪⎨⎪⎩Ui,k
2 − Ûi,kÛ j,k

⎛⎜⎜⎜⎜⎝1 + log
Ui,kU j,k

Ûi,kÛ j,k

⎞⎟⎟⎟⎟⎠
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Here, we used the inequality x ≥ 1 + log x for x > 0. From
Equations (7), (9), (16), (17) and (18), we can easily derive
the inequality EU(U, Û; W,H) ≥ F (U,W,H).

Next, we prove the inequality

EW (W, Ŵ; U,H) ≥ F (U,W,H).

In the same way as Equation (16), we obtain

∥∥∥G − UHWT
∥∥∥2
+ λY Tr

(
WT S YW

)
= ‖G‖2 +

∑
i, j

⎛⎜⎜⎜⎜⎜⎜⎝∑
k,�

Ui,kWj,�Hk,�
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2

− 2
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i, j
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k,�
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i, j

ηi, j
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(
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2 −Wi,�Wj,�

)
. (19)

Then, we have the following inequality:
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Ŵi,�Ŵi,�′
1
2

⎛⎜⎜⎜⎜⎜⎝Wi,�
2
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Here, we used the the symmetric property
(
HT UT UH

)
�,�′
=(

HT UT UH
)
�′,�

for 1 ≤ �, �′ ≤ L. We also get the following
inequality:
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Ŵi,�Ŵ j,�

⎞⎟⎟⎟⎟⎠
≤ −2

∑
i

∑
�

(
GT UH

)
i,�
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Thus, from Equations (7), (10), (19), (20) and (21), we can
easily show the inequality EW (W, Ŵ; U,H) ≥ F (U,W,H).

Finally, we prove the inequality

EH(H, Ĥ; U,W) ≥ F (U,W,H).

First, it follows that∥∥∥G − UHWT
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Hk′,�′

Ĥk′,�′

≤
∑
k,k′

∑
�,�′

(
UT U

)
k,k′

(
WT W

)
�,�′

Ĥk,�Ĥk′,�′
1
2

⎛⎜⎜⎜⎜⎜⎝Hk,�
2

Ĥ 2
k,�

+
Hk′,�′

2

Ĥ 2
k′,�′

⎞⎟⎟⎟⎟⎟⎠
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=
∑
k,k′

∑
�,�′

(
UT U

)
k,k′

(
WT W

)
�,�′

Ĥk,�Ĥk′,�′
Hk,�

2

Ĥ 2
k,�

=
∑
k,�

(
UT UĤWT W

)
k,�

Hk,�
2

Ĥk,�
(23)

Here, we used the symmetric property
(
UT U

)
k,k′

(
WT W

)
�,�′
=(

UT U
)

k′,k

(
WT W

)
�′,�

for 1 ≤ k, k′ ≤ K, 1 ≤ �, �′ ≤ L. We also
have the following inequality:

−2
∑
i, j

∑
k,�

Gi, jUi,kWj,�Hk,�

= −2
∑
k,�

(
UT GW

)
k,�

Ĥk,�
Hk,�

Ĥk,�

≤ −2
∑
k,�

(
UT GW

)
k,�

Ĥk,�

(
1 + log

Hk,�

Ĥk,�

)
(24)

The inequality EH(H, Ĥ; U,W) ≥ F (U,W,H) follows imme-
diately from Equations (7), (11), (22), (23) and (24). Hence,
Lemma 1 is proved. �

Lemma 2: The functions EU(U, Û; W,H), EW (W, Ŵ; U,H)
and EH(H, Ĥ; U,W) have global minimum points at U# =(
U#

i,k

)
, W# =

(
W#

i,�

)
and H# =

(
H#

k,�

)
, resepectively:

U#
i,k = Ûi,k

√√√√ (
GWHT )

i,k + λX
∑N

j=1 ξi, jÛ j,k(
ÛHWT WHT

)
i,k
+ λUÛi,k + λX ξ̄iÛi,k

W#
i,� = Ŵi,�

√√√√ (
GT UH

)
i,� + λY

∑N
j=1 ηi, jŴ j,�(

ŴHT UT UH
)

i,�
+ λWŴi,� + λY η̄iŴi,�

H#
k,� = Ĥk,�

√√√ (
UT GW

)
k,�(

UT UĤWT W
)

k,�
+ λH Ĥk,�

Proof: By definition, we first note that the matrices U#, W#

and H# are guaranteed to be non-negative. From Equations (9),
(10) and (11), we obtain the following equations:

∂EU

∂Ui,k
=

2
(
ÛHWT WHT

)
i,k

Ui,k

Ûi,k
−

2
(
GWHT

)
i,k

Ûi,k

Ui,k

+ 2λUUi,k + 2λX ξ̄iUi,k −
2λXÛi,k

∑
j ξi, jÛ j,k

Ui,k

(25)

∂EW

∂Wi,�
=

2
(
ŴHT UT UH

)
i,�

Wi,�

Ŵi,�
−

2
(
GT UH

)
i,�

Ŵi,�

Wi,�

+ 2λWWi,� + 2λY η̄iWi,� −
2λYŴi,�

∑
j ηi, jŴ j,�

Wi,�

(26)

∂EH

∂Hk,�
=

2
(
UT UĤWT W

)
k,�

Hk,�

Ĥk,�
−

2
(
UT GW

)
k,�

Ĥk,�

Hk,�

+ 2λH Hk,� (27)

Then, it is easily shown that

∂EU

∂Ui,k

∣∣∣∣∣∣
U=U#

= 0 (i = 1, . . . ,N, k = 1, . . . ,K), (28)

∂EW

∂Wi,�

∣∣∣∣∣∣
W=W#

= 0 (i = 1, . . . ,N, � = 1, . . . , L), (29)

∂EH

∂Hk,�

∣∣∣∣∣∣
H=H#

= 0 (k = 1, . . . ,K, � = 1, . . . , L). (30)

From Equations (25), (26) and (27), we also have the following
equations:

∂2EU

∂Ui,k
2 =

2
(
ÛHWT WHT

)
i,k

Ûi,k
+

2
(
GWHT

)
i,k

Ûi,k

Ui,k
2

+ 2λU + 2λX ξ̄i +
2λXÛi,k

∑
j ξi, jÛ j,k

Ui,k
2 (31)

∂2EW

∂Wi,�
2 =

2
(
ŴHT UT UH

)
i,�

Ŵi,�
+

2
(
GT UH

)
i,�

Ŵi,�

Wi,�
2

+ 2λW + 2λY η̄i +
2λYŴi,�

∑
j ηi, jŴ j,�

Wi,�
2 (32)

∂2EH

∂Hk,�
2 =

2
(
UT UĤWT W

)
k,�

Ĥk,�
+

2
(
UT GW

)
k,�

Ĥk,�

Hk,�
2

+ 2λH (33)

∂2EU

∂Ui,k ∂Ui′,k′
= δi,i′ δk,k′

∂2EU

∂Ui,k
2 (34)

∂2EW

∂Wi,� ∂Wi′,�′
= δi,i′ δ�,�′

∂2EW

∂Wi,�
2 (35)

∂2EH

∂Hk,� ∂Hk′,�′
= δk,k′ δ�,�′

∂2EH

∂Hk,�
2 (36)

By Equations (31), (32) and (33), we obtain

∂2EU

∂Ui,k
2 > 0,

∂2EW

∂Wi,�
2 > 0,

∂2EH

∂Hk,�
2 > 0 (37)

since the matrices to be considered are non-negative and all the
hyper-parameters are positive. Thus, by Equations (34), (35),
(36) and (37), three Hessian matrices(

∂2EU

∂Ui,k ∂Ui′,k′

)
,

(
∂2EW

∂Wi,� ∂Wi′,�′

)
,

(
∂2EH

∂Hk,� ∂Hk′,�′

)
are positive definite. Hence, it follows from Equations (28),
(29) and (30) that functions EU(U, Û; W,H), EW (W, Ŵ; U,H)
and EH(H, Ĥ; U,W) attain minimum values at U = U#, W =
W# and H = H#, resepectively. This completes the proof of
Lemma 2. �


