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Abstract—We address a problem of detecting changes in
information posted to social media taking both content and
posting time distributions into account. To this end, we introduce
a generative model consisting of two components, one for a
content distribution and the other for a timing distribution,
approximating the shape of the parameter change by a series
of step functions. We then propose an efficient algorithm to
detect change points by maximizing the likelihood of generating
the observed sequence data, which has time complexity almost
proportional to the length of observed sequence (possible change
points). We experimentally evaluate the method on synthetic data
streams and demonstrate the importance of considering both
distributions to improve the accuracy. We, further, apply our
method to real scoring stream data extracted from a Japanese
word-of-mouth communication site for cosmetics and show that
it can detect change points and the detected parameter change
patterns are interpretable through an in-depth investigation of
actual reviews.

I. I NTRODUCTION

It has become a part of our daily life that we post diverse
information,e.g., news, ideas, opinions, reviews, etc. directly
to so-called social media on the Web,e.g., weblogs, social
blogs, wikis, etc. Once the information is posted on social
media, it can be rapidly and widely spread through social
networks on the Web and can be shared by a large number
of people. Thus, it has a large influence on our decision
making, and it is becoming pressingly important that we are
able to efficiently analyze this huge amount of information or
opinions.

There has been a large number of studies on social media
from various angles. One typical direction is modeling how
information propagates through a social network [1]–[5]. This
would be useful for viral marketing to solve such a problem
of influence maximization [6]–[9] in which the task is to
identify a limited number of nodes which together maxi-
mize the information spread. Another direction is analyzing
opinion formation, where the focus is to model how people
are influenced by their neighbors in making decision [10]–
[14]. At a more fundamental level, sentiment analysis tries to
classify contents on social media for a certain topic [15]–[17],
which could allow companies to know how their products are
evaluated by consumers.

On one hand we are interested in knowing what is hap-
pening now and how it develops in the future, but on the
other we are also interested in knowing what happened in the
past and how this caused the change in the distribution of

the information. For example, if the rank of an item dropped
on a certain review site, the manufacturer that produces it
would analyze the site to know when and how the consumers’
evaluation to the item changed. Such changes may involve
changes in the number of reviews posted in a certain period,
i.e., changes in the posting interval and frequency, in which
case existing burst detection techniques [18]–[20] would be
applicable. However, if no change in the time interval is
involved, we would not be able to use these techniques because
they do not focus on the change in the content. In other
words, they intend to detect a burst for a single topic, and
do not directly deal with multiple topics and the change of
their distribution.

We note that this kind of change detection is substan-
tially different from the typical anomaly detection or change
point detection widely studied in machine learning, whose
techniques are closer to those used in novelty detection or
outlier detection [21]. For instance, statistical techniques used
in anomaly detection fit a statistical model (usually for normal
behavior) to the given data. Unseen data that have a low prob-
ability to be generated from the learned model are judged as
anomalies. On the other hand, we are interested in identifying a
model with time-varying parameters. A conventional approach
for this direction includes studies of regime-switching models
in economics (e.g., [22]), but they heavily rely on the Gaussian
assumption. In decision support, a number of methods have
been developed for detecting and excluding unfair ratings in
online reputation systems [23], but they are clearly categorized
as anomaly detection.

The problem we tackle in this paper is detecting changes
not only in time intervals between posts, but also in their con-
tent distribution. As one typical example, we consider scoring
streams observed on a review site where items are evaluated
by multiple categorical scores. To handle this problem, we
introduce a generative model that has parameters for such
stream data. In reality the change in the distribution of content
may involve the change in the time interval, or may not.
There is no reason to believe that both changes must occur at
exactly the same time. This leads us to model these changes
as a combination of two distinct models, one for content
distribution (the content model) and the other for time intervals
(the timing model). This type of generative model can cover
a wide range of phenomena such as information diffusion,
opinion formation, and document generation by adopting an
appropriate distribution for each component. In our case, we
adopt anM -categorical distribution for the content model



since items are evaluated byM categorical scores, and an
exponential distribution for the timing model as a typical time
delay distribution.

We devise an efficient algorithm that accurately detects the
changes in the parameter values from the observed stream
data. More precisely, we approximate parameter changes in
each model by a series of step functions and propose an
optimization algorithm that maximizes the likelihood ratio (the
ratio of the likelihood of observing the data assuming the
parameter changes to the likelihood of observing the data
assuming that there is no change in any parameters). The
algorithm is a combination of a greedy search that recursively
splits stream data and a local search that starts from the the
greedy search results and seeks for a better solution. The time
complexity is almost proportional to the length of observed
data points (candidates of possible change points). We apply
the proposed method to synthetic scoring data streams, and
show that our method outperforms, in terms of accuracy, the
methods that consider only either one of the content and the
timing distributions. In addition, we apply it to the real scoring
stream data from a Japanese word-of-mouth communication
site for cosmetics and show that the detected change points
are interpretable through an in-depth investigation of actual
review content.

II. GENERATIVE MODEL SETTINGS

We consider a generative modelp(x,∆t | t;Φ) for stream
data for a given timet. Here p(x,∆t | t;Φ) stands for the
probability that an event of content x occurs at timet and
is updated att + ∆t, whereΦ is a parameter vector of our
model. Here, we assume that our generative model is factorized
as follows:

p(x,∆t | t;Φ) = px(x | t;θ)p∆t(∆t | t;ρ), Φ = (θ,ρ), (1)

i,e, the probabilities,px(x | t;θ) and p∆t(∆t | t;ρ) are
conditionally independent under the fixed timet. Note that
Equation (1) does not mean that the probabilities,px(x;θ) and
p∆t(∆t;ρ) are mutually independent. This type of generative
model covers a wide range of phenomena such as information
diffusion, opinion formation, and document generation. More
specifically, as our generative model for content x, we can
typically consider a Bernoulli distribution for information
diffusion, a categorical distribution for opinion formation, and
a multinomial distribution for document generation.

In this paper, we focus on a problem of scoring stream data
over a review site where items are evaluated by scores with
M -category. Thus, we consider an M-categorical distribution
as our content model which is defined by

px(x|t;θ) =
∏

m∈M

θxm
m , x = (x1, · · · , xM ),θ = (θ1, · · · , θM ),

wherexm ∈ {0, 1}, θm ∈ (0, 1), x1+· · ·+xM = θ1+· · ·+θM
= 1, andM = {1, · · · ,M}. Note that the functional form of
this distribution can easily be replaced by other type of dis-
tribution. As for our timing model, we employ an exponential
distribution with parameterr, which is defined by

p∆t(∆t | t;ρ) = p∆t(∆t | t; r) = r exp(−r∆t).

Again note that we can use other distributions such as power-
law and Weibull according to the nature of data streams.

III. PROBLEM SETTINGS

We formally define the change point detection problem. As
mentioned in Section I, we assume that some unknown change
took place in the course of the data streaming process and what
we observe is a sequence of stream data in which the change is
encapsulated. Change can be in content or in speed of stream
or in both. Thus, our goal is to detect each change point and
how long the change persisted from there. Let’s assume that
we observe a set of pairs of content vectors and their time
stamps,i.e., D = {(x0, t0), (x1, t1), · · · , (xN , tN )}. Let the
time of the j-th change point beTj (t0 < Tj < tN ). The
parameter vector that the distribution follows switches from
(rj ,θj) to (rj+1,θj+1) at thej-th change pointTj . Namely,
we are assuming a series of step functions as a shape of
parameter vector changes. Let the set comprisingJ change
points beSJ = {T1, · · · , TJ}, and we setT0 = t0 and
TJ+1 = tN for the sake of convenience (Tj−1 < Tj). Let
the division ofD by SJ be Dj = {n;Tj−1 < tn ≤ Tj},
i.e., N = {0, 1, · · · , N} = {0} ∪ D1 ∪ · · · ∪ DJ+1, and |Dj |
represents the number of observed points in(Tj−1, Tj ]. Here,
we request that|Dj | ̸= 0 for any j ∈ J = {1, · · · , J + 1}
and there exists at least onetn and tn ∈ Dj is satisfied. The
problem of detecting change points is equivalent to a problem
of finding a subsetSJ ⊂ T whereT is a set of the observed
time points,i.e., T = {t0, t1, · · · , tN}.

The log-likelihood for theD, given a set of change points
SJ , is calculated, by defining the parameter vectors,ΘJ+1 =
(θ1, · · · ,θJ+1) and rJ+1 = (r1, · · · , rJ+1), as follows.

L(D;ΘJ+1, rJ+1,SJ )

=
∑
j∈J

(
∑

m∈M
Xj,m log θj,m + |Dj | log rj − rj∆Tj), (2)

whereXj,m =
∑

n∈Dj
xn,m and∆Tj = Tj −Tj−1. Thus, the

maximum likelihood estimators of Equation (2) is given by
θ̂j,m = Xj,m/|Dj | and r̂j = |Dj |/∆Tj , for j = 1, · · · , J + 1,
and m = 1, · · · ,M . Substituting these estimators to Equa-
tion (2) leads to

L(D; Θ̂J+1, r̂J+1,SJ)

=
∑
j∈J

(
∑

m∈M
Xj,m logXj,m − |Dj | log∆Tj)−N. (3)

Therefore, the change point detection problem is reduced to
the problem of finding the change point setSJ that maximizes
Equation (3). However, Equation (3) alone does not allow us
to directly evaluate the effect of introducingSj . It is important
to evaluate how the log-likelihood improves over the one
obtained without considering the parameter changes. We, thus,
reformulate the problem as the maximization problem of log-
likelihood ratio. If we do not assume any changes,i.e., S0 = ∅,
Equation (3) is reduced to

L(D; Θ̂1, r̂1,S0) =
∑

m∈M

Xm logXm −N log∆T −N,

whereXm =
∑

n∈N xn,m and∆T = TJ+1 − T0 = tN − t0.
Thus, the log-likelihood ratio of the two cases, one withJ
change points and the other with no change points is given by

LR(SJ) = L(D; Θ̂J+1, r̂J+1,SJ)− L(D; Θ̂1, r̂1,S0)

=
∑
j∈J

(
∑

m∈M
Xj,m log

Xj,m

Xm
− |Dj | log

∆Tj

∆T
). (4)



In summary we consider the problem of finding the set of
change pointsSJ that maximizesLR(SJ ) defined above.

On the other hand, we can derive two specialized change
detection problems from the above arguments,i.e., detection
only from the content distribution and detection only from
the timing distribution, defined by the following objective
functions,LRx(SJ) andLR∆t(SJ ).

LRx(SJ) =
∑
j∈J

(
∑

m∈M

Xj,m log
Xj,m

Xm
− |Dj | log

|Dj |
N

), (5)

LR∆t(SJ) = −
∑
j∈J

(|Dj | log
∆Tj

∆T
+ |Dj | log

|Dj |
N

). (6)

In our experiments, we empirically evaluate how detection
performance improves by considering both the content and the
timing distributions simultaneously, in comparison to those by
considering only either one of these distributions.

IV. CHANGE POINT DETECTION METHOD

For a given number of change pointsJ , we search forJ
time points that are most likely to be the change points from a
sequence ofN observation points. In what follows, we explain
our detection method that is a combination of a greedy search
(A1) and a local search (A2). The algorithm is given below.

A1. ProduceSJ from input data,J andD, by a greedy search.
A2. ImproveSJ and output the final result by a local search.

We first describe the procedure of A1. This is a progressive
binary splitting without backtracking. We fix the already
selected set of(j − 1) change pointsSj−1 and search for the
optimal j-th change pointTj and add it toSj−1. We repeat
this procedure fromj = 1 to J . The algorithm is given below.

A1-1. Initialize j = 1, S0 = ∅.
A1-2. Search forTj = argmaxtn∈T {LR(Sj−1 ∪ {tn})}.
A1-3. UpdateSj = Sj−1 ∪ {Tj}.
A1-4. If j = J , outputSJ and stop.
A1-5. j = j + 1, and return to A1-2.

Here note that in A1-3 elements of the change point setSj

are reindexed to satisfyTi−1 < Ti for i = 2, · · · , j. Clearly,
the time complexity of this simple method isO(NJ) which is
fast. Thus, it is possible to obtain the result within an allowable
computation time for a largeN . However, since this is a greedy
algorithm, it can be trapped easily to a poor local optimal.

Next, we describe the procedure of A2. We start with the
solutionSJ obtained by A1, pick up a change pointTj from
the list, fix the restSJ \ {Tj} and search for the better value
T ′
j of Tj , where· \ · represents set difference. We repeat this

from j = 1 to J . If no replacement is possible for allj (j =
1, · · · , J), i.e., T ′

j = Tj for all j, no better solution is expected
and the iteration stops. The algorithm is given below.

A2-1. Initialize j = 1, k = 0.
A2-2. Search forT ′

j = argmaxtn∈T {LR(SJ \ {Tj}∪ {tn})}.
A2-3. If T ′

j = Tj , set k = k + 1, otherwise setk = 0, and
updateSJ = SJ \ {Tj} ∪ {T ′

j}.
A2-4. If k = J , outputSJ and stop.
A2-5. If j = J , setj = 1, otherwise setj = j +1, and return
to A2-2.

It is evident that the proposed method requires computation
time several times larger than that of the greedy method. In
our previous studies using a similar strategy, the increase of the
computation time was not that large, but the solution quality
was substantially improved from the greedy solutions.

V. EXPERIMENTAL EVALUATION

We experimentally evaluated the accuracy of the change
point detection of our method using synthetic scoring stream
data and confirmed that the algorithm works satisfactorily.
We further applied our method to the real scoring data and
show that the change points detected by the method are indeed
interpretable through the analysis of actual review content.

A. Evaluation by Synthetic Data

Using synthetic scoring stream data, we examined the ac-
curacy of the proposed method by comparing it with two other
methods that adopt objective functions given by Equations (5)
and (6), respectively. Namely, the former detects change points
only from the content distribution, while the latter only from
the timing distribution. According to the generative models
defined in Section II, we generated a scoring streamD for an
item, consisting of pairs(x, t) of content vector x and its time
stampt ∈ [0, 1000] such that|D| = N . Since we assume items
are evaluated byM -categorical scores, x is anM -dimensional
vector in which only them-th element is 1 and the remaining
ones are 0 at timet if the corresponding item is given them-th
score at timet. We embeddedJ change points in each stream
such that each interval(Tj−1, Tj ] becomes almost the same,
wherej ∈ {1, · · · , J+1}, T0 = t0 (the first observation time),
andTJ+1 = tN (the final observation time). Here, we assumed
both content and timing distributions change at these change
points in a synchronized manner so that we can fairly compare
our proposed method with the other two methods. Thus, for
each of J + 1 periods, we determined parameters of both
distributions according to their typical prior distributions, and
then generated samples based on them. We adopted Dirichlet
distribution with all concentration parameters set to 2 as the
prior of the categorical distribution, and Gamma distribution
with both shape and scale parameters set to 1 as the prior of the
exponential distribution. The latter makes the expected number
of N about 1,000. Varying the number of categorical scores
M in the range ofM = 5, 7, 10 by reference to typical review
sites on the Web, and the number of embedded change points
J in the range ofJ = 2, · · · , 9, we generatedK = 1, 000
streams for each combination ofM andJ .

Figures 1(a) to 1(c) illustrate the results forM = 5, 7, 9,
respectively, in which the horizontal axis means the number
of change points embedded,J , while the vertical axis means
the average relative erorr with respect to each change point
for the correspondingM and J , which is defined asE =
K−1

∑K
k=1 J

−1
∑J

j=1 |tk,j − t̂k,j |/tk,j , where tk,j and t̂k,j
denote the true time stamp of thej-th change point of thek-
th stream and its estimation, respectively. It is clearly found
that considering both the content and the timing distributions
significantly improves the accuracy compared with considering
only one of them, even if distribution changes are made in
a synchronized manner. Especially, note that the estimation
error of the proposed method is much less than the half of the
estimation error of the one considering only one distribution
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(b) M = 7
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(c) M = 9

Fig. 1. Estimation errors of the three methods forM = 5, 7, and9.
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(c) J = 3
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(e) J = 5
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(f) J = 6

Fig. 2. Relation between log-likelihood ratio statistic and the number of samples. Note that only the results forJ = 1 plot the log-likelihood ratio defined in
Equation (4). The results forJ ≥ 2 plot the log-likelihood ratio betweenJ andJ − 1 to see the diminishing effect ofJ .

in every case, which implies that the effect of considering both
distributions is more than additive of the two, each considering
only one distribution. In addition, we can say that the accuracy
of every method is insensitive to the number of categorical
scoresM , while the estimation errors linearly increase as the
number of change pointsJ increases although we evaluated
the average relative error with respect to each change point.
This means that this detection problem becomes substantially
more difficult as the number of change points increases.

B. Change Point Detection Results for Real Dataset

1) Dataset: We collected real scoring stream data from
“@cosme” 1, which is a Japanese word-of-mouth communi-

1http://www.cosme.net/

cation website for cosmetics. In @cosme, a user can post a
review and give a score of each brand (one from 1 to 7).
When one user registers another user as his/her favorite user,
a “fan-link” is created between them. We traced up to ten
steps in the fan-link network from a randomly chosen user
in December 2009, and collected a set of(b,m, t, v)’s, where
(b,m, t, v) means that userv gavem points to brandb at time
t. In the collected data, the number of brands was 7,139, the
number of users was 45,024, and the number of reviews posted
was 331,084. For each brandb, we constructed a scoring data
streamD consisting of pairs(m, t). In particular, we focused
on these brands such that the number of observationsN = |D|
was greater than500. Then, the number of brands was120.
We refer to this dataset extracted through the fan-link network
as the @cosme dataset.
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Fig. 3. Relation between the number of brands that pass the significant test
andJ for three different significant levels

2) Results:First, we show plots of the log-likelihood ratio
statistic for each brand as a function of sample sizeN for the
number of change pointsJ = 1 to 6 in Figures 2(a) to 2(f).
The objective function used was Equation (4) throughout these
experiments, but the way the log-likelihood is plotted in these
figures are slightly changed except for Figure 2(a). We plotted
the log-likelihood ratio betweenJ andJ − 1 for J = 2 to 6.
Since we do not know the most appropriate value forJ , we
thought that it is best to evaluate the statistical significance in
going fromJ − 1 to J . Thus, in these figures three horizontal
lines, each corresponding to a different significance level
α = 0.05, 0.01, 0.005 are also shown. We usedχ2 test with
7 degrees of freedom (6 score parameters and 1 time decay
constant). From these figures, we can see the diminishing effect
of J over the log-likelihood ratio in going fromJ − 1 to J .2

This means that from the statistical point of view, it does not
make much sense to use a very largeJ to discuss the global
feature of the parameter change. Figure 3 shows the relation
of the number of the brands that pass the significant test with
the number of change pointsJ for three different significance
levels. The black line is the complement of the orange line,
i.e., the number of brands that do not pass the statistical test
for α = 0.05. It is clear that for most of the brands,J = 4 is
enough to capture the change patterns.

Among the 120 brands we examined three brands which
are shown in the above figures usingJ = 2, the minimum
value to detect an abnormal period in which either or both
of the content and the timing distributions are meaningfully
different from those in the other periods if such period exists.
The three brands chosen are “LUSH-JAPAN”, “KOSE-FASIO”
and “NIVEA-SUN”. “LUSH-JAPAN” has the largest log-
likelihood ratio (as measured by Equation (4) forJ = 2),
which implies that the detected change pattern is more dis-
tinctive than change patterns for the others. “KOSE-FASIO”
and “NIVEA-SUN” have relatively high log-likelihood ratios
although their sample sizes are rather small, which is against
the standard tendency that there is a positive correlation
between the sample size and the log-likelihood ratio.

First, Figure 4 presents the results for the brand “LUSH-
JAPAN” from three distinct angles. Figure 4(a) shows the cu-
mulative number of reviews (scores) as a function of observed
time, in which red vertical lines indicate the detected change
points, while Figure 4(b) illustrates the detected change pattern
of the timing parameterr of the exponential distribution, in

2This does not mean that the submodularity holds for Equation (4).

which the value ofr is normalized such thatr = 1 corresponds
to a delay of one day, meaningr = 0.1 corresponds to
delay of 10 days. In fact, the differences between before and
after the detected change points are negligible in Figure 4(a)
and very small in Figure 4(b). It is read that the number
of reviews for this brand is gradually decreasing, but it is
unlikely that we find clear change points only from this timing
distribution. On the other hand, in Figure 4(c) that depicts the
change in the distribution of each score in the three periods
made by partitioning the whole period using the two change
points detected as the dividing points, we can clearly find
distinctive changes in the distributions for some scores. The
number of scores larger than 4 decreases in later period,
while the number of score 3 increases. This result shows the
importance of considering both the timing and the content
distributions. We should emphasize that the algorithm does
not assume the synchronous changes in both distributions and
it can handle both changes separately. The results indicate
that the two change patterns in the timing distribution and
the content distribution coincide with each other because the
decay of the attractiveness of the brand manifested itself in
both distributions in the same way.

Second, we illustrate the results for the brand “KOSE-
FASIO” in Figure 5 in the same way as in Figure 4. We can
find that, during the second period, the number of reviews
sharply increased in Figures 5(a) and 5(b), and similarly the
number of relatively low scores also intensively increased in
Figure 5(c). By examining the actual reviews more in depth,
we found that this is due to bursty posts by a specific user
who tends to give relatively low scores to this brand. Actually,
she never gave this brand scores larger than 4, which seems to
be an intentional posting. Thus, we can say that our method
could be applicable to detect such intentional posts aiming at
affecting the customer evaluation to a specific item.

Third, we show the results for the brand “NIVEA-SUN”
in Figure 6 as well. From Figures 6(a) and 6(b), the relatively
large number of reviews can be observed during the second
period. We found that this is a brand for sunscreen cosmetics.
The first change point is “2009/4/7 15:46:49” and the second
one is “2009/9/14 18:24:47”. Namely, this period is the season
when the ultraviolet rays are strong in Japan. Thus, during
this period, the number of users who buy products of this
brand increases. We note that in Figure 6(c) the number of
high scores larger than 4 drops in the second period. This
is mainly attributed to the two cosmetics both of which are
sunscreen and whose average scores in the period are relatively
low compared to those in the other periods. The number of
negative reviews to them increased in the second period in
response to the increase in the number of users who tried these
cosmetics. The major claims are that both dehydrate the skin
and one of them is hard to wash off. This case is a typical
example that two distributions change simultaneously and that
this kind of analysis contributes to improving the quality of
products.

The above results are all forJ = 2. As Figure 3 indicates
thatJ = 4 is enough (we may be able to sayJ = 3 is enough),
we believe that the above results can indeed capture the major
characteristics of change patterns for these three brands. Just
to make sure that this is true, we did an additional experiment
for “LUSH-JAPAN” by increasingJ to 6. Figure 7 shows the
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Fig. 4. Results for the brand “LUSH-JAPAN”.
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Fig. 5. Results for the brand “KOSE-FASIO”.
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Fig. 6. Results for the brand “NIVEA-SUN”.

results. We see that in Figure 7(a) the first and the second
change points and the fourth, the fifth and the sixth change
points are indistinguishable, and there seem to be only three
change points. From Figure 7(b) we can see that there should
be three peaks but the last two peaks are indistinguishable.
Actually the second peak is much smaller than the third one.
We can say that the general trend of the timing parameters is
gradually decreasing except for the three peaks and the third
short period. This confirms our belief. Further, by increasing
J to a larger value, we are able to detect abnormal peaks. The
first peak corresponds to the second period in Figure 7(c) and
is found to be caused by the explosive increase of the number
of reviews with the highest score 7 from Figure 7(c), while the

third one which corresponds to the sixth period in Figure 7(c)
is due to a large number of reviews with low scores posted
during this period. By checking the raw reviews, we confirmed
that such biased reviews were posted by a specific user in each
case.

VI. CONCLUSION

This paper addressed the problem of detecting the change
points from observed time series data of information posted
to social media, taking into consideration not only the change
in the distribution of time interval between posts but also the
change in the distribution of their content. We introduced a
generative model that consists of two primitive components
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Fig. 7. Results for the brand “LUSH-JAPAN” in the case ofJ = 6.

that model the distributions of the content and the timing,
respectively, and formally defined the problem of 1) detecting
the change points and 2) finding the model parameter values
such that the likelihood of generating the observed data stream
is maximized. We then devised an efficient iterative algorithm
to search for the change points, whose time complexity is
almost linear to the number of data points. We empirically
tested the proposed algorithm with the synthetic scoring data
streams and demonstrated that considering both distributions
is essential for accurate detection. Further, we applied the
proposed method to the real scoring stream data from a
Japanese word-of-mouth communication site for cosmetics and
experimentally confirmed the versatility of the method through
three typical cases: 1) the case that only the distribution of the
content clearly changed, but the change in the distribution of
the timing was not clear; 2) the case that there occurred an
intentional bursty posts by a certain user; 3) the case where
the distributions of both the content and the timing changed
concurrently. In all of these cases, our method successfully
detected the change patterns, which we were able to interpret
through in-depth analysis of actual review articles. Our imme-
diate future work is to experimentally compare the proposed
method with existing burst detection methods.
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