
A Selective Sampling Approach to
Active Feature Selection

Huan Liu1, Hiroshi Motoda2, Lei Yu1

1Department of Computer Science & Engineering
Arizona State University, Tempe, AZ 85287-8809, USA

{hliu,leiyu}@asu.edu
2Institute of Scientific & Industrial Research

Osaka University, Ibaraki, Osaka 567-0047, Japan
motoda@sanken.osaka-u.ac.jp

Abstract

Feature selection, as a preprocessing step to machine learning, has been
very effective in reducing dimensionality, removing irrelevant data, increas-
ing learning accuracy, and improving result comprehensibility. Traditional
feature selection methods resort to random sampling in dealing with data
sets with a huge number of instances. In this paper, we introduce the concept
of active feature selection, and investigate a selective sampling approach
to active feature selection in a filter model setting. We present a formal-
ism of selective sampling based on data variance, and apply it to a widely
used feature selection algorithm Relief. Further, we show how it realizes ac-
tive feature selection and reduces the required number of training instances
to achieve time savings without performance deterioration. We design ob-
jective evaluation measures of performance, conduct extensive experiments
using both synthetic and benchmark data sets, and observe consistent and
significant improvement. We suggest some further work based on our study
and experiments.

Key Words: Dimensionality Reduction, Feature Selection and Ranking, Sam-
pling, Learning

1

1 Introduction

Inductive learning is one of the major approaches to automatic extraction of use-
ful patterns (or knowledge) from data. Data becomes increasingly larger in both
number of features and number of instances in many applications such as genome
projects, text mining, customer relationship management, and market basket anal-
ysis [2, 35, 43, 44, 55, 57]. This trend poses a severe challenge to inductive learn-
ing systems in terms of efficiency and effectiveness. Feature selection has proven
to be an effective means when dealing with large dimensionality with many irrel-
evant features [17, 42, 57]. In particular, feature selection removes irrelevant fea-
tures, increases efficiency of learning tasks, improves learning performance (e.g.,
predictive accuracy), and enhances comprehensibility of learned results [34, 37].
Although there exist numerous feature selection algorithms [6, 12, 23], new chal-
lenging research issues arise for feature selection: from handling a huge number
of instances, large dimensionality (e.g., thousands of features), to dealing with
data without class labels. This work is concerned with the number of instances in
the context of feature selection.

When the number of instances is large, how can one use a portion of data to
achieve the original objective without performance deterioration? Sampling is a
common approach to this problem and many sampling methods are available [9,
22]. Random sampling is a method of selecting a sample of n out of N (n ≤
N) units such that every one of the

(

N

n

)

distinct samples has an equal chance
of being drawn. It has proven to be an effective approach to dealing with large
data sets for many machine learning tasks including classification, clustering, and
association rule mining [7, 30, 52]. However, random sampling is blind because it
does not exploit any data characteristic. In this work, we explore if sampling can
use data characteristics and achieve better performance than random sampling in
the following sense: either maintaining the performance of feature selection with
much fewer instances, or improving the performance of feature selection with the
same amount of instances.

This work is about feature selection on labeled data, i.e., class information
is available. For feature selection on unlabeled data, various work can be found
in [13, 15, 17, 18, 27, 53]. In Section 2, we briefly review the development of
feature selection, its models, and active learning. In Section 3, we describe active
feature selection and a formalism of selective sampling that exploits data variance.
In Section 4, we demonstrate active feature selection using Relief and discuss im-
plementation details. In Section 5, we design objective measures for performance
evaluation including time savings. Section 6 is an empirical study in which we

2

evaluate the performance improvement obtained with active feature selection and
discuss the implications of the findings. Section 7 presents a conclusion and some
work to be completed in the near future.

2 Related Work

Feature selection refers to the study of algorithms selecting an optimal subset of
the input feature set. Optimality is normally dependent on the evaluation criteria
or the application’s needs [37]. Major aspects of feature selection [34] include fea-
ture subset generation, search strategies, goodness evaluation, etc. Feature subset
generation studies how a subset is generated following search directions. Search
strategies cover exhaustive and complete search, random search, and heuristic
search. A search can start from an empty feature set and add new features, or
begin with a full set and remove irrelevant features. The goodness of a feature
subset can be evaluated using various measures: consistency, distance, informa-
tion, dependency, accuracy, etc. Feature selection algorithms fall into two broad
categories, the filter model or the wrapper model [11, 31]. The filter model relies
on the general characteristics of the training data to select some features indepen-
dently of any learning algorithm, therefore it does not inherit any bias of a learning
algorithm. The wrapper model requires one predetermined learning algorithm and
uses the performance of the learning algorithm to evaluate and determine which
features are selected. The wrapper model needs to learn a new hypothesis (or a
classifier) [40] for each new feature subset. It tends to find features better suited
to the predetermined learning algorithm resulting in good learning performance,
but it also tends to be more computationally expensive than the filter model [34].
When the number of instances becomes large, the filter model is usually chosen
due to its computational efficiency. In the context of this work, therefore, we focus
on the filter model for feature selection.

The concept of active feature selection is inspired by the successful use of se-
lected instances (or data points) in active learning [36, 49]. Active learning [49,
50] is different from traditional supervised learning: an active learner has the
freedom to select which instances are added to the training set. An active learner
may begin with a very small number of labeled instances, carefully select a few
additional instances for which it requests labels, learn from the result of that
request, and then using its newly-gained knowledge, carefully choose another
few instances to request next. Several methods have been developed for ac-
tive learning such as uncertainty sampling, adaptive sampling, and query-by-

3

committee [10, 19, 36]. The advantage of active learning is that the data require-
ments for some problems decrease drastically when the instances to be labeled
are properly selected. In [50], they reported that when training the support vector
machine (SVM) [8, 26] on a small subset of the available data chosen by their
heuristic, its performance is frequently better than that of an SVM trained on all
available data. Thus, an active learner provides better generalization and requires
less data than a passive learner trained on the entire data set. Similar results were
observed in [36] with their probabilistic classifiers.

Before we delve into the details of active feature selection, let us briefly de-
scribe the difference and commonality between active learning and active feature
selection. The essence of active learning lies in its control over the choice of in-
stances used in the iterative learning process [49, 54]. Active feature selection
shares this essential characteristic with active learning in that it can influence the
instances used for feature selection by exploiting some characteristics of the data.
The selection process to form a representative sample data set is not iterative. As
discussed earlier, we work with a filter model of feature selection and thus we
do not employ a learning algorithm to actively choose instances. Therefore, the
problem of active feature selection boils down to how we can employ selective
sampling to choose representative instances for feature selection.

3 Active Feature Selection via Selective Sampling

Traditional feature selection methods perform dimensionality reduction using what-
ever training data is given to them. When the training data set is very large, ran-
dom sampling is commonly used to deal with memory and performance issues.
Active feature selection avoids pure random sampling and is realized by selective
sampling. The idea of selective sampling stems from the fact that instances are
not uniformly distributed and some instances are more representative than oth-
ers [3]. If one can identify and select representative instances, fewer instances
are needed to achieve similar performance. Therefore, the objective of selective
sampling for feature selection is to select only those instances with a high prob-
ability to be informative in determining feature relevance. By adopting the filter
model for feature selection, we have ruled out the possibility to use a learning al-
gorithm to determine which instances are most relevant [38, 49]. In order to select
representative instances for feature selection, we need to explore data character-
istics: we first try to partition data according to data dissimilarity and then select
representative instances from the resulting partitions.

4

0
 5

10

5

10

(2,5)

(5,4)

(8,9)

(3,7)

(8,9)

(3,7)
(3,7)

(2,5)
(2,5)

(5,4)
(5,4)

(a): The splitting of the X , Y plane (b): A 2d-tree representation

Figure 1: A typical kd-tree example.

There are many data partitioning techniques [21] in the literature on multi-
dimensional indexing. We choose kd-tree [20] in this work because of its sim-
plicity and popularity. A kd-tree is an index structure often used for fast nearest
neighbor search [41]. It is a generalization of the simple binary tree which uses
k dimensions (features) instead of a single dimension (feature) to split data points
(instances) in a multi-dimensional space. In a kd-tree, the root presents all the
instances. Each interior node has an associated splitting feature Ai and a splitting
value Vi (1 ≤ i ≤ k) that divide the instances into two partitions: those with Ai-
values less than Vi and those with Ai-values equal to or greater than Vi. Splitting
features at different levels of the tree are different, with levels rotating among the
features of all dimensions. The splitting is done recursively in each of the succes-
sor nodes until the node contains no more than a predefined number of instances
(called bucket size) or cannot be split further. The order in which features are
chosen to split can result in different kd-trees.

Figure 1 provides a typical example of kd-tree with four instances (2, 5),
(3, 7), (5, 4), (8, 9) in a 2-dimension space: (a) shows how the instances are parti-
tioned in the X,Y plane, and (b) gives a tree representation of the four instances.
The root node, with point (2, 5), splits the plane along the Y -axis into two sub-
spaces. The point (5, 4) lies in the lower subspace (i.e., (x, y) | y < 5), and thus
is in the left subtree. The points (3, 7) and (8, 9) lie in the upper subspace (i.e.,
(x, y) | y ≥ 5), and thus are in the right subtree. The point (3, 7) further splits the
upper subspace into two parts along the X-axis.

5

0
 5

10

5

10

(2,5)

(5,4)

(8,9)

(3,7)

X<4
 X>=4

(2,5)
 (3,7)
 (5,4)
 (8,9)

(8,9)

(8,9)

(5,4)

(5,4)

(3,7)

(3,7)

(2,5)

(2,5)

Y<6
 Y>=6
 Y<6.5
 Y>=6.5

(a): The splitting of the X , Y plane (b): A 2d-tree representation

Figure 2: A modified use of kd-tree.

For the purpose of selective sampling, we want to select features that can
split instances into different groups based on their dissimilarity measures as early
as possible. Hence, in our building a kd-tree, a splitting feature is chosen if
the data variance is maximized along the dimension associated with the feature.
The variance of a feature Ai is calculated according to the formula V ar(Ai) =
∑N

j=1
(Vj−Vi)

2

N
, where Vi is the median value of feature Ai, and j is the index of

each instance in a data set with N instances. Once feature Ai is determined, value
Vi is then used to split the instances into two partitions. Figure 2 shows a modified
kd-tree of the example shown in Figure 1. At the root level, since V ar(X) = 5.5
(with median value 4) and V ar(Y) = 3.75 (with median value 6), the space is
split along the X-axis (x = 4) into two subspaces. The points (2, 5) and (3, 7) lie
in the left subspace (i.e., (x, y) | x < 4), and thus are in the left subtree. The points
(5, 4) and (8, 9) lie in the right subspace (i.e., (x, y) | x ≥ 4), and thus are in the
right subtree. Each of the two subspaces are further split along the y-axis (y = 6,
y = 6.5, respectively) into two parts, producing four leaf nodes in the tree. Since
the median value (instead of mean) of feature Ai is used in the calculation of vari-
ance, the resulting kd-tree is theoretically a balanced tree. The time complexity
of building such an optimized kd-tree is O(kN logN). However, in some cases,
a feature selected to split the tree may contain duplicate values, which may result
in an unbalanced tree. The kd-tree can be built once if necessary, or dynamically
when required.

6

In building a modified kd-tree (as shown in Figure 2), the leaf nodes (buckets)
represent mutually exclusive small subsets of instances which collectively form a
partition of the whole data set1. The size of a bucket can be an input parameter
and determined a priori. Since instances in each bucket are relatively close to
each other, we can randomly select one instance from each bucket to represent
the effect of all the instances in its corresponding bucket. Therefore, a subset of
the instances chosen by selective sampling is used to approximate the full sample
space. Selective sampling can be summarized by a 3-step procedure:

1. Determine the size t of a bucket

2. Build a variance-based kd-tree with m buckets

3. Randomly select an instance from each bucket

We provide next details of selective sampling for feature selection.

4 Applying Selective Sampling to Feature Selection

Efficiency is critical for feature selection algorithms in the context of large data
sets. To demonstrate selective sampling, we use a well-known and efficient algo-
rithm Relief that can select statistically relevant features in linear time of the num-
bers of features and instances [28, 47]. After introducing Relief in Section 4.1, we
illustrate how selective sampling can be applied to Relief and present a new algo-
rithm of active feature selection in Section 4.2. In Section 4.3, we discuss other
related work on Relief.

4.1 Relief algorithm

The key idea of Relief (given in Figure 3) is to estimate the quality of features
according to how well their values distinguish between instances that are near to
each other. For this purpose, given a randomly selected instance X from a data
set S with k features, Relief searches the data set for its two nearest neighbors:
one from the same class, called nearest hit H , and the other from a different class,
called nearest miss M . It updates the quality estimation W [Ai] for all the features
Ai based on the values of difference function diff() about X,H, and M . The
process is repeated m times, where m is a user-defined parameter [28, 32]. For

1Every node at each level of the tree only records indexes of the instances this node contains.

7

Given m - desired number of sampled instances, and k - number of features,

1. set all weights W [Ai] := 0.0;
2. for j := 1 to m do begin
3. randomly select an instance X;
4. find nearest hit H and nearest miss M ;
5. for i := 1 to k do begin
6. W [Ai] := W [Ai]− diff(Ai, X,H)/m + diff(Ai, X,M)/m;
7. end;
8. end;

Figure 3: Original Relief algorithm.

instances X1, X2, diff(Ai, X1, X2) calculates the difference between the values2

(x1i and x2i) of feature Ai:

diff(Ai, x1i, x2i) =











|x1i − x2i| if Ai is numeric

0 if Ai is nominal & x1i = x2i

1 if Ai is nominal & x1i 6= x2i

Normalization with m in calculation of W [Ai] (line 6 in Figure 3) guarantees that
all weights are in the interval of [-1,1].

The time complexity of Relief for a data set with N instances is O(mkN).
Efficiency is one of the major advantages of the Relief family over other algo-
rithms [12]. With m being a constant, the time complexity becomes O(kN).
However, since m is the number of instances used to approximate probabilities, a
larger m implies more reliable approximations. When N is very large, it is often
required that m¿ N .

4.2 Relief with selective sampling

Although random sampling of m instances for Relief reduces the time complexity
from O(kN 2) to O(kN), the optimal results of Relief are not guaranteed. When
applying selective sampling to Relief, we aim to obtain results that are better than
using random sampling and similar to the results using all the instances.

In our attempt to selectively sample m instances based on the modified kd-
tree introduced in Section 3, we can use either sample size m or bucket size t

2Numeric values should be normalized into the range between 0 and 1.

8

Given t - bucket size,

1. set all weights W [Ai] := 0.0;
2. buildKDTree(t);
3. m := number of buckets;
4. for j := 1 to m do begin
5. randomly select an instance X from Bucket[j];
6. find nearest hit H and nearest miss M ;
7. for i := 1 to k do begin
8. W [Ai] := W [Ai]− diff(Ai, X,H)/m + diff(Ai, X,M)/m;
9. end;
10. end;

Figure 4: Relief with selective sampling.

to control the kd-tree splitting process. Since only one instance is selected from
each bucket, one can easily establish that t = N/m, where N is the total number
of instances. Therefore, if m is predetermined, the splitting process stops when
it reaches the level where each bucket contains N/m or fewer instances. For
example, in Figure 2 (b), if m = 2, the splitting process stops after the first split
when each bucket contains two instances. On the other hand, given a t, we can
estimate m based on t. In Figure 2 (b), if we choose t to be 1 (i.e., each bucket
contains only one instance), all the four instances will be selected. For a bucket
size t = N , the root node is not split at all, and only one instance will be selected.
As we mentioned earlier, in practical, the resulting kd-tree may not be a balanced
tree due to duplicate feature values. Therefore, for 1 < t < N , the number of
selected instances m will be within (1

t
N , N).

In this work, we use bucket size t to control the number of selected instances
m which is equal to the number of buckets. The algorithm of Relief with selective
sampling is detailed in Figure 4. One important point in buildKDTree(t) is that
each feature should be normalized [56] before the variance calculation in order to
choose to split on the feature with largest variance.

In the empirical study, we use ReliefF [32, 56] which is an extension to the
original Relief. It handles multiple classes and searches for several nearest neigh-
bors to be robust to noise. We compare ReliefF with its counterpart ReliefS which
applies selective sampling for instance selection in the same way as described in
Figure 4. The difference between the two is illustrated in Figure 5. The top flow

9

N

k

k

4

Data
 Sample of 4

Random Sampling

ReliefF

N

k

Data

kd
-
tree building

k

4

Sample of 4

ReliefF

kd
-
tree with 4 buckets

Random Sampling

B
1
 B
4
B
3
B
2

Root

N
N

k
k

k

4

k
k

4

Data
 Sample of 4

Random Sampling

ReliefF

N
N

k

Data

kd
-
tree building

k

4

k

4

Sample of 4

ReliefF

kd
-
tree with 4 buckets

Random Sampling

B
1
 B
4
B
3
B
2

Root

Figure 5: The difference between ReliefF and ReliefS: The top and bottom flows
show how ReliefF and ReliefS work, respectively.

shows ReliefF with random sampling of 4 instances from the data. The bottom
flow shows ReliefS with random sampling of one instance from each of the four
buckets of the kd-tree.

4.3 Related work on Relief

There has been substantial research on the Relief family of algorithms (Relief,
ReliefF, and RReliefF) [25, 28, 32, 33, 45, 46, 47, 48]. Relief (introduced in Sec-
tion 4.1) was designed for feature subset selection [28, 29] and it is considered one
of the best algorithms for this purpose [16]. Relief only deals with binary classes.
This limitation was overcome by ReliefF [32] which handles multiple classes and
incomplete and noisy data. ReliefF was further extended to RReliefF [45] in or-
der to handle continuous classes in regression. The Relief family of algorithms are
general and successful feature estimators and are especially good in detecting con-
ditional dependencies between features [48]. In inductive learning, ReliefF was
successfully employed in building decision trees for classification. The resulting
decision trees achieved superior predictive accuracy over Naive Bayesian classi-
fiers and k-NN classifiers across various artificial and real-world data sets [33]. It

10

was also shown in [45] that RReliefF is effective in selecting features in learning
regression trees for regression problems.

Albeit a broad spectrum of successful uses of the Relief family of algorithms,
little work has shown how to determine an optimal sample size3. Therefore, work
regarding Relief usually circumvents the issue of optimal m by simply choosing m
to be the full size of the data set [32] as the larger m leads to better performance4.
Robnik-Sikonja and Kononenko showed in [48] that although feature selection
results become stable after a number of iterations for simple data sets, the quality
of results keeps improving as the sample size increases for more complicated data
sets. The goal of this work is to show that for a given sample size m, instances
obtained by selective sampling are more effective for feature selection than those
selected by random sampling. Hence, in our work, we observe how selective
sampling differs from random sampling by varying m from 10% to 100% of N
using ReliefF with all N instances as the performance reference.

Recall that Relief relies on the search of a predefined number of nearest neigh-
bors [32], and the kd-tree data structure is often used for fast nearest neighbor
search [41]. In [51], kd-trees are applied to speed up Relief and its extensions
by providing a fast way to locate nearest neighbors for each class, thus reducing
the overall time complexity of the algorithms to O(kN logN). Additional time
savings can be achieved by building the kd-tree once and using it for both bucket
generation and the nearest neighbor search. However, the focus of this work is
not to speed up current algorithms in the Relief family, but to investigate the ef-
fectiveness of selective sampling in partitioning data points for feature selection.

5 Issues of Performance Evaluation

Before we proceed to define performance measures for selective sampling, let us
first discuss some criteria for a suitable performance measure:

1. It is a function of the features of the data.

2. Its value improves as m increases.

3. Its value reaches the best when m = N .
3One heuristic suggested in [25] is to choose m = logN in an algorithm similar to Relief.
4Doing so increases the complexity of the algorithm to O(kN 2).

11

In ReliefF, since m is the number of instances used to approximate probabilities,
a larger m implies more reliable approximations. Therefore, it is reasonable to
assume that the optimal result ReliefF can achieve is the features ranked according
to their weights when m = N . This ranked list of features is named SN . Given
various sizes of m, the results of ReliefF and ReliefS can be compared in two
aspects: (1) subset selection - we compare which resulting subset is more similar
to the optimal subset obtained from SN ; and (2) feature order - we compare the
order of features determined by ReliefF or ReliefS to the order of features in SN .
In Section 5.1, we discuss the reason why it is important to consider the order
of features. In Section 5.2, we present three different measures with different
emphasis on feature order and check if they satisfy the above three criteria. In
Section 5.3, we discuss time savings when using active feature selection.

5.1 Importance of feature order

Based on the output type, feature selection algorithms can be grouped into two
categories, minimum subset algorithms and feature ranking algorithms [37]. Min-
imum subset algorithms return a minimum feature subset but do not rank features
in the subset [14, 24, 53]. Features in the subset are relevant, others are irrelevant.
Feature ranking algorithms assign a weight to each feature of the data set and
rank the relevance of features according to their weights [15, 32, 58]. Order in-
formation is important for these algorithms because it indicates relative relevance.
Order information is also important if one aims to select a feature subset from the
resulting ranked list. Below, we illustrate how order information can affect the
selection of relevant features for ReliefF and other feature ranking algorithms.

We first define some terms. For an optimal list of features SN , a target subset
of features T is defined as an optimal subset of features which contains the top
n weighted features in SN . For a data set with an unknown number of relevant
features (n), T contains the top n features whose weights ≥ γ, where γ is a
threshold equal to W [i] (the ith largest weight in SN) and the gap defined by W [i]
and W [i+1] is sufficiently large (e.g., greater than the average gap among the k−1
gaps). Let SReliefF and SReliefS be the two resulting lists obtained by ReliefF and
ReliefS, respectively. To compare the performance of both ReliefF and ReliefS
with different sizes of m, we can define a performance measure P(SN , R) where
R can be either SReliefF or SReliefS with varying m. Figure 6 (a) illustrates the
relationships among SN , T , R, and Rn (the subset of the top n features in R).
Figure 6 (b) shows five cases for a set of five features. Column I shows the optimal
ranking of the five features (SN), and each of the remaining four columns (II-V)

12

S
N

T

A
1

A
2

A
3

A
n

A
k

A
2

A
3

A
5

A
n

A
k

R
n

R

(
S
ReliefF
/

S
ReliefS
)

A
1

A
2

A
3

A
4

A
5

A
2

A
1

A
4

A
3

A
5

A
2

A
3

A
5

A
1

A
4

A
3

A
1

A
2

A
5

A
4

A
1

A
2

A
3

A
5

A
4

II
 III
 V
IV
I

(a) Relationships among terms (b) Results with different feature orders

Figure 6: An example for the importance of feature order.

represents a ranking from either ReliefF or ReliefS with m instances, assuming
m < N .

For a given n (either known a priori or determined by threshold γ), the order of
features in R directly affects the selection of a feature subset Rn. For example, in
Figure 6 (b), the threshold γ is chosen to include the top three features from each
resulting list. All the three relevant features (A1, A2, A3) are selected into Rn in
cases II and III, while only two of them are selected in cases IV and V. However,
given the same ordered lists II-V, if γ is chosen to include the top two features, the
selected subset Rn in case III will fail to include both of the two relevant features
A1 and A2, while Rn in case IV will become an optimal subset. Therefore, it
is important to develop performance measures that take order information into
consideration. Below we examine sensible candidates for P().

5.2 Performance measures

5.2.1 Precision

Precision (P) is computed as the number of features that are in both T and Rn,
divided by the number of features in T :

P =
|T ∩Rn|

|T |
.

13

P ranges from 0 to 1, where P is 1 when subsets T and Rn are equal and 0 when
none of the features in T appears in Rn. In Figure 6 (b), P is 1 for cases II and III
and 2/3 for cases IV and V.

5.2.2 Distance

Precision treats all features in T and Rn equally without considering the orders
of the features. In order to account for the order of features in both SN and R,
Distance (D) is defined based on the sum of distances between common features
in T and R. The distance of a feature between two sets is the difference between
its positions in the two ranked lists. Let S ′N be SN in reverse order. The maximum
possible ranking distance between two sets that share the same features is:

Dmax =
∑

∀Ai∈SN

|position(Ai ∈ SN)− position(Ai ∈ S ′N)|.

D is then defined as the follows:

D =

∑

∀Ai∈T

|position(Ai ∈ T)− position(Ai ∈ R)|

Dmax

Since the subset Rn may not contain all the features in T , we use the full set R
in the definition of D. Dmax is used to normalize D so that D ranges from 0 to 1,
where D is 0 when the two sets T and Rn have identical ranking (as shown in case
II), otherwise, D is larger than 0. In Figure 6 (b), with Dmax = 12, the D values
for cases II, III, IV, and V are 0, 4/12, 3/12, and 5/12, respectively.

5.2.3 Raw Distance

Both Precision and Distance require choosing a threshold γ to decide the target
set T . In some cases, it is difficult to determine an optimal threshold. If γ is
wrongly estimated, meaning that the target set T is not an optimal subset, eval-
uation using these measures will be incorrect. For example, in Figure 6 (b), if γ
is chosen between features A2 and A3 in SN , the target set will be {A1, A2} in-
stead of {A1, A2, A3}. Thus, Precision for case III will become 1/2 instead of 1,
and Precision for case IV will become 1 instead of 2/3. A straightforward perfor-
mance measure is to directly calculate the sum of the differences of weights for
each of the feature pairs (same features) in the optimal list SN and the resulting

14

Table 1: Summary of performance measures.

Precision Distance Raw Distance
Complexity O(n2) O(nk) O(k2)
Upper bound 1 1 None
Lower bound 0 0 0
Ordering No Yes Yes
γ setting Yes Yes No

list R. We name it Raw Distance (RD):

RD =
k

∑

i=1

|WS[Ai]−WR[Ai]|,

where WS[Ai] and WR[Ai] are associated with SN and R, respectively. RD consid-
ers all k features in the two results. Thus, this measure does not rely on threshold
γ. It is designed to compare the results of ReliefF and ReliefS, but it cannot be
used for measuring the performance of subset selection as it uses all the features.

5.2.4 Comparison of measures

Each measure serves a unique purpose in the evaluation of feature selection re-
sults. Table 1 provides a summary of these four measures. The setting of γ is
required in ReliefF for feature subset selection. Precision is a simple measure
of subset selection, but it is not sufficient due to its insensitivity to the order of
features. Both Distance and Raw Distance are order-sensitive, but Raw Distance
does not require the threshold setting.

5.3 Measuring time savings

It is sensible to question whether the use of selective sampling in feature selection
would result in any time savings overall because the initial building of kd-tree
incurs certain costs. This question is best answered by measuring computation
time during experiments. ReliefS and ReliefF require different numbers of in-
stances to achieve the same level of performance. We can compare the running
times required to achieve a given level of performance. Let Tkd−tree, TReliefS , and

15

TReliefF be the times for kd-tree building, running ReliefS, and running ReliefF,
respectively, with a given performance. A straightforward approach is to report
Tkd−tree, TReliefS , and TReliefF and compare Tkd−tree + TReliefS with TReliefF .
Their difference can be either the saving or the loss of computation time.

5.4 Measuring accuracy improvement

One can indirectly measure the results of feature selection using a learning al-
gorithm to check its effect on accuracy. Likewise, the effectiveness of selective
sampling for feature selection can be further verified by comparing the learning
accuracy on the subsets of features chosen by ReliefF and ReliefS. For the two
resulting lists produced by RelieF and ReliefS with the same number of sampled
instances of a data set, two different feature subsets of the same cardinality can
be chosen from the top of the two lists and then used to obtain the learning accu-
racy for a certain leaning algorithm. We expect an accuracy gain from the subset
chosen by ReliefS over the subset chosen by ReliefF.

6 Empirical Study

The objective of this section is to empirically evaluate if selective sampling can
do better in selecting m instances than random sampling in the context of Reli-
efF. We examine if the results of feature selection are consistently better when
using instances sampled from kd-tree buckets than when using the same number
of instances selected by random sampling. In Section 6.1, we present two groups
of data sets (synthetic and benchmark) and the experimental procedures. In Sec-
tion 6.2 and Section 6.3, we present and discuss results for synthetic data sets
and benchmark data sets. In Section 6.4, we further examine the effectiveness of
selective sampling in terms of learning accuracy.

6.1 Data and experimental procedures

We choose synthetic data sets in our experiments because the relevant features of
these data sets are known beforehand. The use of synthetic data in our experi-
ments serves three purposes: (1) to verify the effectiveness of ReliefF, (2) to avoid
choosing the optimal threshold γ for subset selection, and (3) to evaluate the ef-
fectiveness of active feature selection. Since we rarely know the relevant features

16

Table 2: Features of the test data adapted from Agrawal et al.[1].

Feature Description Value
salary salary uniformly distributed from 20,000 to 150,000
commission commission if salary ≥ 75000→ commission = 0

else uniformly distributed from 10000 to 75000.
age age uniformly distributed from 20 to 80.
elevel education level uniformly distributed from [0, 1, . . . , 4].
car make of the car uniformly distributed from [1, 2, . . . 20].
zipcode zip code of the town uniformly chosen from 9 available zipcodes.
hvalue value of the house uniformly distributed from 0.5k10000 to 1.5k1000000

where k ∈ {0 . . . 9} depends on zipcode.
hyears years house owned uniformly distributed from [1, 2, . . . , 30].
loan total amount of loan uniformly distributed from 1 to 500000.

beforehand in practice, we also conduct experiments on benchmark data sets to
evaluate selective sampling. We describe the two groups of data sets below.

6.1.1 Synthetic data

We use functions described in [1] to generate synthetic data sets so that we know
exactly which features are relevant. The nine features are described in Table 2. Ten
classification functions of Agrawal et al. [1] were used to generate classification
problems with different complexities. Efforts were made to generate data sets as
described in the original functions. Each data set consists of 5000 instances. The
values of the features of each instance were generated randomly according to the
distributions given in the table. For each instance, a class label was determined
according to the rules that define the functions.

As an example, we give Function 2 that uses two features and classifies an
instance into Group A if

((age < 40) ∧ (50000 ≤ salary ≤ 100000))∨

((40 ≤ age < 60) ∧ (75000 ≤ salary ≤ 125000))∨

((age ≥ 60) ∧ (25000 ≤ salary ≤ 75000)).

Otherwise, the instance is classified into Group B.

17

6.1.2 Benchmark data

All together 23 data sets are selected from the UCI Machine Learning Data Repos-
itory [5] and the UCI KDD Archive [4]. They all have nominal classes with varied
numbers of instances (from 150 to 145000), numbers of features (from 4 to 85),
and numbers of classes (from 2 to 22). A summary of these data sets is presented
in Table 3 which is divided into three groups: Group 1 contains only numeric data,
Group 2 only nominal data, and Group 3 mixed data.

6.1.3 Experimental procedures

The experiments are conducted using Weka’s implementation of ReliefF, and Re-
liefS is also implemented in the Weka environment [56]. We use different percent-
ages of data (varying m). The performance of ReliefF with m = N is set as the
performance reference point. The departure from the reference point is a measure
of performance deterioration. In particular, we choose six increasing bucket sizes
ti (1 ≤ i ≤ 6) from 1 to 6 corresponding to six percentage values Pi. For example,
t2 corresponds to P2 ≈ 50%. For each data set, the experiment is conducted as
follows:

1. Run ReliefF with bucket size t1 (P1 = 100%), and obtain the optimal ranked
list of features (SN) according to their weights. The parameter for k in the
k-nearest neighbor search is set to 5 (neighbors). This parameter remains
the same for all experiments.

2. Run ReliefS with bucket sizes ti (2 ≤ i ≤ 6). At each ti, run ReliefS 30
times with different seeds and calculate values of Precision, Distance, and
Raw Distance for each iteration to obtain average values of these perfor-
mance measures to eliminate any idiosyncrasy in a single run. A curve is
plotted for each measure for comparison. Some of the curves are shown in
Figures 7 and 8.

3. Run ReliefF with each Pi (2 ≤ i ≤ 6) determined by corresponding ti in
step 2. For each Pi, run ReliefF 30 times and calculate Precision, Distance,
and Raw Distance each time, and obtain their average values after 30 runs.
A curve is plotted for each measure for comparison. Some of the curves are
shown in Figures 7 and 8.

18

Table 3: Summary of benchmark data sets: N - number of instances, Num - nu-
meric features, Nom - nominal features, #C - number of classes.

Title N Num Nom #C

Iris 150 4 0 3
Glass 214 9 0 7
WDBC 569 30 0 2
Balance 625 4 0 3
Pima-Indian 768 8 0 2
Vehicle 846 18 0 4
German 1000 24 0 2
Segment 2310 19 0 7
Abalone 4177 8 0 3
Satimage 4435 36 0 6
Waveform 5000 40 0 3
Page-Blocks 5473 10 0 5
CoIL2000 5822 85 0 2
Shuttle 14500 8 0 7

Breast-cancer 286 0 9 2
Primary-tumor 339 0 17 22
KRKPA7 3196 0 36 2
Mushroom 8124 0 22 2

Zoo 101 1 16 7
Autos 205 15 10 7
Colic 368 7 15 2
Vowel 990 10 3 11
Hypothyroid 3772 7 22 4

19

Table 4: Effectiveness of ReliefF on synthetic data. The order of features in a
relevant feature set has no significance based on function definitions.

Relevant Feature Set Result from ReliefF (m = N)
Function 1 {A3} A3, |A5, A6, A8, A4, A7, A9, A2, A1
Function 2 {A1, A3} A1, A3, |A2, A9, A7, A4, A8, A6, A5
Function 3 {A3, A4} A4, A3, |A7, A1, A9, A2, A6, A8, A5
Function 4 {A1, A3, A4} A1, A4, A2, |A3, A7, A6, A5, A9, A8
Function 5 {A1, A3, A9} A9, A3, A1, |A2, A7, A4, A8, A6, A5
Function 6 {A1, A2, A3} A1, A3, A2, |A8, A4, A5, A7, A9, A6
Function 7 {A1, A2, A9} A9, A1, A2, |A8, A5, A7, A6, A3, A4
Function 8 {A1, A2, A4} A1, A4, A2, |A5, A7, A9, A6, A3, A8
Function 9 {A1, A2, A4, A9} A9, A1, A4, A2, |A5, A3, A7, A6, A8
Function 10 {A1, A2, A4, A7, A8, A9} A4, A1, A2, A8, A3, A9, |A7, A6, A5

6.2 Results on synthetic data

Table 4 reports the set of relevant features used to determine the class labels in
the definition of each function and the optimal ranking list obtained from running
ReliefF on the whole data set of 5000 instances generated by each function. From
Table 4, we observe that given the cardinality of a relevant feature set (n), for
each of these 10 functions except Function 4 and Function 105, the set of the top n
features in each ranking list matches exactly with the known relevant feature set.
This verifies that ReliefF can indeed find the relevant features of a data set in most
cases. Thus we can use the results obtained from the first step of the experimental
procedures as a reference to evaluate the performance of ReliefF and ReliefS with
varying size m.

Table 5 presents a summary of the three performance measures for each syn-
thetic data set. For a given measure, let Pi be the averaged value (over 30 runs)
obtained at percentage Pi (2 ≤ i ≤ 6). Each value in Table 5 is averaged over five
percentage values, i.e.,

valAvg = (
6

∑

i=2

Pi)/5.

Recall that Precision varies from 0 (worst) to 1 (best); Distance varies from 0
(best) to 1 (worst); and Raw Distance starts at 0 (best) and increases. The last

5For these two functions, one relevant feature is just outside the selected set. This could be due
to the inability of ReliefF to differentiate redundant features with strong correlation.

20

Table 5: Average values of three different measures using ReliefF and ReliefS on
synthetic data.

Precision Distance Raw Distance
ReliefF ReliefS ReliefF ReliefS ReliefF ReliefS

Function 1 1.0 1.0 0.0 0.0 0.049 0.041
Function 2 0.997 1.0 0.017 0.0 0.047 0.044
Function 3 1.0 1.0 0.0 0.0 0.046 0.044
Function 4 0.930 0.932 0.075 0.061 0.049 0.043
Function 5 0.860 0.886 0.182 0.169 0.045 0.044
Function 6 0.891 0.927 0.280 0.225 0.047 0.026
Function 7 0.852 0.881 0.157 0.137 0.047 0.041
Function 8 1.0 1.0 0.039 0.007 0.053 0.042
Function 9 0.915 0.935 0.135 0.109 0.050 0.040
Function 10 0.900 0.910 0.079 0.072 0.061 0.046
W/L/T 7/0/3 8/0/2 10/0/0

row (W/L/T) in Table 5 summarizes Win/Loss/Tie in comparing ReliefS with Re-
liefF for each measure. It is clear that for the ten synthetic data sets, taking all the
three measures into account, ReliefS is as good as or better than ReliefF. This sug-
gests that m instances selected using kd-trees are more effective than m instances
selected at random.

6.3 Results on benchmark data

We present and discuss separately the results on numeric data and non-numeric
data below.

6.3.1 Results on numeric data

Two sets of results on numeric data sets are reported in Table 6 and Figure 7, re-
spectively. Like Table 5, Table 6 shows that ReliefS is better than or as good as
ReliefF in determining relevant instances for feature selection. Now let us look
at the trends of the three performance measures when the number of instances
increases for both ReliefF and ReliefS. Figure 7 shows the results of three illus-
trative data sets for Precision, Distance, and Raw Distance. For the Segment data,

21

0.99

0.995

1

1.005

1.01

102030405060708090100

P
r
e
c
i
s
i
o
n

Percentage by bucket size

ReliefS
ReliefF

0

0.02

0.04

0.06

0.08

0.1

0.12

102030405060708090100

D
i
s
t
a
n
c
e

Percentage by bucket size

ReliefS
ReliefF

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

102030405060708090100

R
a
w

D
i
s
t
a
n
c
e

Percentage by bucket size

ReliefS
ReliefF

Segment Data

0.988

0.99

0.992

0.994

0.996

0.998

1

102030405060708090100

P
r
e
c
i
s
i
o
n

Percentage by bucket size

ReliefS
ReliefF

0

0.05

0.1

0.15

0.2

0.25

0.3

102030405060708090100

D
i
s
t
a
n
c
e

Percentage by bucket size

ReliefS
ReliefF

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

102030405060708090100

R
a
w

D
i
s
t
a
n
c
e

Percentage by bucket size

ReliefS
ReliefF

Vehicle Data

0.992
0.993
0.994
0.995
0.996
0.997
0.998
0.999

1

102030405060708090100

P
r
e
c
i
s
i
o
n

Percentage by bucket size

ReliefS
ReliefF

0

0.02

0.04

0.06

0.08

0.1

0.12

10 20 30 40 50 60 70 80 90100

D
i
s
t
a
n
c
e

Percentage by bucket size

ReliefS
ReliefF

0

0.02

0.04

0.06

0.08

0.1

0.12

10 20 30 40 50 60 70 80 90100

R
a
w

D
i
s
t
a
n
c
e

Percentage by bucket size

ReliefS
ReliefF

Satimage Data

Figure 7: Three illustrative numeric data sets: Average results of 30 runs in three
performance measures (P, D, RD). 22

Table 6: Average values of three different measures using ReliefF and ReliefS on
numeric data.

Precision Distance Raw Distance
ReliefF ReliefS ReliefF ReliefS ReliefF ReliefS

Iris 1.0 1.0 0.020 0.013 0.054 0.019
Glass 0.988 0.992 0.141 0.090 0.069 0.046
WDBC 0.991 0.994 0.139 0.103 0.111 0.068
Balance 0.864 0.940 0.468 0.247 0.037 0.018
Pima-Indian 0.906 0.930 0.248 0.209 0.019 0.016
Vehicle 0.996 1.0 0.206 0.105 0.052 0.026
German 0.898 0.920 0.360 0.309 0.154 0.125
Segment 1.0 1.0 0.074 0.029 0.054 0.020
Abalone 0.947 0.971 0.257 0.176 0.003 0.001
Satimage 0.998 1.0 0.088 0.047 0.065 0.022
Waveform 1.0 1.0 0.080 0.056 0.047 0.036
Page-Blocks 1.0 1.0 0.202 0.043 0.006 0.003
CoIL2000 1.0 1.0 0.060 0.041 0.110 0.074
Shuttle 1.0 1.0 0.0 0.0 0.003 0.001
W/L/T 8/0/6 13/0/1 14/0/0

we notice that both ReliefF and ReliefS perform equally well in Precision but dif-
ferently in Distance and Raw Distance. Precision being 1 indicates that all feature
subsets selected are the same as if we use all N instances (recall that the order of
selected features is not considered by Precision). Distance and Raw Distance have
values greater than 0, which suggests that the selected results are not in the same
order as those obtained using all N instances. It can be observed that the more
instances used for both ReliefF and ReliefS, the better the performance of feature
selection. A similar trend can be observed for the Vehicle data and Satimage data
as well.

Figure 7 and Table 6 indicate that active feature selection can significantly im-
prove performance on numeric data over feature selection with random sampling
with the same amount of instances. In other words, the use of kd-trees to partition
the data makes the difference. However, as mentioned earlier, the building of kd-
trees incurs certain costs. To actually compare the running time of ReliefS with
that of ReliefF, we consider the case of bucket size 2 for ReliefF (i.e., mReliefF

23

Table 7: Time savings by ReliefS w.r.t. ReliefF for numeric data. mReliefS and
mReliefF are numbers of instances used by ReliefS and ReliefF to achieve the
same performance in raw distance.

ReliefS ReliefF
Tkd−tree TReliefS mReliefS TReliefF mReliefF

(ms) (ms) (ms)
Iris 20 14 18 60 87
Glass 61 140 62 259 126
WDBC 455 1414 125 3282 313
Balance 136 223 88 743 313
Pima 246 484 77 2684 476
Vehicle 530 2874 195 6790 499
German 697 6274 420 8310 590
Segment 1520 10870 277 53300 1317
Abalone 1359 23879 961 58228 2423
Satimage 4630 63901 577 255716 2572
Waveform 7170 359840 1900 529860 2950
Page 1858 43774 1095 125709 3284
CoIL 14117 612203 1979 983601 3377
Shuttle 6058 187156 1885 802001 8700

is around 50% of the whole data set) and use the performance measured by Raw
Distance to find corresponding mReliefS for ReliefS.

Table 7 records the running times Tkd−tree, TReliefS and TReliefF as well as
mReliefS and mReliefF . We can observe that:

1. The time savings are consistent with the time complexity analysis of Reli-
efF: it is usually O(mkN), or linear in N if m and k are fixed. Now, k and
N are fixed, its time complexity is O(m). That is, the reduction of m results
in direct time savings.

2. The larger the data set, the more savings in time.

3. The ratio of Tkd−tree/TReliefS decreases when data size increases. In other
words, the time spent on kd-tree building becomes immaterial when TReliefS

increases. This is consistent with earlier theoretical analysis.

24

Table 8: Average values of three different measures using ReliefF and ReliefS on
non-numeric data.

Precision Distance Raw Distance
ReliefF ReliefS ReliefF ReliefS ReliefF ReliefS

Breast-cancer 0.765 0.821 0.695 0.601 0.203 0.162
Primary-tumor 0.957 0.965 0.259 0.207 0.296 0.246
KRKPA7 0.970 0.977 0.103 0.070 0.152 0.101
Mushroom 1.0 1.0 0.065 0.032 0.141 0.063

Zoo 0.986 0.994 0.136 0.119 0.633 0.539
Autos 0.9 0.928 0.308 0.259 0.380 0.298
Colic 0.854 0.867 0.351 0.316 0.382 0.334
Vowel 1.0 1.0 0.056 0.023 0.043 0.021
Hypothyroid 0.965 0.981 0.110 0.085 0.065 0.050
W/L/T 7/0/2 9/0/0 9/0/0

6.3.2 Results on non-numeric data

Based on previous results, it is clear that ReliefS works well on numeric data. We
then experiment if ReliefS can be directly extended to non-numeric data (Groups 2
and 3 in Table 3). Since variance is calculated on numeric data when building the
kd-tree, in our experiments we apply ReliefS to non-numeric data by associating
a distinct number to a nominal value, e.g., assigning 1, 2 and 3 to nominal values
A, B, and C, respectively.

Results for the three performance measures are reported in Table 8 and Fig-
ure 8. From Table 8, we still notice that for each data set, ReliefS is better than
or as good as ReliefF. This suggests that active feature selection works for non-
numeric data as well. However, by comparing the results in Table 8 with Table 6,
we observe that both ReliefF and ReliefS generally work better on numeric data
than on non-numeric data. In addition, the performance gains obtained by ReliefS
on non-numeric data are not as significant as those on numeric data, especially for
small data sets (this can also be observed in Figure 8). Through three illustrative
data sets from Groups 2 and 3, Figure 8 demonstrates similar trends of perfor-
mance measures as those in Figure 7 when the number of instances increases for
both ReliefF and ReliefS. Take Autos data for example, ReliefS performs better
on all the three measures than ReliefF, but as we can see that the two curves for

25

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

102030405060708090100

P
r
e
c
i
s
i
o
n

Percentage by bucket size

ReliefS
ReliefF

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90100

D
i
s
t
a
n
c
e

Percentage by bucket size

ReliefS
ReliefF

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70 80 90100

R
a
w

D
i
s
t
a
n
c
e

Percentage by bucket size

ReliefS
ReliefF

Autos Data

0.99

0.995

1

1.005

1.01

102030405060708090100

P
r
e
c
i
s
i
o
n

Percentage by bucket size

ReliefS
ReliefF

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

102030405060708090100

D
i
s
t
a
n
c
e

Percentage by bucket size

ReliefS
ReliefF

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

102030405060708090100

R
a
w

D
i
s
t
a
n
c
e

Percentage by bucket size

ReliefS
ReliefF

Vowel Data

0.94

0.95

0.96

0.97

0.98

0.99

1

102030405060708090100

P
r
e
c
i
s
i
o
n

Percentage by bucket size

ReliefS
ReliefF

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

102030405060708090100

D
i
s
t
a
n
c
e

Percentage by bucket size

ReliefS
ReliefF

0

0.05

0.1

0.15

0.2

0.25

102030405060708090100

R
a
w

D
i
s
t
a
n
c
e

Percentage by bucket size

ReliefS
ReliefF

KRKPA7 Data

Figure 8: Three illustrative non-numeric data sets: Average results of 30 runs in
three performance measures (P, D, RD).

26

Table 9: Time savings by ReliefS w.r.t. ReliefF for non-numeric data. mReliefS

and mReliefF are numbers of instances used by ReliefS and ReliefF to achieve the
same performance in raw distance.

ReliefS ReliefF
Tkd−tree TReliefS mReliefS TReliefF mReliefF

(ms) (ms) (ms)
Breast-cancer 90 234 123 300 166
Primary-tumor 175 546 112 836 176
KRKPA7 4559 84880 1055 145520 1950
Mushroom 7668 248336 1950 491665 4062

Zoo 50 73 40 105 65
Autos 161 417 82 568 123
Colic 303 1047 151 1518 221
Vowel 484 2633 218 6570 574
Hypothyroid 4950 98094 1094 173950 2112

each measure are very close to each other, which suggests that the performance
gains obtained by selecting m instances using kd-trees are not significant.

Table 9 records the running times Tkd−tree, TReliefS and TReliefF as well as
mReliefS and mReliefF for data sets in Groups 2 and 3. From this table, we ob-
serve similar results: (1) the larger the data set, the more savings in time; and (2)
the ratio of Tkd−tree/TReliefS decreases when data size increases. However, five
small data sets out of the nine do not show significant time savings. This obser-
vation is consistent with what we saw in Table 8 and Figure 8. For these data
sets, selective sampling using ReliefS does not significantly reduce the number
of instances required to achieve a given level of performance when compared to
random sampling using ReliefF. Thus the extra time spent on building a kd-tree is
not compensated by the modest time savings obtained from using fewer instances.

6.4 Examining learning accuracy

In this section, we first show how ReliefF using all instances as suggested by [32]
affects the learning accuracy, and then examine how the reduction of training in-
stances affect the results of feature selection in terms of learning accuracy. The

27

Table 10: Effectiveness of ReliefF on benchmark data: 10-fold cross validation
accuracy (%) of 5-NN on original features (full sets without feature selection) and
target sets of features chosen by ReliefF (with m = N). P reports the probability
associated with a Student’s paired two-tailed t-Test.

Full set Target Set P
(m = N)

Iris 96.67 97.33 0.32
Glass 65.80 71.95 0.07
WDBC 96.67 95.43 0.15
Balance 88.00 77.42 0.00
Pima-Indian 74.49 73.84 0.69
Vehicle 69.97 69.27 0.66
German 71.00 72.50 0.19
Segment 95.80 95.76 0.94
Abalone 53.72 52.79 0.17
Satimage 90.73 86.16 0.00
Waveform 79.20 83.74 0.00
Page-Blocks 95.87 93.92 0.00
CoIL2000 93.63 93.89 0.07
Shuttle 99.71 99.60 0.01
W/L/T 3/4/7

first set of comparisons is shown in Table 10 and the second set of comparisons is
shown in Table 11.

In Section 6.2, we have demonstrated the effectiveness of ReliefF using all
instances on a group of synthetic data sets for which we know the relevant fea-
tures in advance. We now examine the effectiveness of ReliefF using all instances
on benchmark data through a learning algorithm. Table 10 records the 10-fold
cross validation results of the 5-NN (nearest neighbor) classifier on the full sets of
features and the target sets of features chosen by ReliefF with all instances (de-
fined in Section 5.1) for the 14 numeric data sets (shown in Table 3). In order
to evaluate the statistical significance of the difference between the two averaged
accuracy values for a given data set, a Student’s paired two-tailed t-Test is con-
ducted for the two underlying samples of individual accuracy values. The P value

28

Table 11: Comparison of ReliefF and ReliefS on benchmark data: 10-fold cross
validation accuracy (%) of 5-NN on target sets of features chosen by ReliefF (with
m = N), subsets of features chosen by ReliefF (with m ≈ 1

10
N), and subsets of

features chosen by ReliefS (with m ≈ 1
10
N). P reports the probability associated

with a Student’s paired two-tailed t-Test.

A B C
Target Set ReliefF ReliefS P
(m = N) (m ≈ 1

10N) (m ≈ 1
10N) (A,B) (A,C) (B,C)

Iris 97.33 97.33 97.33 1 1 1
Glass 71.95 65.84 67.23 0.01 0.04 0.40
WDBC 95.43 95.43 96.71 0.99 0.09 0.08
Balance 77.42 76.97 77.42 0.79 1 0.79
Pima-Indian 73.84 65.61 72.27 0.02 0.21 0.04
Vehicle 69.27 66.01 69.16 0.04 0.92 0.09
German 72.50 70.60 72.60 0.06 0.94 0.06
Segment 95.76 95.84 96.19 0.44 0.25 0.35
Abalone 52.79 52.79 54.51 1 0.04 0.04
Satimage 86.16 85.75 86.11 0.18 0.84 0.27
Waveform 83.74 83.48 83.38 0.49 0.36 0.83
Page-Blocks 93.92 91.17 89.73 0.00 0.00 0.00
CoIL2000 93.89 93.77 93.77 0.15 0.15 1
Shuttle 99.60 99.60 99.60 1 1 1
W/L/T 0/5/9 2/2/10 5/1/8

29

in each row of Table 10 reports the probability that the two underlying samples are
different. The smaller the P value, the more significant the difference of the two
average values is. The last row (W/L/T) summarizes Win/Loss/Tie in comparing
the averaged accuracy values on the target sets with those on the full sets based on
a significance threshold 0.1. It is clear that out of the 14 data sets, seven pairs of
results are significantly different. ReliefF significantly improves the accuracy of
the 5-NN classifier for 3 data sets and maintains the accuracy for 7 data sets with
selected subsets of features.

To examine the effect of reduction of training instances and verify the effec-
tiveness of ReliefS, for each data set, two feature subsets of the same cardinality
are selected from the top of the two resulting lists produced by ReliefF and ReliefS
with the same number of sampled instances (we choose m ≈ 10%N , correspond-
ing to the smallest bucket size, in our experiments). Table 11 records the 10-fold
cross validation results of 5-NN on the subsets of features chosen by ReliefF (col-
umn B) or ReliefS (column C). We use the results on the target sets of features
chosen by ReliefF with all instances (m = N) as the reference point (column
A) in comparison of ReliefF and ReliefS. As discussed in Section 5.1, for feature
ranking methods like ReliefF, the order of features in a resulting list is important
for subset selection. However, learning accuracy on a selected subset may not be
sensitive to the order of features; as long as two subsets contain the same features
(having equal Precision values), they can result in the same learning accuracy for
a given learning algorithm. Therefore, in order to show the effect of the different
orders of features, we choose two subsets of different features of cardinality n
from the top of the two resulting feature lists to obtain the accuracy for 5-NN.

Table 11 also contains P values resulting from pair-wised comparisons of
columns A, B, and C. P (A,B) values for columns A and B suggest that there
are 5 pairs of average accuracy rates that are significantly different and the subsets
selected by ReliefF with m ≈ 1

10
N cause accuracy decrease in all 5 cases. P (A,C)

values for columns A and C show that there are 4 pairs of average accuracy rates
that significantly different, and the subsets selected by ReliefS with m ≈ 1

10
N

result in accuracy increase for 2 data sets and decrease for 2 data sets among the
4 cases. We then further compare the 5-NN results using the feature subsets of
ReliefS and ReliefF with m ≈ 1

10
N directly. P (B,C) values for columns B and

C indicate that there are 6 pairs of average accuracy rates that are significantly
different. It is clear that the subsets selected by ReliefS with m ≈ 1

10
N result

in better accuracy than the subsets selected by ReliefF with m ≈ 1
10
N for 5 data

sets and worse accuracy for only one data set among the 6 cases. According to
the above results, we conclude that with the same number of sampled instances,

30

ReliefS in general achieves better performance than ReliefF in terms of learning
accuracy and hence selective sampling is an effective approach for active feature
selection.

7 Conclusions and Further Work

In this paper, we present a case for active feature selection using a formalism of
selective sampling. We choose an efficient feature selection algorithm ReliefF in
our case study to evaluate whether selective sampling has consistent advantages
over random sampling. In particular, we use the kd-tree to partition data and select
instances from the partitions. We conduct extensive experiments to evaluate the
performance of active feature selection. Significant time savings are observed
using the Raw Distance performance measure. Improvement of learning accuracy
is reported for the nearest neighbor classifier on numeric data.

Although the experimental study demonstrates the effectiveness of active fea-
ture selection, we plan future work along the following lines: (1) to investigate
why ReliefS still works in cases where data is not purely numeric and explore
different methods of handling nominal features; (2) to automatically determine
the cost-effective percentage of instances for selective sampling and investigate
its performance on large data sets (e.g., Web data); (3) to investigate other means
of exploiting data characteristics for selective sampling; and (4) to apply selec-
tive sampling to the vast body of feature selection and other data preprocessing
algorithms [38].

Acknowledgments

We thank Bret Ehlert, Feifang Hu, Manoranjan Dash, Hongjun Lu, and Lance
Parsons for their contributions to this work. We are grateful to the anonymous
reviewers who have provided many helpful and constructive suggestions on an
earlier version of this paper. An earlier short version of this work was published in
the proceedings of the 19th International Conference on Machine learning, 2002.
This work is in part based on the project supported by National Science Founda-
tion under Grant No. IIS-0127815 for H. Liu, and on Grant-in-Aid for Scientific
Research on Priority Areas (B), No. 759: Active Mining Project by Ministry of
Education, Culture, Sports, Science and Technology of Japan for H. Motoda.

31

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance
perspective. IEEE Trans. on Knowledge and Data Engineering, 5(6):914–
925, December 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
In Proc. Int. Conf. Very Large Data Bases, pages 487–499, Santiago, Chile,
September 1994.

[3] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms.
Machine Learning, 6:37–66, 1991.

[4] S. D. Bay. The UCI KDD archive, 1999. http://kdd.ics.uci.edu.

[5] C. L. Blake and C. J. Merz. UCI Repository of machine learning databases,
1998. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[6] A.L. Blum and P. Langley. Selection of relevant features and examples in
machine learning. Artificial Intelligence, 97:245–271, 1997.

[7] P.S. Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms to large
databases. In Proceedings of the Fourth International Conference on Knowl-
edge Discovery & Data Mining, pages 9 – 15. AAAI PRESS, California,
1998.

[8] C.J.C. Burges. A tutorial on support vector machines. Data Mining and
Knowledge Discovery, 2, 1998.

[9] W.G. Cochran. Sampling Techniques. John Wiley & Sons, 1977.

[10] D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active
learning. Machine Learning, 15:201 – 221, 1994.

[11] S. Das. Filters, wrappers and a boosting-based hybrid for feature selec-
tion. In Proceedings of the Eighteenth International Conference on Machine
Learning, pages 74–81, 2001.

[12] M. Dash and H. Liu. Feature selection for classification. Intelligent Data
Analysis: An International Journal, 1(3):131–156, 1997.

32

[13] M. Dash and H. Liu. Feature selection for clustering. In Proceedings of the
Fourth Pacific Asia Conference on Knowledge Discovery and Data Mining,
(PAKDD-2000). Kyoto, Japan, pages 110–121. Springer-Verlag, 2000.

[14] M. Dash, H. Liu, and H. Motoda. Consistency based feature selection. In
Proceedings of the Fourth Pacific Asia Conference on Knowledge Discovery
and Data Mining, (PAKDD-2000). Kyoto, Japan, pages 98–109. Springer-
Verlag, 2000.

[15] M. Dash, H. Liu, and J. Yao. Dimensionality reduction of unsupervised data.
In Proceedings of the Ninth IEEE International Conference on Tools with AI
(ICTAI’97), November, 1997, pages 532–539, Newport Beach, California,
1997. IEEE Computer Society.

[16] T.G. Dietterich. Machine learning research: Four current directions. AI
Magazine, pages 97–136, Winter 1997.

[17] J. G. Dy and C. E. Brodley. Feature subset selection and order identification
for unsupervised learning. In Proceedings of the Seventeenth International
Conference on Machine Learning, pages 247–254, 2000.

[18] J. G. Dy and C. E. Brodley. Visualization and interactive feature selection
for unsupervised data. In Proceedings of the Sixth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pages 360–
364, 2000.

[19] Y. Freund, H. Seung, E. Shamir, and N. Tishby. Selective sampling using
the query by committee algorithm. Machine Learning, 28:133–168, 1997.

[20] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding
best matches in logarithmic expected time. ACM Trans. Math. Software,
3:209–226, 1977.

[21] V. Gaede and O. Günther. Multidimensional access methods. ACM Comput-
ing Surveys, 30(2):170–231, 1998.

[22] B. Gu, F. Hu, and H. Liu. Sampling: Knowing Whole from Its Part, pages 21
– 38. In Liu and Motoda [38], 2001.

[23] M.A. Hall. Correlation Based Feature Selection for Machine Learning. PhD
thesis, University of Waikato, Dept. of Computer Science, 1999.

33

[24] M.A. Hall. Correlation-based feature selection for discrete and numeric class
machine learning. In Proceedings of the Seventeenth International Confer-
ence on Machine Learning (ICML-00). Morgan Kaufmann Publishers, 2000.

[25] Se June Hong. Use of contextual information for feature ranking and
discretization. IEEE Transactions on Knowledge and Data Engineering,
9(5):718–730, 1997.

[26] T. Joachims. Text categorization with support vector machines: Learning
with many relevant features. In C. Nedellec and C. Rouveirol, editors, Pro-
ceedings of 10th European Conference on Machine Learning, pages 137 –
142, Chemnitz, Germany, 1998. Springer.

[27] Y. Kim, W. Street, and F. Menczer. Feature selection for unsupervised learn-
ing via evolutionary search. In Proceedings of the Sixth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pages
365–369, 2000.

[28] K. Kira and L.A. Rendell. The feature selection problem: Traditional meth-
ods and a new algorithm. In Proceedings of the Tenth National Conference
on Artificial Intelligence, pages 129–134. Menlo Park: AAAI Press/The MIT
Press, 1992.

[29] K. Kira and L.A. Rendell. A practical approach to feature selection. In Slee-
man and P. Edwards, editors, Proceedings of the Ninth International Confer-
ence on Machine Learning (ICML-92), pages 249–256. Morgan Kaufmann,
1992.

[30] J. Kivinen and H. Mannila. The power of sampling in knowledge discovery.
In SIGMOD/PODS’ 94, pages 77 – 85. ACM, 1994.

[31] R. Kohavi and G.H. John. Wrappers for feature subset selection. Artificial
Intelligence, 97(1-2):273–324, 1997.

[32] I. Kononenko. Estimating attributes : Analysis and extension of RELIEF. In
F. Bergadano and L. De Raedt, editors, Proceedings of the European Confer-
ence on Machine Learning, April 6-8, pages 171–182, Catania, Italy, 1994.
Berlin: Springer-Verlag.

34

[33] I. Kononenko, E. Simec, and M. Robnik-Sikonja. Overcoming the myopia of
inductive learning algorithms with RELIEFF. Applied Intelligence, 7:39–55,
1997.

[34] P. Langley. Selection of relevant features in machine learning. In Proceed-
ings of the AAAI Fall Symposium on Relevance, pages 140–144. AAAI Press,
1994.

[35] E. Leopold and Kindermann J. Text categorization with support vector ma-
chines. how to represent texts in input space? Machine Learning, 46:423–
444, 2002.

[36] D. Lewis and W. Gale. A sequential algorithm for training text classifiers. In
Proceedings of the Seventeenth Annual ACM-SIGR Conference on Research
and Development in Information Retrieval, pages 3 – 12, 1994.

[37] H. Liu and H. Motoda. Feature Selection for Knowledge Discovery and Data
Mining. Boston: Kluwer Academic Publishers, 1998.

[38] H. Liu and H. Motoda, editors. Instance Selection and Construction for Data
Mining. Boston: Kluwer Academic Publishers, 2001.

[39] H. Liu, H. Motoda, and L. Yu. Feature selection with selective sampling. In
Proceedings of the Nineteenth International Conference on Machine Learn-
ing, pages 395 – 402, 2002.

[40] T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[41] A. W. Moore. An introductory tutorial on kd-trees. Extract from Ph.D. The-
sis Tech Report No. 209, Computer Laboratory, University of Cambridge,
Robotics Institute, Carnegie Mellon University, 1991.

[42] A. Y. Ng. On feature selection: learning with exponentially many irrelevant
features as training examples. In Proceedings of the Fifteenth International
Conference on Machine Learning, pages 404–412, 1998.

[43] K.S. Ng and H. Liu. Customer retention via data mining. AI Review,
14(6):569 – 590, 2000.

[44] K. Nigam, A. K. Mccallum, S. Thrun, and T. Mitchell. Text classifica-
tion from labeled and unlabeled documents using EM. Machine Learning,
39:103–134, 2000.

35

[45] M. Robnik-Sikonja and I. Kononenko. An adaptation of relief for attribute
estimation in regression. In Proceedings of Fourteenth International Con-
ference on Machine Learning, pages 296–304, 1997.

[46] M. Robnik-Sikonja and I. Kononenko. Attribute dependencies, understand-
ability and split selection in tree based models. In Proceedings of Sixteenth
International Conference on Machine Learning, pages 344–353, 1999.

[47] M. Robnik-Sikonja and I. Kononenko. Comprehensible interpretation of
relief’s estimates. In Proceedings of Eighteenth International Conference
on Machine Learning, pages 433–440, 2001.

[48] M. Robnik-Sikonja and I. Kononenko. Theoretical and empirical analysis of
Relief and ReliefF. Machine Learning, 53:23–69, 2003.

[49] N. Roy and A. McCallum. Toward optimal active learning through sampling
estimation of error reduction. In Proceedings of the Eighteenth International
Conference on Machine Learning, 2001.

[50] G. Schohn and D. Cohn. Less is more: Active learning with support vector
machines. In Proceedings of the Seventeenth International Conference on
Machine Learning, pages 839–846, 2000.

[51] M.R. Sikonja. Speeding up Relief algorithms with k-d trees. In Proceedings
of the Electrotechnical and Computer Science Conference ERK’98, 1998.

[52] N.A. Syed, H. Liu, and K.K. Sung. A study of support vectors on model
independent example selection. In S. Chaudhuri and D. Madigan, editors,
Proceedings of ACM SIGKDD, International Conference on Knowledge Dis-
covery and Data Mining, pages 272 – 276, New York, NY, 1999. ACM.

[53] L. Talavera. Feature selection as a preprocessing step for hierarchical clus-
tering. In Proceedings of Internationl Conference on Machine Learning
(ICML’99), pages 389–397, 1999.

[54] C.A. Thompson, M.E. Califf, and R.J. Mooney. Active learning for nat-
ural language parsing and information extraction. In Proceedings of the
Sixteenth International Conference on Machine Learning, pages 406–414.
Morgan Kaufmann, 1999.

36

[55] S. Tong and D. Koller. Support vector machine active learning with applica-
tions to text classification. Machine Learning Research, 2:45–66, 2001.

[56] I.H. Witten and E. Frank. Data Mining - Pracitcal Machine Learning Tools
and Techniques with JAVA Implementations. Morgan Kaufmann Publishers,
2000.

[57] E. Xing, M. Jordan, and R. Karp. Feature selection for high-dimensional
genomic microarray data. In Proceedings of the Eighteenth International
Conference on Machine Learning, 2001.

[58] L. Yu and H. Liu. Feature selection for high-dimensional data: a fast
correlation-based filter solution. In Proceedings of the twentieth Interna-
tional Conference on Machine Learning, pages 856–863, 2003.

37

