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Scientific Discovery of Dynamic Models

Based on Scale-type Constraints

Fuminori Adachi,† Takashi Washio† and Hiroshi Motoda†

This paper proposes a novel approach to discover dynamic laws and models represented
by simultaneous time differential equations including hidden states from time series data
measured in an objective process. This task has not been addressed in the past work though it
is essentially important in scientific discovery since any behaviors of objective processes emerge
in time evolution. The promising performance of the proposed approach is demonstrated
through the analysis of synthetic data.

1. Introduction

Many approaches have been developed to
identify numerical models of objective process
dynamics from measurement data. For ex-
ample, auto-regressive modeling 1) and artifi-
cial neural network 27) capture a relation among
measurement variables reflecting dynamics un-
derlying the measurement data. More ad-
vanced approaches explicitly introduce the no-
tion of state transition process and measure-
ment process in the framework of state space
models. Majority approaches in system identi-
fication theory 15), linear and nonlinear model
identification based on Hidden Marcov Model
(HMM) 18),19) belong to this framework. All
these approaches derive an “asymptotic model”
of an objective process over a narrow range of
its state. Their plausibility is based on the as-
sumption that the characteristics of the objec-
tive process over the state range can be suffi-
ciently well captured by the presumed structure
of the adopted equations such as linear and/or
logistic formulae and the search of the param-
eters representing the process behaviors. How-
ever, this assumption usually does not hold over
a wide range of states in the objective process
because the presumed structure is merely an
approximation within the narrow range. Ac-
cordingly the conventional approaches usually
do not identify the law equations to represent
the first principles governing the objective pro-
cess over a wide state range.

In contrast, the main goal of scientific law
equation discovery is to discover the first prin-
ciple based law equations from measurement
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data. BACON 14), FAHRENHEIT 11), ABA-
CUS 5) and IDS 17), which belong to a family
called BACON family, are well-known pioneer-
ing systems to discover scientific law equations.
They search for a “complete equation” govern-
ing the data measured in a continuous process,
where the complete equation is an equation con-
straining n quantities with n− 1 degree of free-
dom . They try to figure out an invariant
and its associated relation between two quan-
tities over a wide state range by bi-variate fit-
ting under a given laboratory experiment where
some quantities are actively controlled. The
found bi-variate relations are successively com-
posed into a complete equation relating multi-
ple measurement quantities. However, one of
the drawbacks of the BACON family is its low
likeliness to discover the equations representing
the first principles underlying the objective pro-
cess, since they do not use any criteria to cap-
ture constraints induced by the first principles.
To alleviate this difficulty, some systems intro-
duced constraints of unit dimension to prune
the meaningless solutions 5),11),12). A problem
of these approaches is its narrow applicability to
only these cases that the units of quantities are
clearly known. To further overcome this diffi-
culty, a system called SDS 22) introduced “scale-
type constraints” to limit the search space to
mathematically admissible equations reflecting
the first principles governing an objective pro-
cess. This can be applied to many cases since
the knowledge of scale-types is available in var-
ious domains.

The equation x1
2 + x2

2 + ... + xn
2 = 0 is not com-

plete, since the values of all n quantities is 0, i.e.,
n quantities are constrained with no degree of free-
dom. On the other hand, x1 + x2 + ... + xn = 0 is
complete.
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However, many processes such as large scale
electric circuits are represented by “simultane-
ous equations”. The model representation in
form of simultaneous equations is essential to
grasp the dependency structure among the mul-
tiple mechanisms in the processes 8),16). To ad-
dress this issue, a system called SSF has been
proposed 24). SSF discovers simultaneous equa-
tions governing an objective process based on
identification of minimal complete subset of
quantities measured under experimental envi-
ronments. Another issue remained is to dis-
cover law equations from the data measured un-
der “passive observation”. Passive observation
means that none of quantities are experimen-
tally controllable due to some practical reasons.
This issue has been addressed by extended SDS
and SSF which introduced virtual experiments
based on data sampling 25),26). Furthermore,
the discovery of “simultaneous time differential
equations” under passive observation has been
addressed by LAGRANGE 4). It has been de-
veloped to discover simultaneous time differen-
tial equations reflecting dynamics of an objec-
tive process. It can discover the model equa-
tions from passively observed time series data
based on an ILP-like generate and test reason-
ing on the objective process. Its extended ver-
sion called LAGRAMGE 21) introduced domain
knowledge of the objective process to limit the
search space and to enhance the plausibility of
the discovered equations. A recently developed
Process Modeling 13) which takes a similar ap-
proach to LAGRAMGE can derive simultane-
ous time differential equations including hidden
state variables by using rich domain specific
knowledge.

However, scientists can develop good models
based on their domain knowledge without us-
ing discovery systems in many cases. Accord-
ingly, the main application domain of the dis-
covery systems may not be the fields in which
much domain knowledge is available. Instead,
its application domain is the field to identify
the simultaneous time differential equations re-
flecting the first principles under passive obser-
vation with “little domain knowledge”. One
such application is the discovery of “hidden
state variables”. Aforementioned approaches
lack the ability to discover hidden state vari-
ables because they assume direct observation of
all state variables in the objective process. Hid-
den states are the variables that cannot be ob-
served directly. For example, consider a rocket

having its mass M [kg] and producing its thrust
by the fuel jet of m [kg/sec] and v [m/sec] in
space. Then its dynamics is represented by the
following three time differential equations.



dV

dt
=

mv

M
,

dX

dt
= V,

dM

dt
= −m,

(1)

where V [m/sec] and X [m] are the velocity and
the position of the rocket. m and v are the pa-
rameters known from the design specification
of the rocket. X and V can be measured from
the outside of the rocket. But M is not ob-
servable unless the rocket has a specific mass
sensor. In fact, the measurement of M for a
real space rocket is so hard that it must be in-
directly estimated from the measurement of X
and V . In this case, M is called a hidden state
variable since it is unobservable but has its in-
dependent dynamics represented by the third
differential equation. Without any background
domain knowledge, we do not know the num-
ber of hidden state variables, i.e., the number
of differential equations to be required to model
the objective process. The identification of the
hidden state variables from observed data is an
essential task to discover the simultaneous time
differential equations reflecting the first princi-
ples underlying the objective process.

In this paper, we propose a novel ap-
proach named SCALETRACK (SCALE-type
and state TRACKing based discovery system)
to discover law equations to represent a model
of an objective process having the following fea-
tures.
(1) The model consists of simultaneous time

differential equations representing the dy-
namic behavior of an objective process.

(2) The model is not an asymptotic approxi-
mated model but a model representing the
first principles governing the objective pro-
cess.

(3) The model can contain hidden state vari-
ables and their governing differential equa-
tions.

(4) The model is discovered without using
background domain knowledge specific to
the objective process.

(5) The model is discovered from passively ob-
served data.

In the rest of this paper, the basic problem
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setting and the entire approach of SCALE-
TRACK are outlined in Section 2. The details
of SCALETRACK are described in Section 3,
and the performance evaluations are shown in
Section 4.

2. Outline

2.1 Basic Problem Setting
We adopt the following “state space expres-

sion” to model an objective processes and mea-
surements without loss of generality.{

ẋ(t) = f(x(t)) + v(t),
y(t) = Cx(t) + w(t), (2)

(v(t) ∼ N(0, Σv), w(t) ∼ N(0, Σw)),
where the first equation is called a “state equa-
tion” and the second a “measurement equa-
tion.” x is called a “state vector”, f(x) a “state
function”, v a “process noise vector”, y a “mea-
surement vector”, C a “measurement matrix”,
w a “measurement noise” and t a “time index”.
f(x) is nonlinear in general, and any state tran-
sition of x can be represented by this formula-
tion. While C is a linear transformation rep-
resenting measurement facilities to derive the
measurement variables in y from the state vari-
ables in x, the facilities are artificial and linear
in most cases. Thus, this does not reduce the
generality of this expression. If C is a unit ma-
trix, all state variables are directly observable
through the measurement. If C is column full
rank, the values of all state variables with the
measurement noise can be estimated by solving
the measurement equation with x. Otherwise,
some state variables cannot be estimated by the
measurement equation only. Such state vari-
ables are called “hidden state variables.” The
aforementioned mass of the rocket M is an ex-
ample of the hidden state variable. The main
reason to introduce the state space model in our
approach is to systematically represent the hid-
den state variables. The power of this model to
explicitly separate the state transition and the
measurement enables a clear representation of
the hidden state variables.

In practical setting of discovery, f(x) and
some elements of x are initially unknown. We
can know only subvector x′(⊆ x) measured
by artificial measurement facilities. Thus only
a submatrix C ′(⊆ C) representing a relation
between x′ and y is initially known. So our
proposing method should identify the correct
dimension of x including hidden state variables
based on the given measurement data at first.

Subsequently, it searches plausible candidates
of f(x) reflecting the first principles. More
concretely speaking in the former rocket ex-
ample, let a sub state vector be x′T = (X, V )
and a measurement vector yT = (X, V ) where
M is a hidden state variable and sub measure-
ment matrix C ′ a unit matrix. SCALETRACK
takes a time series of yT = (X, V ), the scale-
types of X, V and submatrix C ′ as inputs, and
search the state equations Eq. (1) representing
the rocket’s dynamics without using any back-
ground domain specific knowledge such as a
kinematics law equation.

Our framework is totally different from the
model discovery approaches of LAGRAMGE
and Process Modeling. Their approaches apply
law equations given in the knowledge base of
process models and background domain knowl-
edge to build the models governing measure-
ment data. The candidate hidden state vari-
ables are also explicity given in the knowledge
base. They do not discover hidden state vari-
ables and law equations but models of mea-
surement behaviors by usging the knowledge
base. In contrast, the primary task of SCALE-
TRACK is to discover hidden state variables
and foundamental law equations from measure-
ment data without using any domain specific
knowledge base. In this regard, the task at-
tacked by SCALETRACK belongs to a far diffi-
cult class in terms of lack of background knowl-
edge and wide search space for variables and
equations.

2.2 Outline of Approach
The outline of our proposing method is shown

in Fig. 1. Given a set of measurement data and
knowledge on scale-types of measurement vari-
ables, the dimension of x is identified through
a statistical analysis called “correlation dimen-
sion analysis” 2). For each element of y, the
locus of its temporal change is mapped to a
phase space constructed by time-delayed val-
ues of the element, and the degree of freedom
which is the dimension of x is estimated by cal-
culating the sparseness of the locus in the phase
space. Once the dimension of x is known, all
possible combinations of scale-types of the ele-
ments in x are enumerated based on scale-type
constraints from the known measurement sub-
matrix C ′ and the scale-types of the elements
in y. Then for all combinations, the admis-
sible candidate equations of f(x) are gener-
ated. Subsequently, the validity of the candi-
date is tested through a simulation based track-
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Fig. 1 Block diagram of approach.

ing method called “Sequential Importance Sam-
pling/Resampling Monte Carlo filter(SIS/RMC
filter)” on the given measurement data. Simu-
lation based tracking is repeated for each can-
didate to optimize the coefficients in the candi-
date equations. Then, the combination of can-
didate f and its coefficients resulting in highly
accurate tracking, in terms of “mean square er-
ror (MSE)”, is selected as the discovered dy-
namic model of the objective process. Through
these steps, SCALETRACK discovers the first
principle based state space model of the objec-
tive process from passively observed data with-
out detailed domain knowledge except for scale-
types and measurement facilities. The details of
the approach will be described in the following
section.

3. Methods

3.1 Identification of Dimension of x
When hidden states exist, some elements of

state variables of x(t) in an objective process
may not be observed. In practical situation,
we do not know even the existence of the hid-
den state variables, in other words, the number
of state variables. Accordingly, the dimension
of x(t) must be estimated before the candidate
equations are searched. To estimate the dimen-
sion of x(t), “correlation dimension analysis”
is used in this work.

First, the time step τh is determined, where
τh is the first time step that the autocorrelation
function of an element yh(t) of y(t) becomes 0.

τh = arg min
τ∈[1,N ]

{
1
N

N∑
i=1

(yh(i) − yh
ave)

×(yh(i + τ ) − yh
ave) = 0

}
,

where yh
ave is the average value of yh(t) ∈

y(t)(t ∈ [1, N ]) and N the number of time steps
of measurement variables. τh is the time step
that the local dependency among the observed
states is vanished. Then the following vectors
having the dimension of m are generated from
time series data of yh(t) based on τh.

Y h
1 =

(
yh(1), yh(1 + τh),

. . . , yh(1 + (m − 1)τh)
)
,

...
Y h

T =
(
yn(T ), yh(T + τh),

. . . , yh(T + (m − 1)τh)
)
,

where T +(m−1)τh = N . Given the dimension
of state space dim(x), m ≥ 2dim(x) + 1 is a
sufficient condition to preserve the structure of
the state space in reconstructed vector space
based on “Takens’ theorem of embedding and
local reconstruction” 20). Hence m should be a
sufficiently large value.

Then the correlation dimension can be esti-
mated by calculating correlation integral on re-
constructed vector space. The correlation inte-
gral is represented by the following formulae;

Dm
h (r)=

2
T (T−1)

T∑
i=1

i−1∑
j=1

H(r−|Y h
i −Y h

j |),
where H(d) is an unit step function which is
defined as follows.

H(d) =
{

1 (d ≥ 0),
0 (d < 0),

Dm
h (r) represents the average number of the re-

constructed vectors for which the distance from
a vector is less than r. Thus, Dm

h (r) represents
density of the state in the space which corre-
sponds to the complexity of the state change.
For example, when the states are uniformly dis-
tributed in a line which is dimension of 1, the
number of states in the range of r is in pro-
portion to r as shown in Fig. 2 (a). When
the states are uniformly distributed in a plain
whose dimension is 2, the states in the circle
with the radius of r is in proportion to r2 as
shown in Fig. 2 (b). Similarly, when the states
is uniformly distributed in the n–dimensional
state space, the number of points in a n–
dimensional hyper–sphere with the radius of r
is in proportion to rn. Hence Dm

h (r) has the
following relation with r, where the range of r
covers the state distribution. νh(m) is called
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Fig. 2 State variables in a plain.

“correlation exponent”.

Dm
h (r) ∝ rνh(m).

Dm
h (r) is calculated for various values of r.

Then νh(m) is calculated by the average gradi-
ent of log(Dm

h (r)) with respect to log r. More-
over, νh(m) is calculated for various values of
m which is the dimension of the phase space.
If the value of m becomes large enough, νh(m)
asymptotically approaches to the dimension of
the state space. Hence the dimension of state
space of x(t) is approximately estimated from
νh(m) under sufficiently large m. νh(m) is com-
puted for each yh(h = 1, ..., dim(y)), and the
nearest integer of its maximum, νmax(m), is
used for dim(x), since some measurement vari-
ables do not have any relations to some state
variables.

3.2 Identification of scale-types of x
After dim(x) is calculated, the candidate

scale-types of x(t) are derived based on “scale-
type constraint” which limits admissible scale-
types of variables based on their mathemati-
cal relations. scale-type is defined by the rules
of measurement. Physical variables are mainly
categorized into two scale-types that are Ratio
scale and Interval scale. Ratio scale variables
have the absolute origin, and the ratio between
two variables is identical in any unit because the
admissible unit conversion is similarity group
(x′ = cx). Mass, velocity and frequency are
the examples of Ratio scale variables. On the
other hand, Interval scale variables have an ar-
bitrary origin, and the variables represent dis-
tance from the origin. The admissible unit con-
version is generic linear group (x′ = cx + z).
Celsius temperature, energy and entropy are
the examples of Interval scale variables.

scale-types of some state variables can be es-
timated from scale-types of measurement vari-
ables based on scale-type constraint. Table 1
shows the examples of scale-type constraints
among two state variables x1, x2 and a mea-
surement variable yh. ch1 and ch2 are constants
corresponding to the measurement facility. The
first, second, fourth and fifth rows show the

Table 1 scale-types of state variables.

yh relation (x1, x2)

R yh = ch1x1(ch1 �= 0) (R,X)
R yh = ch2x2(ch2 �= 0) (X,R)
R yh = ch1x1 + ch2x2(ch1ch2 �= 0) (I,I)(R,R)
I yh = ch1x1(ch1 �= 0) (I,X)
I yh = ch2x2(ch2 �= 0) (X,I)
I yh = ch1x1 + ch2x2(ch1ch2 �= 0) (I,X)(X,I)

R:Ratio scale, I:Interval scale, X:unknown (any)

cases that a measurement variable yh depends
on only one of the state variables xi. The ori-
gin of Ratio scale variable is defined absolutely
while the origin of Interval scale variable is de-
fined arbitrarily. When the scale-type of xi is
Interval, the origin of chixi is not absolute since
the origin of xi is arbitrary defined. Hence, the
scale-type of yh(= chixi) is Interval. In con-
trast, when the scale-type of xi is Ratio, the
origin of chixi is absolute since the origin of
xi is defined absolutely. Thus the scale-type
of yh(= chixi) is Ratio. Accordingly, the scale-
type of xi is identical to scale-type of yh in these
cases. On the other hand, the scale-type of the
other state variable having no relation to yh

are unknown. Its scale-types may be estimated
from scale-types of the other measurement vari-
ables.

In the third row and sixth raw, the measure-
ment variable is represented by linear summa-
tion of the state variables. If the state variables
are both Ratio scale, their linear combination is
Ratio scale since the relation does not introduce
any arbitrary origins to the measurement vari-
ables. If the state variables are both Interval
scale, the measurement variable can be Ratio
scale, since the arbitrary origin of the state vari-
ables may mutually cancel out. On the other
hand, when the scale-type of a state variable
is Ratio and another Interval, the scale-type of
yh is Interval, because the unique arbitrary ori-
gin of the Interval state variable remains in the
measurement variable through the linear com-
bination. In summary, when the scale-type of
measurement variable is Ratio, the admissible
scale-types of state variables are both Ratio or
both Interval. When the scale-type of measure-
ment variable is Interval, at least the scale-type
of one state variable is Interval.

The principle of the scale-type constraints is
further generalized for multiple state variables
as follows. Let yh be an h–th measurement vari-
able and xh a set of state variables where each
variable xi in it has a nonzero coefficient chi
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in the h–th row of the measurement matrix C.
Given yh =

∑
xi∈xh chixi and the scale-type of

yh,
1. When yh is Ratio scale,

all state variables in xh are Ratio scale. Or
two or more state variables in xh are Inter-
val scale and the others Ratio scale.

2. When yh is Interval scale,
at least one state variable in xh is Interval
scale and the others Ratio scale.

scale-types of state variables are estimated by
using these constraints, the measurement equa-
tion and the scale-types of measurement vari-
ables. In case that the scale-types of some state
variables are left to be unknown, both possi-
bilities of Ratio scale and Interval scale of the
variables are considered. Based on these prin-
ciples, “Candidate Combinations of Scale-types
(CCS)”, which is the set of all admissible com-
binations of scale-types of the state variables,
is derived.

3.3 Candidate Generation of f
Once CCS is given, the candidates of state

equation f are generated for each combina-
tion of scale-types in CCS based on “Extended
Product Theorem” 23) which is the extension of
the scale-type constraint for admissible multi-
variate relations. Then a set of all Candidate
State Equations (CSE) is obtained.

The following is the Extended Product The-
orem where some notions are adapted to our
descriptions.
Extended Product Theorem: Let R be a
set of state variables which are Ratio scale, and
another I be a set of state variables which are
Interval scale, the state variables have the fol-
lowing relation

ẋi = α


 ∏

xj∈R

|xj |βj




×

 ∏

Ik⊆(I−Ig)

( ∑
xk∈Ik

|xk| + δk

)βk



×
∏

xl∈Ig

exp (γgl|xl|) ,

where xi ∈ R ∪ I, all coefficients are constants,
Ig a subset of I and {Ik} a covering of (I−Ig).

For example, given a two dimensional state
vector x = (x1, x2)T where R = {x1} and
I = {x2}, admissible candidate formulae for an
element ẋi of ẋ in a state equation are the fol-
lowings.

ẋi =

{
αxβ1

1 (x2 + δ1)β2 ,

αxβ1
1 exp(γx2),

(i = 1, 2)

where αs, βs, γ and δ are constants, According
to this expression, four candidate state equa-
tions of x are generated by taking one of these
two formulae for each xi.

3.4 Identification of Coefficients of f
Once CSE is generated, every candidate state

equation eq(∈ CSE) is tested in this step, and
its constant coefficients providing the least er-
ror are identified. Moreover, the n–best can-
didates are selected in terms of their accuracy
for solutions. In SCALETRACK, the power
coefficients and the other coefficients are pro-
cessed in different manners, because the locus
of a state variable is very sensitive to the change
of power coefficients. For example, given the
following state equation, a vector of its power
coefficients, B = (β1, β2, β3, β4), and another
vector of the other coefficients, A = (α1, α2),
are defined. The former is called “beta vector”,
and the latter is called “alpha vector”.


dx1

dt
= α1x

β1
1 xβ2

2 , and

dx2

dt
= α2x

β3
1 xβ4

2 ,

The mutual distance between two n–dimensional
beta vectors is defined as follows.

distance(B1, B2) =
n∑

i=1

|β1i − β2i|,

SCALETRACK limits the power coefficients
into integers because the power coefficients in
most of scientific equations are integers.

3.4.1 Identification Algorithm
The algorithm to identify the plausible state

equation representing the objective process is
shown in Fig. 3. The function Identify–f takes
some arguments. CSE is the Candidate State
Equations generated through the “Candidate
Generation” phase, y1:t the measured time se-
ries data from time step 1 to t, T the number
of trials to obtain the n–best beta vectors, and
BV0 the starting point to search beta vectors.
T and BV0 are given by users. Currently, T
is set to 5, and BV0 consists of three vectors
where the first vector consists of 0 valued ele-
ments, the second 1 valued elements, and the
third -1 valued elements.

In line 2, a candidate eq is selected from
CSE, and then its coefficients are identified.
SCALETRACK fixes the values of beta vec-
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1. Identify–f (CSE, y1:t, T , BV0, C)

2. forall eq ∈ CSE do

3. BV1 = BV0

4. SOL = {φ}
5. for i=1 to T do

6. TV = BVi

7. forall Bs ∈ BVi do

8. TV = TV ∪Generate–neighbors(Bs)

9. forall Bn ∈ TV do

10. (Aop, MSE)

= Optimize–alpha(eq, Bn, y1:t, C)

11. If In–top–n–solutions(SOL, MSE)

then

12. sol = (eq, Bn, Aop, MSE)

13. SOL = SOL∪ {sol}
14. BVi+1 = {Bn|(eq, Bn, Aop, MSE)

∈ Top–n–solutions(SOL)}
15. TSOL

= TSOL∪ Top–n–solutions(SOL)

16. Output(Top–n–solutions(T SOL))

Fig. 3 The algorithm of the identification.

tor first, and then every element of alpha vec-
tor is optimized under the beta vector. The
function Generate–neighbors(Bs) in line 8
generates a set of beta vector Bns satisfying
distance(Bs, Bn) = 1. This step generates
beta vectors which are neighbor of the vec-
tors in BVi. The function Optimize–alpha
in line 10 provides an optimized alpha vector of
the given candidate equation eq together with
Mean Square Error (MSE) of the optimization
based on ”Golden Ratio Division Method” and
“Sequential Importance Sampling/Resampling
Monte Carlo filter (SIS/RMC filter) 3)”.

After the identification of alpha vector is fin-
ished, the combination of the identified state
equation and its MSE is selected if the MSE
is the n–smallest in SOL. The function In–
top–n–solutions (MSE) in line 11 returns
true when MSE is in the n–smallest values
in SOL, otherwise false. Once the solutions
(eq, Bn, Aop, MSE) are obtained for all neigh-
bor beta vectors, the beta vectors of the n–
best solutions among the obtained solutions are
stored to BVi+1. The generation of BVi+1 and
the optimization of alpha vector are repeated
until the counter i becomes T . The function
Top–n–solutions in line 14, 15 and 16 returns
the list of solutions having the values of MSE
which are n–smallest in SOL or TSOL. Sub-
sequently, the solutions having the values of
MSE which are within the n–smallest in SOL
are added to the temporary result TSOL. This

1. Optimize–alpha(eq, Bn, y1:t, C)

2. set A =Non–power–coefficients–of(eq)

3. forall αi ∈ A αi = 1

3. forall αi ∈ A do

4. (αi, Eop)

=GoldenRatioDM(eq,A,i,Bn,y1:t,C)

5. return (A, Eop)

Fig. 4 The algorithm of alpha vectors’ identification.

process is applied to all candidates in CSE. Fi-
nally, the n–best solutions of the identified state
equations in terms of MSE are provided as the
final result.

3.4.2 Optimize–alpha
For the estimation of alpha vector, we

adopt Golden Ratio Division Method instead
of well known Gradient Descent Method. The
SIS/RMC filter estimates the state variables so
that they fit to the measurement data even if
the shapes of state equation and the values of
the coefficients are different from those of the
original. Accordingly, the gradient of the MSE
with respect to a coefficient in the alpha vector
becomes to be gentle. In such a situation, Gra-
dient Descent Method is not practical, since the
method requires much computation to achieve
the convergence of the values of coefficients in
the alpha vector. In contrast, the values of
coefficients in the alpha vector are converged
within almost a constant computation time un-
der Golden Ratio Division Method, since the
method narrows down the ranges to search the
values in a constant speed.

The algorithm of Optimize–alpha is shown
in Fig. 4. First, all elements of an alpha vector
are initialized to 1. Then, the values of all coef-
ficients of A are optimized one by one in terms
of MSE of the candidate equation eq under fit-
ting to the time series y1:t, and the value of
MSE, Eop, is obtained under the alpha vector,
A.

3.4.3 SIS/RMC Filter
In SCALETRACK, we adopt the SIS/RMC

filter to track the state variables instead of
the well-known Kalman Filter (KF) 9) and Ex-
tended Kalman Filter (EKF) 7) approaches.
The applicability of the KF is limited to lin-
ear state equations, and that of the EKF which
applies linear approximations of the state equa-
tions is also limited to weak non-linearity. In
contrast, the SIS/RMC filter which uses a simu-
lations/tests based approach to track the states
can be applied to the state equations having
strong non-linearity.
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SIS/RMC filter is a tracking method based
on Bayesian Monte Carlo sampling. Given a
time series of measurement vector y1:t and can-
didate state space model eq which is the state
equation in Eq. (2), the probability of the state
vector x(t) under given x(t− 1) and y(t) is ap-
proximated as follows.

p (x(t)|x(t − 1), y(t)) ∝ N(mt, Σ), where
Σ−1 = Σ−1

v +CT Σ−1
w C, and mt = Σ

(
Σ−1

v x̄(t)
+CT Σ−1

w yk

)
. Here, x̄(t) is the state vector

predicted from x(t − 1) and the given candi-
date state equation eq. The probability of y(t)
under x(t − 1) is proportional to the following
Gaussian distribution.

p(y(t)|x(t − 1))∝exp
(
−1

2
(y(t)−Cx̄(t))T

×(Σv + CΣwCT )−1

×(y(t) − Cx̄(t))
)
.

π(x(1)|y(1)) is the probability distribution of
an initial state. This is estimated from the
measurement vector y(1) and measurement ma-
trix C. As the initial distributions of hidden
state variables cannot be estimated, the distri-
butions are given by the users. Under these
formulation, the procedure of SIS/RMC filter is
designed as follows. The operator “∼” means
that a value is sampled under the probability
distribution allocated to the right side of the
operator.
0. Initialize

0–1 For i = 1, 2, . . . , N , sample
x(i)(1) ∼ π(x(1)|y(1)) and
w̃∗(i)(1) = 1/N .

1. Importance sampling
1–1 For i = 1, 2, . . . , N , sample

x̃(i)(t) ∼ p(x(t)|x(i)(t − 1), y(t)).
1–2 For i = 1, 2, . . . , N , evaluate the im-

portance weights up to a normalizing
constant:
w̃∗(i)(t) = w̃∗(i)(t−1)p(y(t)|x(i)(t−1)).

1–3 For i = 1, 2, . . . , N , normalize the im-
portance weights:
w̃(i)(t) = w̃∗(i)(t)/(

∑N
i=1 w̃∗(i)(t)).

1–4 Let MAP estimation, x̃(t), be x̃(i)(t)
having the maximum w̃(i)(t).

1–5 Neff = (
∑N

i=1(w̃
(i)(t))2)−1.

1–6 If Neff ≥ Nthres then goto 1, other-
wise goto 2.

2. Resampling
2–1 For i = 1, 2, . . . , N , sample an index

j(i) distributed according to the dis-

crete distribution with N elements sat-
isfying Pr{j(i) = l} = w̃(l)(t) for l =
1, 2, . . . , N .

2–2 For i = 1, 2, . . . , N , x
(i)
1:t = x̃

j(i)
1:t and

w(i)(t) = 1/N , then goto 1.
The filter generates N candidates of time se-
ries of x(t) to explain y1:t under a given state
space expression. First, the probability distri-
butions of the state vector are calculated based
on the input candidate state equation, eq, the
estimated state variables, x̃(t − 1), and the
measurement vector, y(t). Then the estimated
state vector, x̃(i)(t), is sampled based on the
probability distributions. Subsequently, the im-
portance weights are assigned to each state vec-
tor, and a sequence consisting of state vectors
having the largest value of the weights at each
time index is selected.

However, when the importance sampling pro-
cess is repeated many times, the weight distri-
bution on the N candidates becomes strongly
uneven. Accordingly some estimated state vec-
tors in the filter become to have no contribu-
tion to the estimation process. This situation
is called “degeneracy”. To avoid this degener-
acy, a procedure named “resampling” is per-
formed. In resampling, the sequences are sam-
pled N times so that the probability to sample
the sequence j is equal to the normalized weight
of w̃

(j)
t . Then all sequences are replaced with re-

sampled sequences while resetting the weights
to escape from the degeneracy. In short, se-
quences having large weights are copied, and
the other sequences are replaced by the copies.
The likely sequences survive, while the unlikely
sequences die.

Once tracking is done, a sequence of state vec-
tors having the largest weights at each time step
is obtained as a tracked history of x(t), x̂1:t.
Then the time series of measurement variables
is estimated from the measurement equation,

ŷ1:t = Cx̂1:t,
and Mean Square Error (MSE) between the
measurement and the estimation is calculated
as follows.

MSE(ŷ1:t) =
1
t

t∑
i=1

|ŷ(i) − y(i)|2

4. Result

4.1 Implementation
The evaluation of candidate state equations

by the SIS/RMC filter is the most time consum-
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ing step. Any search cannot be skipped, since
the search space is discrete and nonmonotonic.
We experienced that one run of stand alone
SCALETRACK took a month even if we used
an efficient algorithm. Accordingly, the cur-
rent SCALETRACK introduced a simple grid
computing framework using a PC cluster con-
sisting of a server and 10 clients. The server
has an AthlonXP 1900+(1.6GHz) CPU and
2GB RAM, and each client has an AthlonXP
3000+(2.17GHz) CPU and 512MB RAM. The
server computes the first three steps, i.e., Iden-
tification of dimension of x, Identification of
scale-types of x and Candidate generation of f .
Then it allocates a task to evaluate 10% of can-
didate state equations to each client. Because
the task is mutually independent, and occupies
the most of computation of SCALETRACK,
this implementation accelerates the run speed
almost 10 times.

4.2 Basic Performance Evaluation
Basic performance of SCALETRACK in

terms of scale-types of state variables, hidden
state variables and measurement noise levels is
evaluated by using the following two artificial
formulae of two dimensions.
1. Model RR:

ẋ1(t) = x1(t)x2(t),
ẋ2(t) = −0.5x1(t),(

y1(t)
y2(t)

)
=
[

1 0
0 1

](
x1(t)
x2(t)

)
+wt,

where y1(t) = x1(t) and y2(t) = x2(t)
are Ratio scale. The measurement data
were generated by the simulations under
one time step ∆t = 0.005 and total steps
n = 600.

2. Model RI:
ẋ1(t) = 0.4x1(t)(x2(t) + 0.2),
ẋ2(t) = −0.1(x2(t) + 0.6),(

y1(t)
y2(t)

)
=
[

1 0
0 1

](
x1(t)
x2(t)

)
+wt,

where y1(t) = x1(t) is Ratio scale and
y2(t) = x2(t) Interval scale. The measure-
ment data were generated by the simula-
tions under one time step ∆t = 0.05 and
total steps n = 600.

The elements of measurement noise wt are de-
termined as follows.

wh
t ∼ N

(
0, σwxh(t)

)
,

where wh
t is the h–th element of wt, xh(t) the

h–th element of x(t) and σw a relative ampli-

Table 2 νmax(8) for each noise level.

case σw(%)
0.1 0.5 1.0 2.0 5.0 10.0

RR 1.11 1.74 2.21 2.59 3.23 3.44
RRH 1.05 1.74 2.21 2.59 3.23 3.44
RI 1.25 1.90 2.19 2.40 2.41 2.58

RIH 1.25 1.90 2.19 2.40 2.41 2.58

Table 3 Basic performance.

case ct σw(%)
(hrs.) 0.1 0.5 1.0 2.0 5.0∼

RR 1.5 ++ + + + -
RRH 5.5 + + - - -
RI 4.0 ++ + + + -

RIH 5.5 ++ + - - -

tude of measurement noise. Empirically, m in
the correlation dimension analysis and N in the
state tracking were chosen to be 8 and 500 re-
spectively. The amplitude of the process noise
is set to be 0 to check the pure effect of the
measurement noise in the rest of this paper.

Table 2 shows the result of correlation di-
mension analysis. The cases of RR and RI in
the table correspond to the above two state
space models, and RRH and RIH are the cases
where the second measurement variable y2 is
not available, and hence x2 is hidden. The
correlation dimension analysis estimated the di-
mension of state vectors as around 2 in many
cases, and thus the existence of two state vari-
ables was assumed in the subsequent step. Ta-
ble 3 shows the result of the evaluation. The
column ct is the computation time to complete
the search. The computation times required
for RRH, RI and RIH were longer than that
of RR, because the variety of admissible for-
mulae containing Interval scale variables is far
larger than that of Ratio scale variables. The
result is marked by ‘++’ in the table where the
formula having the correct shape is top ranked
in the accuracy. If the formula having the cor-
rect shape is derived within the top five solu-
tions, it is marked by ‘+’, and otherwise it is
marked by ‘-’. Table 4 shows the top 5 results
in case of RR, where the relative noise level is
0.1%. The first, the third and the fifth results
in terms of MSE have the correct formulation,
and the coefficients are very close to those of
the original. The tables show that at least 2.0%
measurement noise in relative amplitude is ac-
ceptable to discover the correct formulae, if all
state variables can be measured. Even if a hid-
den state variable exists, SCALETRACK can
discover correct equation in case that the mea-
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Table 4 The top 5 results in case of RR.

state equation MSE
1 dx1/dt = 0.943x1x2

dx2/dt = −0.552x2 7.50 × 10−7

2 dx1/dt = 1.00x1x2

dx2/dt = 0.617x1 7.79 × 10−7

3 dx1/dt = 1.07x1x2

dx2/dt = −0.424x2 7.80 × 10−7

4 dx1/dt = 1.06x1x2

dx2/dt = 0.647x1 7.95 × 10−7

5 dx1/dt = 1.02x1x2

dx2/dt = −0.475x2 7.96 × 10−7

Fig. 5 An LC and FET circuit.

surement noise is 0.1–0.5%.
4.3 Discovery of Circuit Dynamics
SCALETRACK has been applied to syn-

thetic data of an electric circuit consisting of
LCs and a Field Effect Transistor (FET) as
shown in Fig. 5. Its state equation is repre-
sented as follows.

V̇I(t) = −I(t)
C1

= −100I(t),

İ(t) =
VI(t)

L
= 50VI(t),

V̇F (t) =
VI(t)VF (t)

rC2
= 250.0VI(t)VF (t),

where the definitions of VI , I, VF , L = 20mH,
C1 = 10mF and C2 = 1mF are clear in the
figure and r = 4.0ΩV a voltage–resistance co-
efficient of FET. All state variables are Ra-
tio scale, and can be measured via correspond-
ing Ratio scale measurement variables respec-
tively. The measurement data were sampled
under one time step ∆t = 0.001, total time
steps n = 800 and the relative measurement
noise σw = 0.1%. Because νmax(8) = 2.94 was
obtained in the correlation dimension analysis,
the state equation consisting of three state vari-
ables was searched.

In case that every state variables are directly
measured, the following state equation having
the best accuracy was derived.

V̇I(t) = −133.3I(t),
İ(t) = 6.94VI(t)VF (t),

V̇F (t) = 249.0VI(t)VF (t).
The shapes of the first and the third expres-
sions of the equation are identical with those
in the original equation though the values of
coefficients are moderately different from the
original.

Subsequently, the measurement of I was
omitted to make I a hidden state variable. The
following correct formula except for the discrep-
ancy of coefficient values showed up within the
solutions having top five accuracies.

V̇I(t) = −26.9I(t),
İ(t) = 298.0VI(t),

V̇F (t) = 250.0VI(t)VF (t).
These results indicate that SCALETRACK has
ability to discover state equations of engineer-
ing objects having three-dimensional dynamics
at least.

5. Discussion

In this paper, we proposed a method named
SCALETRACK which discovers the first prin-
ciple based dynamic models of an objective
process represented by simultaneous time dif-
ferential equations. According to the experi-
ments, SCALETRACK has an ability to dis-
cover state equations even if hidden states exist.
SCALETRACK accepts at least 2.0% measure-
ment noise in relative amplitude when hidden
states do not exist. This is comparable with
the noise level in practical cases where 1.0–2.0%
measurement noise is the most widely seen in
scientific and engineering applications. Even
when a hidden state exists, 0.5% measurement
noise in relative amplitude can be accepted by
SCALETRACK. This noise level can be also
achieved by using proper measurement facili-
ties in many applications. The performance of
SCALETRACK shows robustness against mea-
surement noise to some extent.

We have seeked any other approaches which
have comparable functions of the law equa-
tion discovery with SCALETRACK. However,
as discussed earlier, all the conventional ap-
proaches including LAGRAMGE and Process
Modeling can not address the class of prob-
lem to discover the dynamic and simultaneous
time differential law equations without using
any domain specific knowledge base. Accord-
ingly, the experimental comparison of SCALE-
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TRACK with the other approaches has not
been conducted in this paper.

Computational complexity of SCALETRA-
CK is NP–hard in terms of the number of state
variables, because the number of possible com-
binations of scale-types, the number of candi-
date state equations and the number of the pos-
sible values of the coefficients to be searched
shows combinational explosions when the num-
ber of state variables increases. This fact is
reflected to the computation time required by
SCALETRACK, where it takes over 3 days
to complete the search of the solutions having
three state variables of Ratio scales. Although
the computational time can be reduced by set-
ting less trials to search beta vectors’ neighbors,
the correctness of the solutions is also reduced.
More efficient search algorithm should be stud-
ied in future work.

Another issue remained in this work is the
noise robustness. This problem is also very
important to establish wilder applicability of
SCALETRACK to noisy situations. There
are two major issues on the noise robustness.
First is the noise characteristic of MSE re-
sulted in SIS/RMC filter tracking. Because
the SIS/RMC filter tries good estimation of
state variables even under erroneous models
and noise, the MSE between the real and the
estimated measurements is not very sensitive
to the noise. Though this is a desirable char-
acteristic for state estimation, many spurious
models which provide good MSE appears in the
model search, and the spurious models remove
the correct model from the search space. Sec-
ond issue is the accuracy of the correlation di-
mension analysis. Some past studies reported
that the analysis does not provide a correct
dimension under noisy and high state dimen-
sions 6),10). Because only the cases having low
state dimensions are accessed in this paper, this
problem does not appear significantly. How-
ever, a more robust approach to estimate accu-
rate state dimensions for large scale problems
should be explored in future.

The advantage of SCALETRACK is that the
discovered equations are guaranteed that they
are the first principle based equations because
the candidates generated in SCALETRACK
are constrained by the scale-types of variables
and Extended Product Theorem. Scientists
can easily avoid the solutions not reflecting
the underlying the first principles by using this
method.

6. Conclusion

We showed a novel method to discover simul-
taneous time differential law equations repre-
senting the first principles governing dynamic
behavior of an objective process from passively
observed data. Significant advantages of this
approach are the reduction of the strong bias
introduced by the domain knowledge specific to
the objective process and the wide applicabil-
ity to the cases including hidden state variables
in the objective process. The remained major
issues are to overcome the computational com-
plexity of the search and the problem of noise
robustness. The study to overcome these issues
is currently underway.
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