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Abstract

Identifying user-dependent information that can be automatically collected helps

build a user model by which 1) to predict what the user wants to do next and 2)

to do relevant preprocessing. Such information is often relational and is best repre-

sented by a set of directed graphs. A machine learning technique called graph-based

induction (GBI) e�ciently extracts regularities from such data, based on which a

user-adaptive interface is built that can predict next command, generate scripts and

prefetch �les in a multi task environment. The heart of GBI is pairwise chunking.

The paper shows how this simple mechanism applies to the top down induction of

decision trees for nested attribute representation as well as �nding frequently occur-

ring patterns in a graph. The results clearly shows that the dependency analysis of

computational processes activated by the user commands which is made possible by

GBI is indeed useful to build a behavior model and increase prediction accuracy.

1 Introduction

Computers are still not easy to use. The main reason is their ignorance about

the user. Each user has di�erent goals (tasks, resources, criteria, ...) and dif-

ferent preferences (habits, abilities, styles, ...). Computer systems do not un-

derstand these things. It is knowledge that makes understand possible, and

the knowledge of the user is nowhere. The user information that is available

to an interactive computer system is limited, and thus, the user model acqui-

sition is a di�cult problem. Classical acquisition methods like user interviews,

application-speci�c heuristics, and stereotypical inferences are often not ap-

propriate, and a better automated method is being sought.

Finding regularities in data is a basis of knowledge acquisition, and extracting
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behavioral patterns from the user information is one such problem. Since each

user may do the same thing in a di�erent way, identifying the information

that can characterize the user and be automatically collected is crucial. Once

such information is found and if an appropriate machine learning technique

can induce regularities in each user's behavior to carry out his/her intended

task, we can use them to guide the daily work and to do some preprocessing,

which may facilitate easiness of usage and increase e�ciency. In order for

this to work satisfactorily, we rely on the assumption that situation, purpose,

intention, meaning, concept are all embedded in some structure, and thus,

extractable by mechanical operation.

We discuss three learning tasks, command prediction, script generation and

�le prefetching in a multi task environment. The scope of user behavior is

limited to a sequence of task execution (e.g., editing, formatting, viewing,

etc.) using plural application programs.

Most studies that attempted to develop a user-adaptive interface system only

analyzed the sequence of user behaviors, from which to automate the repeti-

tions (See 8). In this setting, the data can easily be represented by attribute-

value pairs, each attribute denoting the sequence order and its value, the

command, and a standard classi�er, e.g., [22] can be directly applied to in-

duce a set of classi�cation rules without any di�culty. However, since the

command sequence does not necessarily typify the user's behavior, the user

model constructed from only the sequence information may not adequately

capture the user's behavior (we have con�rmed this and the results are shown

later). We focused on the process I/O information that is also automatically

collected along with the command sequence. Since this is dependency informa-

tion and its relationship cannot be �xed in advance, it is not straightforward

to represent this by attribute-value pairs and apply a standard classi�er.

We show that graph-based induction [25] can nicely be applied to the three

learning tasks. In this paper, we revisit GBI, show how it can extract typical

patterns from a set of directed graphs and how it can induce classi�cation

rules using a similar technique in the Top Down Decision Tree (TDDT) in-

duction algorithm. The �rst and the second learning tasks are implemented

as ClipBoard which is a window like UNIX shell [26], and the third task is

implemented as Prefetch daemon that is hidden from the user. The results

clearly show that the dependency analysis of computational processes acti-

vated by the user's commands, which is made possible by GBI, is indeed

useful. ClipBoard is in daily use and its prediction accuracy and response time

are satisfactory. Prefetch daemon works as expected only for I/O intensive

task due to an implementation problem, and thus needs further improvement.

The following section introduces the three learning tasks. Subsequent sections

describe the learning method GBI and summarize the results of learning ex-
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periments performed to date. The last two sections consider lessons learned

from this study and directions for future research.

2 Learning Tasks

Command prediction is a real time task that takes a user's operational history

and predicts the next command. Figure 1 shows, in a simpli�ed form, an

example of operational history when a user is making a document using a

latex document formatter. The bold arrows show the command sequence. The

history includes, in addition to this, I/O relationships between commands, and

thus, takes the form of a directed graph. Each link has a label that corresponds

to a �le extension. For example, the link connecting emacs to latex has a label

tex. However, one link is reserved for sequence information. ClipBoard keeps

recording and updating the history, and at any point of operation, predicts

the next command. The learning task is to induce classi�cation rules from

the past history. It is a supervised learning. For each command in the past,

a directed graph of a certain depth (number of sequentially connected links)

and width (number of sibling links) are taken out. Each directed graph forms

a training example. Its root is a class and the rests are considered to be nested

attributes.

emacs

latex

paper.tex paper.dvi

paper.tex article.sty

paper.log

paper.aux paper.dvi

xtex

xdvi dvi2psSequential 
information

.tex

.tex

.dvi

.sty

.dvi .dvi

Fig. 1. I/O relationships between commands (applications)

Script generation is a batch task that extracts frequently occurring patterns

from a large graph representing a history of order of days, generalizes the

arguments and generates shell scripts to execute a sequence of operations by

a single command. It is a kind of conceptual clustering and is unsupervised
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learning. Figure 2 shows an example of the generated scripts when a user

repeatedly calls up emacs, latex and xdvi.

# Document Processing Script

emacs  $1

latex  $1

xdvi  $1:r.dvi

# Edit document.
# Extension is assumet to be .tex.

# Format document.

# Preview result on screen.
# Extension is assumet to be .dvi.

#! /bin/csh -f 

Fig. 2. Example of a generated script

File prefetching is a real time task that predicts �les to be used in the immedi-

ate future and prefetches them into the cache. Unlike the command prediction,

prefetching must predict a few steps ahead, so not only the next command

but also a few more together with the associated �le I/O. The learning task is

done in a batch mode using a large directed graph. It is unsupervised learning.

The task is to extract frequently occurring patterns �rst like script generation,

from each of which a prefetch rule is generated and then to merge them into

a single trie structure (example shown in Figure 12). The prefetching is made

in real time based on this trie. Since prefetching is automatic, this task is

invisible.

3 Graph-based Induction

3.1 Finding Regularities in a Directed Graph

GBI was originally intended to �nd interesting concepts from inference pat-

terns by extracting frequently appearing patterns in the inference trace. It uses

a single heuristic: anything that appears frequently is worth paying attention

to. In [25], it is shown that GBI was able to discover the notion of NOT

and NOR from the qualitative simulation traces of an electric circuit. In this

application, the original inputs were causal relations of voltage and current

between various nodes of the circuit; there was no notion of logical operation.

However, by �nding regularities in the input traces, GBI was able to lift up

the abstraction level and �nd more abstract concepts. Later, we showed that

the same idea can be applied to other types of learning (speed up learning and

classi�cation rule learning) [27].

The original GBI was so formulated to minimize the graph size by repeatedly

replacing each found pattern with one new node and contracting the graph.

The graph size de�nition re
ected the sizes of extracted patterns as well as the
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size of contracted graph. This prevented the algorithm from continually con-

tracting, which meant the graph never became a single node. Because �nding

a subgraph is known to be NP-hard, the ordering of links is constrained to be

identical if the found two subgraphs are to match, and an opportunistic beam

search similar to genetic algorithm was used to arrive at suboptimal solutions.

In this algorithm, the primitive operation at each step in the search was to

�nd a good set of linked pair nodes to chunk (pairwise chunking). When ap-

plied to �nding interesting concepts, GBI returned a set of subpatterns for

which the graph size became minimum. Whether the found concepts are in

deed interesting and useful depends on the de�nition of the graph size and is

empirical. When applied to building a classi�er, GBI returned a set of rules

for which the predicted error rate (either by cross validation or by test data),

the real measure, became minimum while using the graph size as a primary

measure to minimize.

Because the search is local and stepwise, we can adopt an indirect measure

rather than a direct estimate of the graph size to �nd the promising pairs. On

the basis of this notion, we generalize the original GBI, and further extend it

to cope with the classi�cation problem. The idea of pairwise chunking is given

in Figure 3, and the general algorithm of GBI in Figure 4.
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Fig. 3. The idea of graph contraction by pairwise chunking

The selection criterion of the pair nodes should be such that its use can �nd

interesting patterns (e.g., patterns occurring more frequently than others or

patterns more easily identi�able than others). Proper termination condition

must be used in accordance with the selection criterion (e.g., iteration number,

chunk size, change rate of selection measure, etc.). Examples of such measures

are information gain [20], information gain ratio [22] and gini index [1].

We use information gain as a measure here because the pairwise chunking is a
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GBI(G)

Selection of pair nodes (Ak; fi; Bj) in G

Chunk the pair nodes into one node: c

C := fcg

Gc := contracted graph of G

If termination condition not reached

C := C [GBI(Gc)

end if

Return C

Fig. 4. Generalized algorithm of GBI

binary split. It works well for many cases, but the other indexes can be used

in the same way. Unlike decision tree building where the measure is used for

selecting a relevant attribute, here we have to select linked pair nodes. Each

node has a value (color) and each link has a label. We can interpret the triplet

(Ak; fi; Bj) as saying that the value of the i-th attribute fi of the parent Ak

is Bj or when the i-th attribute fi takes the value Bj, its immediate result is

Ak. The problem is which (k; i; j) to select to chunk. A natural way is to focus

on one of the three elements, and select the best remaining two to identify

the chosen element. Three alternatives exist: a) focus on k, b) focus on i and

c) focus on j. Case a) tries to �nd the attribute and its value pair that best

characterizes the chosen immediate result. Likewise, case b) tries to �nd the

result and the attribute value pair that best characterizes the chosen attribute,

and case c) tries to �nd the attribute and its result pair that best characterizes

the chosen attribute value. Which one to adopt depends on what the directed

graph represents in terms of the original problem description. The default is

to choose a) and we use this option for script generation and �le prefetching.

In what follows, only case a) is described. The other two are obtained by

permutating the subscripts. Let the underline in the subscript mean its com-

plement (e.g., i means the attributes other than the i-th.), and the superscript

yes and no mean the result of the division by a test. The amount of informa-

tion that is required to identify k before selecting the triplet is

I(nk) = �
X

i;j

nk;i;j

Nk

log2
nk;i;j

Nk

;

where Nk is the number of nodes that have value Ak and nk;i;j is the number

of the triplets (Ak; fi; Bj) (i.e., the number of nodes that have value Ak and

their i-th attributes have value Bj.).

The amount of the information that is required to identify k after the selection
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is

E(Ak; fi; Bj) =
Nk;i;j

Nk

I(nyes
k;i;j) +

Nk;i;j

Nk

I(nno
k;i;j);

where

I(nyes
k;i;j) = �

nk;i;j

Nk;i;j

log2
nk;i;j

Nk;i;j

=
Nk;i;j

Nk;i;j

log2
Nk;i;j

Nk;i;j

= 0

I(nno
k;i;j) = �

X

i0;j0(6=i;j)

nk;i0;j0

Nk;i;j

log2
nk;i0;j0

Nk;i;j

:

Here, note that the triplets that go into the yes branch are all identical,

implying I(n
yes
k;i;j) = 0.

Info-gain(k; i; j) = I(nk)� E(Ak; fi; Bj) =

1

Nk

f
X

i0;j0(6=i;j)

nk;i0;j0 log2
nk;i0;j0

Nk;i;j

�
X

i;j

nk;i;j log2
nk;i;j

Nk

g

The best attribute i and its value j for each k to select is

Argmax(i;j)fInfo-gain(k; i; j)g = (k; i0k; j0k):

Thus, the best triplet is determined to be

ArgmaxkfNkInfo-gain(k; i0k; j0k)g = (k0; i0; j0):

This is recursively repeated until a termination condition is satis�ed.

3.2 Inducing Classi�cation Rules

In case of the classi�cation problem, we interpret the root node as a class node

and the links directly attached to it as the primary attributes. The node at

the other end of each link is the value of the attribute, which has secondary

attributes. Thus, each attribute can have its own attributes recursively, and

the graph (i.e., each instance of the data) becomes a directed tree (See Fig-

ure 5). In this case, the pairwise chunking must start at the root node and go

backwards (from successor to predecessor) following the links. Here, we have

to recursively select the attribute and its value pair that best characterizes

the class. So the selection measure is slightly di�erent from the normal GBI

described above, i.e., the chunking is made for the triplet (�; fi; Bj) where

only the attribute fi and its value Bj are speci�ed.
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Fig. 5. Data representation for a classi�cation problem

The amount of information before the selection is

I(n) = �

X

k

nk

N
log2

nk

N
;

where nk is the number of nodes that have class value Ak, and N =
P

k nk.

The amount of information after the test by the attribute fi whose value is

Bj is

E(fi; Bj) =
Ni;j

N
I(n

yes
i;j ) +

Ni;j

N
I(nno

i;j);

where

I(n
yes
i;j ) = �

X

k

nk;i;j

Ni;j

log2
nk;i;j

Ni;j

;

I(nno
i;j) = �

X

k

nk;i;j

Ni;j

log2
nk;i;j

Ni;j

;

Ni;j =
X

i0;j0(6=i;j)

Ni0;j0; nk;i;j =
X

i0;j0(6=i;j)

nk;i0;j0:

Info-gain(i; j) = I(n)� E(fi; Bj) =

1

N
f

X

k

fnk;i;j log2
nk;i;j

Ni;j

+ nk;i;j log2
nk;i;j

Ni;j

� nk log2
nk

N
gg

Thus, the best attribute fi and its value Bj to select for testing is

Argmax(i;j)fInfo-gain(i; j)g = (i0; j0):

This is recursively repeated until each subgroup, after testing, contains a single

class value or some stopping condition is satis�ed.

4 ClipBoard Interface

Figure 6 shows the system con�guration for ClipBoard Interface and Prefetch

Daemon. The process I/O recorder is a part of the operating system and
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records all the I/O operations of each command issued. This information is

represented together with the command sequence by a directed graph as op-

eration history. GBI program runs on this graph and generates prediction

(classi�cation) rules and typical (frequently appearing) patterns. The mouse-

based command controller uses these to 1) select the next command, and to

2) create UNIX shell scripts. The prefetch daemon uses the typical patterns

to generate prefetch rules and merges them into a trie structure to 3) prefetch

�les.

Operating
system

Process
management
system

Cache
system

File
system

Prefetch
  Daemon

Prefetch
    trie

Internal
 process
   recording

ClipBoard
  Interface
Mouse-based
command
selector

Prediction
    rules

GBI program

Operating 
   history

(directed graph) Process I/O

Fig. 6. System con�guration of ClipBoard and prefetch daemon

Figure 7(a)(b) displays the screen images of ClipBoard during a simple docu-

ment processing task. We have adopted the �le metaphor. Rather than sug-

gesting the next command directly, ClipBoard attaches an icon for the next

command to each of the �les that the user is now working on. Each small

box on the screen represents a �le. Each time a new �le is created, a new box

appears. When ClipBoard starts without any information, no icon appears in

the box. In this case the user selects a �le to be processed, then the dialogue

box appears and the user can specify the command. The same dialogue box

can be used to override the predicted command if the user does not want to

run that command for the �le s/he has selected. Figure 7(a) shows the latter.

The selected �le has an emacs icon, but the user wants to run latex. Entering

a new command for the �rst time or overriding the predicted command trig-

gers ClipBoard to initiate induction by GBI and update the prediction rules.

ClipBoard never asks the user for information, thus it learns by being told.

The user can always override ClipBoard's recommendation. No learning takes

places as far as the prediction made by ClipBoard is correct. Each time a new

induction is initiated, a new data set is created from the past history including

the one which ClipBoard has misclassi�ed and bas been noti�ed of. ClipBoard
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(a) Selecting latex command for a text �le

(b) Clicking the ghostview icon on the postscript �le to preview the text

Fig. 7. Screen images of ClipBoard

10



Table 1

An example of operation history

Step Application Input File

(A) xtex paper.dvi

emacs paper.tex

latex paper.tex

(B) xdvi paper.dvi

(C) dvi2ps paper.dvi

tries to learn the appropriate command for each �le extension, and the �les

that have the same extension receive the same icon. The icon for the same

�le changes over time re
ecting the context changes. The user clicks the icon

to run the command. In Figure 7(b) the user clicked the ghostview icon that

is attached to the postscript �le and is viewing the document. Currently,

ClipBoard interface is written by Tcl/Tk. The GBI program has both C and

Lisp versions. The prefetch daemon is written by Java.

4.1 Command Prediction

4.1.1 I/O Information Analysis

Consider an operation history in Table 1. As shown in steps (A), (B), and

(C), the �le paper.dvi is processed by three di�erent commands: xtex, xdvi

and dvi2ps. The top left �gure in Figure 8 shows the corresponding directed

graphs that are the inputs to GBI. Every command has both sequential and

dependency links, but for the sake of simplicity this is emphasized only for the

root node. The algorithm described in 3.2 �rst chooses the dvi attribute (fi)

and its value latex (Bj) for testing, and chunks the triplets (xdvi, dvi, latex) in

(B) and (dvi2ps, dvi, latex) in (C) (�rst pairwise chunking in Figure 8). The

no branch contains only one instance, (A), and the yes branch contains two

instances, (B) and (C). Next, the algorithm chooses the sequential attribute

(fi) and its value xdvi (Bj) for testing and chunks the triplet ((dvi2ps, dvi,

latex), seq., xdvi) (second pairwise chunking Figure 8). This separates (C)

from (B) and the induction stops 1 . The bottom right �gure in Figure 8 is the

interpretation of the induction results as prediction rules.

GBI assumes the existence of a strong correlation between the linked at-

1 In reality, there are many occasions in history where dvi �les are used by the

same command that has di�erent dependency, in which case the chunking process

becomes more complicated.
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(C)   if        dvi file was created by latex, 
                  and the previous command was xdvi,
       then    next command is dvi2ps.
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       then    next command is xdvi.

(A)   if        none of the above,
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Interpretation as prediction rulesSecond Pairwise Chunking(A) xtex

(B) xdvi latex .tex.dvi

(C) dvi2ps
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.tex.dvi
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latex emacs xtex

latexxdvi

latex
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emacs
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f i

Bj
xtex

(A) xtex

(B) xdvi latex .tex. dvi

(C) dvi2ps

seq seq seq

seq seq

.tex.dvi

seq seq

latex emacs xtex

latexxdvi

latex

emacs

emacs

emacs

xtex

(A) xtex

(B) xdvi latex .tex. dvi

(C) dvi2ps

seq seq seq

seq seq

.tex.dvi

seq seq

latex emacs xtex

latexxdvi

latex

emacs

emacs

emacs

xtex

f i Bj

Fig. 8. Induction by pairwise chunking

tributes. As described in 3.2, the algorithm follows the standard TDDT in-

duction, but the attributes to be selected are dynamically modi�ed in the

process. Note that it is impractical to represent the graph structure by a sin-

gle table of attribute-value pairs.

4.1.2 Evaluation

The above algorithm for the classi�cation problem was implemented and

tested for the command prediction problem using both arti�cially generated

and real operation data.

Arti�cial data were generated approximating user's behavior by a probabilistic

model which comprises �ve di�erent tasks that runs repeatedly with some

probability distribution. Each task is also described by a probabilistic model.

The model used is shown in Figure 9. Although not shown in this �gure, the

next state is probabilistically determined by a �nite past history that includes

�le I/O dependency. About 2000 di�erent sequences were generated. In going

from one command to the next, noise was added according to the model shown

in Figure 10. Such commands as ls, ld, du, etc., that do not directly depend

on the previous command, were used as a noise. Three fold cross validation

was used to evaluate the prediction accuracy. Because the data are sequential,

use of cross validation could worsen the predictive accuracy. We assume that

12



the data are stationary. The results are shown in Table 2 for three di�erent

levels of noise. This table includes the results obtained by other methods for

comparison.

start

cd

latex

xdvi

dvi2ps

lpr

end

emacs

10%

5%

10%

10% 70%

90%

85%

80%

30%

5%

10%

100%
100%

85%
10%

Editing model

Editing 
model 

model 
C-compiling 

News reading 
model 

30%

45%

5%

News reading model

Fig. 9. Task representation by a probabilistic model

80%

15%
5%

N%

100-N%

100-N%

N%

emacs latex

noise
N: noise level

Noise: Insert ls, ld, du, etc. with a prespecified probability.

Fig. 10. Noise model used in the arti�cially generated data

Table 2

Prediction accuracy for arti�cially generated data

Noise Induction Methods

Default LD CART GBI1 GBI2

15% 35.5 35.5 48.6 51.5 73.6

20% 33.8 33.8 45.2 52.1 73.7

25% 33.0 32.2 41.6 47.2 72.1

Default: Value for most frequently used command

LD: Linear Discrimination Method

GBI1: Without dependency info. for the root node (command to predict)

GBI2: With dependency info. for the root node

There are �ve induction methods in Table 2. Default is the simplest way of

prediction that always assumes the most frequently used command to be the

next command. LD is a linear discrimination method [9]. CART [1] is a well
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known decision tree classi�er. There are two cases for GBI. GBI1 is the case

where dependency information is used only for the commands (nodes) preced-

ing the root node. In other words, no dependency information is used for the

root node. This re
ects the fact that the argument is not known in advance

to predict the next command. GBI2 is the case where the dependency infor-

mation for the root node (command to predict) is also used. This corresponds

to a case where the �le to process is speci�ed, and this is exactly what the

current ClipBoard Interface does. This is not a strong restriction because �les

associated with a given task are generally known and the prediction of the

command for each of these �les can be made with this method. In [26] the

former is called command prediction and the latter, application selection.

The way the data were prepared for CART and GBI1 needs some elabora-

tion. In Figures 5 and 8 the links directly attached below the root node are

of two kinds: one for previous command (sequence information) and the other

for input �les (I/O dependency information). Since CART can't handle the

nested attribute representation (graph structure), last �ve consecutive com-

mands without dependency information (except the command immediately

before the root, which is already there) were moved below the root node.

Thus, the root node has �ve links with no grandchildren. LD also used the

same information as CART . To do a fair comparison, in GBI1 the data were

processed in the same way but with dependency information. Said di�erently,

four copies of the dependency trees, each corresponding to one of the past four

consecutive commands before the last one were attached to the root node.

GBI2 as described above used the dependency information at the root node,

and no copy of the dependency trees for the past commands were attached

(as in Figure 8). The depth and width were set at 10 and 100 respectively for

both GBI1 and GBI2. The width 100 means that we use as many �le I/O

dependency as it occurs.

LD gave the same answer as the default and did not improve the accuracy.

CART gave much better results but less than GBI1. We also used C4:5 [22]

on the separate data set, but the results are almost the same. The di�erence

between CART and GBI1 is the e�ect of dependency. To our disappointment,

the di�erence is much smaller than we expected. It is about 5% in this arti�-

cially generated data set. However, as we show next, this is indeed big enough

for the real data set. The result of GBI2 indicates that the I/O dependency

information immediately before the command to predict, plays an important

role in increasing the accuracy of prediction.

The same algorithm was tested against the real data that had been taken

from the log of daily usage over three months of a single user. The length of

command sequence is about 2000, which includes about 100 di�erent kinds

of commands. Two-thirds of them was used as a training data set and the

rest as a test data set. The result is shown in Table 3. It is clear that GBI
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outperforms the other methods. Interestingly, as stated above, GBI1 is much

better than CART in real data. This is probably because the number of com-

mands actually used is much larger than the arti�cial data case and the noise

level is also higher. Unfortunately the value for GBI2 is not available for the

same data set. It is instead estimated by the daily usage when the perfor-

mance approached the steady state 2 . Once again, the role of I/O dependency

is clear.

Table 3

Prediction accuracy for real data

Methods Default LD CART GBI1 GBI2

Accuracy % 22.6 22.6 34.6 57.8 �80.0

The non-essential commands such as ls and df can be naturally ignored by

a mouse-based interface system. If we ignore these e�ects and focus on the

important commands, we obtain the results shown in Table 4, which is by far

better. While evaluation of ClipBoard is still ongoing, most of the important

commands predicted by ClipBoard is quite adequate, and the user does not

feel any burden in using it.

Table 4

Prediction accuracy of selected commands (GBI1)

Command emacs make latex backup xdvi

Accuracy % 69 85 92 86 100

4.2 Script Generation

4.2.1 I/O Information Analysis

In a multi-window and/or a multi-task environment, a single user can work

on di�erent shells simultaneously. Even though the I/O operation sequence

of each task has regularity, the overall I/O sequence is a�ected by the subtle

timing of each task progress. The graph structure can encode the correct

information even in such an environment. To be precise, the I/O recorder

keeps track of 1) all process creations in the operating system, and 2) all I/O

operations (open system calls). Thus, it is possible to extract relationships

between commands that may have been issued across the di�erent shells (see

Figure 11). We use the whole graph to extract patterns. The extracted patterns

2 The depth was set 5 and the width 128 (this is maximum and automatically

adjusted).
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are frequently appearing ones in the history, and we convert them to shell

scripts. The input �le name is changed to the argument of the script with

extensions retained (See Figure 2).

Operating System

ClipBoard

emacs bibtex latex xdvi

ghostscriptB-shell

check mail read news date prog.exe

C-shell

make emacs dvi2ps

cc ld.c
.o

.dvi .exe

.tex .tex .dvi

Process creation
Command sequence
I/O relation

emacs

Fig. 11. Relationship between commands across the di�erent shells

4.2.2 Evaluation

Table 5 lists the scripts with more than three commands that are generated

from the sample history, which involves about 10,000 process creations and

about 130,000 I/O operations. The number of processes includes system pro-

grams that were not invoked by the user (e.g., telnet daemon, line printer

spooler daemon, etc.), some user commands (e.g., shell scripts), and created

child processes. The number of the actual commands invoked by the user was

approximately 2000, and the actual graph had about 2000 nodes and 16,000

links. The computation time to extract the frequently appearing patterns was

about 20 min.

Table 5

Generated scripts with more than three commands

Scripts Scripts Scripts

1. emacs $1

diff $1 $1.bak

cp $1 $1.bak

2. emacs $1

diff $1 $1.bak

cp $1 $1.bak

make

3. cp $1 $1.bak

chmod 500 $1

rm $1.bak

4. emacs $1.c

cc $1.c

a.out

5. emacs $1.tex

latex $1.tex

xdvi $1.dvi

6. emacs $1.c

cc $1.c

strip a.out

Since the algorithm only considers the frequency (more precisely equivalent as
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evaluated by the information measure), evaluation of the usefulness or impor-

tance of the generated scripts must be rendered to the user. Unlike the case

for command prediction, there is no direct feedback from the user. The scripts

in Table 5 have clear meanings except script 3. Without having knowledge

about the C compiler, ClipBoard could generate scripts 4 and 6. ClipBoard

did not use any pre-speci�ed knowledge about latex and related commands in

generating script 5. Script 1 is a unique script for this particular user. With-

out ClipBoard the user has to write this by him or herself. As we note, these

scripts are not di�cult for a user with standard knowledge to program. So

this function is not used regularly.

5 Prefetch Daemon

5.1 I/O Information Analysis

In a multi-task environment di�erent users also can work on the same ma-

chine for di�erent tasks (e.g., editing and programming). Just like in the case

of script generation, GBI analyzes the process data and represents them by

a set of directed graphs, from which it extracts typical patterns. Each of the

patterns represents an aspect of the user (we call it user model for conve-

nience). Figure 12 shows how these patterns are used to prefetch �les. First,

each of the patterns is converted into a prefetch rule. Unlike the command

predictions, the point here is not to predict the root node from the rest, but

to predict from the bottom (�rst) node in the sequence how certain �les are

going to be used along the subsequent command execution. Each rule consists

of a sequence of events, i.e., command executions and I/O operations, with a

list of �les to be prefetched. For example, in pattern A, when emacs is entered,

it is known that four �les (bibtex, .bst, latex, .sty) are going to be used in the

immediate future. It is noted that the user is editing .bib and .tex �les, thus

these �les are not in the candidates of prefetching. When bibtex is entered, it

is known that three (.bst, latex, .sty) are going to be use soon.

Next, all the prefetch rules are merged into a single trie structure. For example,

the �rst node of the two patterns are the same emacs and are thus merged.

In order to improve the prefetch accuracy, the statistical information in the

log is used to prune the �les 3 . In the merged �rst node only two �les (make,

bibtex) are prefetched because there is a branch and the probability of going

to each is known to be above a certain threshold. At the next node down right

3 There are many patterns that partially overlap and/or are subpatterns of the

others. A threshold can be set to the number of occurences of the �les for them to

be prefetched.
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(make) only two �les (cc, .h) are prefetched because the log indicates that a

certain fraction of compiling operation is failure and it is not wise to prefetch

all here. The generation of trie structure is performed as a batch process.

emacs bibtex latex
.bib .tex

.sty.bst makeemacs

cc ld

.a
.h .c

Pattern A Pattern B

bibtex make

emacs

bibtex

latex

read .bst

.sty

bibtex, .bst, latex, .sty

.bst, latex, .sty

latex, .sty

emacs

make

cc

ld

make, cc, .h, ld, .a

cc, .h, ld, .a

.h, ld, .a

ld, .a

.a

emacs

read .bst cc

read .h

make, bibtex

cc, .h

ld, .a

.bst

latex, .sty

read .h

Process (a)

Process (b)

Fig. 12. Prefetch rules and a merged trie structure for prefetching

5.2 Evaluation

After the batch process constructs the trie structure, the prefetch daemon

uses this trie structure to prefetch �les. The daemon maintains the status

information for each process. If a new process is activated, the prefetch daemon

creates a new pointer which points the root node of the trie structure. If

the process executes command emacs (i.e., the program memorized in the

succeeding trie node), the daemon prefetches program �les make and bibtex

and updates the pointer. In Fig. 12 process (a) shows the position of the

pointer after it executed emacs and then bibtex. Likewise process (b) shows

the position of the pointer after it executed emacs, make and cc in this order.

Each time it updates the pointer, it also looks for the same command from

the root (i.e., the command just below the root node) as if a new process with

this command was initiated. When it �nds the command, it also prefetches

the associated �les. This is recursive. If the actual events of the process exhibit

a di�erent sequence from the trie, all the pointers for this process are removed

and the prefetch daemon ignores the process until a new process is initiated.

The above prefetch mechanism was tested for the daily usage data (the length

of the log was about 38,000). After removing the processes that were not
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invoked by the user, the size of the graph from which to extract frequently

appearing patterns amounted to about 14,000 nodes. The prefetch cache size

was automatically adjusted by OS (it varied 5MB to 50MB). The initial trie

had approximately 1000 nodes and was pruned to about 1/10 using the sta-

tistical information from the log. Although further experiments are necessary,

the preliminary experiments show that the trie structure has high prediction

accuracy. For the experiment we conducted, the hit rate was almost 100%.

Unfortunately, even with the high hit rate, the current implementation slows

down the CPU intensive tasks due to the CPU resources used by the prefetch

daemon. We could only speed up I/O intensive tasks. It could indeed speed

up the invocation of a large program such as X-windows and mule to the

extent that we did not feel we had waited. The process switching overhead

and the JAVA byte code interpretation are the sources of the problem. A

kernel embedded �le prefetcher that is coded by C and assembler would solve

the problem.

6 Running Examples of ClipBoard

In this section, we brie
y describe how ClipBoard display actually changes

in response to user's operation. The �rst part (Figure 13(a) to (h)) is for

before learning, and the second part (Figure 14(a) to (h)) for after learning.

Figure 13(a) shows that there are twelve �les in the directory where the task

is editing a document. Since this is before learning, no predicted icons are

shown yet. The user selects emacs from the dialogue box for the main input

�le, paper.tex (Figure 13(b)), which leads to Figure 13(c) where the user is

editing the �le. At this stage ClipBoard learns that a �le with .tex extension

must be an input to emacs and emacs icon has appeared in the paper.tex box

for the �rst time. The user continues to browse by emacs one of the two text

�les with extension . txt both of which are called from the main input �le (not

shown). Now the emacs icons have appeared also to these two �les that have

the same extension (three emacs icons in Figure 13(d)). The user next views

one of the eps �les by ghostview and as before all the eps �les have now the

ghostview icons (three ghostview icons in Figure 13(d)). Then the user selects

the main input �le which has now emacs icon, and runs latex by overriding

the emacs (dialogue box in Figure 13(e)). The icon of the main �le has now

been changed from emacs to latex and new �les such as paper.dvi, paper.aux,

etc. have been created (Figure 13(f)). Next the user selects the newly created

paper.dvi �le and runs xdvi to view it (Figure 13(g)). Note that the xdvi icon

has appeared for the paper.dvi box (Figure 13(h)). ClipBoard keeps learning

like this by being told and inducing the classi�cation rules.

Figure 14(a) shows the �les in the same directory after ClipBoard has learned
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enough. Note that the three text �les have now the emacs icon and the dvi

�le has now the dvi2ps icon. Suppose that the user edits the �le that is called

by the main �le (Figure 14(b)). Then the icon of the main �le changes from

emacs to latex because ClipBoard has learned that latex must be run when

one of the input �les has been changed although the main �le remains the

same (Figure 14(c)). The user then clicks the icon to run latex. Note that the

icon has changed back to emacs and the icon for the paper.dvi has changed

to xdvi because ClipBoard has learned that the next action is to view this �le

(Figure 14(d)). The user clicks this icon and views the paper (Figure 14(e)).

The icon changes back to dvi2ps because the user has already viewed the

�le (not shown). Next the user edits the bib �le by emacs and runs bibtex

(not shown). Then the icon of the main �le has changed from emacs to latex

prompting that we need to run latex and the icon for paper.dvi has changed

from dvi2ps back to xdvi (Figure 14(f)). The user then runs latex twice and

the icon for paper.dvi changes back to xdvi (not shown). So the user clicks xdvi

icon and view the �nal results (Figure 14(g)). The icon has changed again back

to dvi2ps and the user clicks the dvi2ps icon to create a ps �le, which can be

viewed by ghostview and sent out to a printer (Figure 14(h)). As can be seen

in this short running example, once ClipBoard has learned, all we need is in

most cases simply to follow the predictions by clicking the icons. In summary,

ClipBoard satis�es the following desirable features: It is a system that does

not require a hand-coded knowledge base to model a user, learns in real time,

is accurate enough, does not force a user to accept its recommendation (so

user has a control), is easy to use, and learns to improve its performance over

time.

7 Discussion

7.1 Learning Semantics from Syntax

Although what GBI does is simply extracting the syntactic/statistical nature

of what a user has done in the past, it is still possible to extract useful se-

mantics of the user's behavior. The user never tells the start of his/her task

to ClipBoard, but the scripts generated by GBI does capture a piece of mean-

ingful tasks. Most crucial is the information source. The surface form of the

user's input (i.e., command sequence) was not enough. Other information that

is hidden and invisible (i.e., process I/O) contributed much. Standard tech-

niques (e.g., measures based on information theory, cross validation, etc.) that

statisticians have developed are also important factors.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 13. Running example (before learning)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 14. Running examples (after learning)

22



7.2 Information to Capture User Behavior

[19] addresses the importance of the context in an interface system. File exten-

sions we used in our analysis to capture the I/O information helped provide

rich context. Other information that may help capture the user's behavior is

command exit status and time of execution. For example, if the user fails to

compile a program because of a simple syntactic error, the next step tends

to be an editing task. If s/he succeeds, it tends to be a test run. Thus, the

exit status seems to be informative. Since most users tend to check e-mail in

the morning, the time of day also seems to be informative. Experiments using

ClipBoard utilizing such information are currently under investigation.

The method of encoding information is also important. We encoded the I/O

information from how a �le was made by application program. The experi-

mental results suggest the adequacy of this encoding, but this is not the only

way to use the I/O information. For example, how a �le was used by applica-

tion program is another way of encoding. Figure 15 shows a graph format that

was designed to emphasize this aspect. In this example sequence, a �le .tex

which was created by emacs are used by latex three times. This information

is explicitly encoded in the lower graph (none for latex(a), once for latex(b)

and twice for latex(c)). We con�rmed that this encoding also works well in a

version of ClipBoard that uses this as an alternative to the sequence informa-

tion. Note that this encoding has a noise-tolerant nature. User errors, such as

mistyping and wrong command selection, and unexpected interrupts, such as

new mail arrival, sometimes cause noise in sequence information. The replaced

I/O information is less a�ected by such noise.

emacs
.aux

latex latex latexbibtex

.bbl .bib

.aux
.dvi

.tex

latex

latex

latex

latex

latex latex

.tex

.tex

.tex

null

.tex

(a)(b)(c)

(a)

(b)

(c)

Fig. 15. Graph encoding the knowledge of how a �le was used.

The use of I/O information exhibits its merits when multi tasks are being exe-
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cuted simultaneously as shown in Figure 11. ClipBoard distinguishes between

the �le names that have the same extension. Thus, for example, even when

a user is editing two di�erent document simultaneously ClipBoard can learn

the correct classi�cation rules and never mixes up the operations on these two

documents.

7.3 Method of Analyzing User Behavior

If the user is always logical and consistent, the analytical methods, such as

explanation-based learning, are adequate in making the user behavior model.

Unfortunately, the user is sometimes illogical and inconsistent, and capricious-

ness makes it di�cult to apply analytical methods to the interface prob-

lem. The statistical methods, such as linear discrimination and k-nearest-

neighbor [9], and empirical learning methods, such as [20], seem to be more

adequate. The errors, i.e., mistyping and wrong command selection, are nat-

urally ignored as noises in these methods. However, these methods are not

suited to handle structural data as was the case for this study.

If we set the maximum width (number of input �les) per command and the

maximum depth (number of chains of I/O relationship), it is possible to design

a table of attributes and values that can record all the necessary information.

If we take the maximum width as 20 and the maximum depth as 5, a table

with ' 205 attributes is created 4 . This is only for one instance. If the analysis

requires 1000 cases, the table size becomes huge.

Inductive logic programming (ILP) [21,14,17], on the other hand, is more

expressive and captures the relations most naturally in �rst-order logic. It can

also handle noise [21,17]. To explore the potential of this approach, we tried to

use FOCL, one of the most e�cient ILP systems, to analyze the real data used

in Section 4.1.2. However, FOCL took more than four hours to �nd the �rst

test condition of the �rst rule; therefore we had to give up this approach 5 .

GBI's expressiveness lies in between the attribute-value pairs and the �rst-

order logic. It is a limited form of propositional calculus. Its learning potential

is much weaker than that of ILP, but stronger than that of the attribute-value

representations and yet as e�cient. We demonstrated that command predic-

tion we addressed in this paper is a class of the problem that GBI's framework

�ts well. Furthermore, GBI can handle both supervised learning (classi�ca-

tion) and unsupervised learning (conceptual clustering) in a uni�ed way. The

former induces discrimination rules and the latter characteristic rules.

4 Note that a typical (not maximum) single run of the latex command receives 50

input �les (e.g., .tex, . aug, . sty. .bbl, .eps, .tfm, .fmt, etc).
5 We have not taken advantage of the search strategy used in GBI.
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7.4 Meta-level Learning and other improvements

Currently command prediction and script generation are treated as separate

tasks. While using ClipBoard, repetition was frequently observed. This sug-

gests the possibility of meta-level learning, that is learning regularity of Clip-

Board's behavior. Here the repetition is about the sequence in which the icons

were clicked. Since those icons are attached to the �les, this is di�erent from the

command sequence prediction. A simple mechanism which interactively com-

piles these found sequences into macros (or equivalently shell scripts) would

be useful.

We are aware of some minor things that could improve ClipBoard's ease of use.

For example, we could improve ClipBoard's selection function by highlighting

the second suggestion shown in the dialog box (See Figure 7(a)) when the user

wants to override ClipBoard's �rst suggestion (which is displayed by icon).

7.5 Other Applications

The idea of ClipBoard seems to be useful in designing interface systems of other

kinds such as automatic chart format selection in spread sheet and data base,

naive-user guidance and installation guidance-and-diagnosis systems. The last

two are meant to apply the knowledge learned from expert behavior to non-

expert users. During the development of ClipBoard, we were able to use the

I/O information itself, i.e., the raw history data, for debugging purposes. A

good display system of this information seems to be bene�cial even for an

expert user.

One promising application that goes beyond those within a single machine is

dynamic World Wide Web caching. The rapid growth of information gather-

ing through WWW causes a heavy network overload, and the resulting slow

response is causing a problem. Distributed caching is a promising approach.

Our preliminary study [24] by GBI shows that it is possible to reduce the

overload of the backbone tra�c by extracting frequent occurring data trans-

mission patterns from the wide area network 
ow and using this to allocate

distribute cache storage. The simulation assumed the situation where 32,000

WWW servers are accessed simultaneously by 16 clients. Each client and proxy

had a 32 MB cache capacity. The data were taken from the access log of our

proxy server that included 2.3 million data transfers (18.7 GB in size). Fig-

ure 16 shows how the backbone tra�c changes with the time of day with and

without cache, from which we observe 26% reduction of tra�c between 10 am

and 8 pm. The tra�c reduction at the peak time amounts to 100 MB. Fig-

ure 17 compares the data 
ow for two di�erent cache systems: the distribute
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caching by GBI and the conventional hierarchical caching. Both uses local

caching and the �gure shows how much reduction is made possible after the


ow is reduced by the local cache. We can observe the reduction is 2.5 times

larger on the average between 10 am and 8 pm.
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Fig. 16. Network tra�c distribution over the time of day with and without cache
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Fig. 17. Network tra�c distribution over the time of day for di�erent cache systems

8 Related Work

Intellectual assistance by computers has attracted many people, and various

attempts have been undertaken with di�erent approaches and for di�erent
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tasks. There are many terms that characterize these approaches such as learn-

ing apprentice, software agent, learning agent, interface agent, programming

by example or demonstration, personal knowledge based system, etc. What is

common to many of them is that they observe repetition or regularity in the

user's behavior and use them for automation, prediction and customization in

one way or another.

The amount of knowledge that has to be provided in advance varies among

the approaches. General remarks are that making the user program everything

requires too much insight, understanding and e�ort from the user, and having

to encode a lot of domain-speci�c background knowledge about the task and

the user also requires a huge amount of work from the knowledge engineer.

Both have �xed competence, and are hard to customize to individual user

di�erences or changes of habits. Some sort of automatic knowledge acquisition

that can capture each user's habits is needed.

EAGER [2] is an example of program by demonstration (PBD), which is a

HyperText system that keeps watching a user's actions, detects an iteration

and o�ers to run the iterative procedure to completion by generalizing the

repetitions and making macros. Myers's demonstrational formatter [15] is also

an example of PBD. It does not focus on the repetition, but generalizes a single

example to create a template for later use, which enables the formatting of

headers, itemized lists, tables, references, etc. Another example is Gold [16]

which is a business chart editor. It is given the knowledge of properties of the

data and the typical graphics in business charts to generalize a single, or a

very few examples, by interpreting them as a combination of primitives.

[6] analyzes repetitive patterns in the UNIX command histories and observes

some regularities. [13] also uses the repetitive nature for a predictive user in-

terface. When a user types a repeat key after doing repetitive operations, an

editing sequence corresponding to one iteration is detected, de�ned as a macro,

and executed at the same time. Although being simple, it covers a wide range

which had to formerly be covered by keyboard macro. [8,3] explores mecha-

nisms for predicting the next command to be used for the UNIX command-line

shell. To our knowledge their work is the closest to ours. They have collected

command histories from 77 people, and have calculated the predictive accu-

racy over this dataset using C4:5. They use only sequence information and the

best performance they obtained has an average online predictive accuracy of

up to 38%, which is consistent to our result in Table 3. They have built a new

shell called ilash by adding this predictive capability to tcsh. They argue that

because many users use aliases which reduce the average command length, the

saving of the keystrokes typed is not much even if a correct prediction could

be inserted with a single character.

All of the above approaches except [8,3] do not use machine learning tech-
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niques although they do guess and generalize. The Interface agent of [12] takes

a machine learning approach. They address the problem of self-customizing

software at a much more task independent level. The core is to learn by ob-

serving the user, i.e., by �nd reguralities in the user's behavior and using

them for prediction. They also adapt two other learning modes: learning from

user feedback and learning by being told. They used memory-based learning

(k-nearest neighbor) which is good for explanation. Situations in the user are

described in terms of a set of attributes which are hand-coded. The tasks that

they applied are a calendar management agent and an electronic mail clerk.

The personal learning apprentice CAP [4] is similar to the above. It is an

interactive assistance that learns continually from the user to predict default

values. Their application is a calendar management apprentice which learns

preferences as a knowledgeable secretary might do. Two competing leaning

methods are used: decision tree learning and backpropagation neural net. The

attribute value representation su�ces for this purpose. Another related system

addresses the task of form-�lling [7]. They use decision tree learning to predict

default values for each �eld on the form by referring to values observed on other

�elds and the previous form copy.

[23]'s pen-based interactive note taking system is a self-customizing software

to eliminate the need for user customization. It starts with partially-speci�ed

software and applies a machine learning technique to complete any remain-

ing customization. The system learns a �nite state machine to characterize

the syntax of user's notes and learns decision tree to generate predictions.

Letizia [11] is an interface agent that assists a user browsing the WWW. It

tracks user behavior and attempts to anticipate items of interest by doing

concurrent, autonomous exploration of links from the user's current positions.

Intelligent agent for information browsing is a hot area and many systems are

being pursued (e.g., [5,18]).

The research on prefetching is carried out by a separate community. The

standard Least Recently Used (LRU) based caching o�ers some assistance, but

ignoring any relationships that exist between �le system events fails to make

full use of available information. The closest work that uses the relationship

would be [10]. They use trie structure to memorize previous I/O sequence but

no explicit learning is performed. Their results indicate that the predictive

caching gains on the average 15% more cache hits than the LRU based caching.

However, since they are using only sequential information, their method does

not work well in a multi-task environment.

All of the applications that use machine learning techniques do not require re-

lational representations. The data are represented by a set of features. Analysis

of sequential information is enough for the selected applications. Some require

additional task speci�c knowledge. We showed in this paper that there are
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other applications that this success cannot be easily generalized, and proposed

the GBI as a general induction mechanism for this type of applications.

9 Conclusion

We have modeled a user adaptive interface that can predict next command,

generate scripts and prefetch �les in a multi-task environment. The analysis of

behavioral data indicated that the directly observable sequential records are

not enough to capture the behavior, and that simultaneous use of process I/O

information that is hidden from the user is bene�cial. An e�cient induction

algorithm that can handle relational data was needed and a technique called

graph-based induction was applied. It can �nd frequently occurring patterns

from a graph representation. It also induces classi�cation rules from structured

data that have intra-relationship. Pairwise chunking, which is the heart of the

algorithm, does not guarantee an optimal solution by any means, but empiri-

cal study shows that use of statistical measure results in a good solution. It is

e�cient and can run in real time. The command prediction module is in daily

use. Shell script generation works as expected but is less used. Prefetching

daemon still needs a better implementation to enjoy the real bene�t.
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