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Abstract

We address the problem of formalizing an information diffusion process on a social net-
work as a generative model in the machine learning framework so that we can learn model
parameters from the observation. Time delay plays an important role in formulating the
likelihood function as well as for the analyses of information diffusion. We identified that
there are two different types of time delay: link delay and node delay. The former corre-
sponds to the delay associated with information propagation, and the latter corresponds
to the delay due to human action. We further identified that there are two distinctions of
the way the activation from the multiple parents is updated: non-override and override.
The former sticks to the initial activation and the latter can decide to update the time to
activate multiple times. We formulated the likelihood function of the well known diffusion
models: independent cascade and linear threshold, both enhanced with asynchronous time
delay distinguishing the difference in two types of delay and two types of update scheme.
Simulation using four real world networks reveals that there are differences in the spread
of information diffusion and they strongly depend on the choice of the parameter values
and the denseness of the network.
Keywords: Information diffusion, Social network, Maximum likelihood, Asynchronous
time delay

1. Introduction

There have been tremendous interests in the phenomenon of influence that members of a
social network can exert on other members and how the information propagates through
the network. A variety of information that includes news, innovation, hot topics, ideas,
opinions and even malicious rumors, propagates in the form of so-called “word-of-mouth”
communications. Social networks (both real and virtual) are now recognized as an im-
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portant medium for the spread of information and a considerable number of studies have
been conducted (Newman et al., 2002; Newman, 2003; Gruhl et al., 2004; Domingos, 2005;
Leskovec et al., 2006).

Basic models of information diffusion which are widely used in these studies are the
independent cascade (IC) (Goldenberg et al., 2001; Kempe et al., 2003; Kimura et al., 2009)
and the linear threshold (LT) (Watts, 2002; Watts and Dodds, 2007). They have been
used to solve such problems as the influence maximization problem (Kempe et al., 2003;
Kimura et al., 2010) and the contamination minimization problem (Kimura et al., 2009).
Both models have parameters that need be specified in advance: diffusion probabilities for
the IC model, and weights for the LT model. However, their true values are not known
in practice. This poses yet another problem of estimating them from a set of information
diffusion results that are observed as time-sequences of influenced (activated) nodes (Saito
et al., 2009, 2010).

This problem fits in a well defined parameter estimation problem in machine learning
setting, provided that a proper model is known. Thus, having a good generative model is
crucial for this approach to be successful. One important factor that needs a special care is
how to treat time delay in information diffusion. Diffusion process involves time evolution.
The basic models deal with time by allowing nodes to change their states in a synchronous
way at each discrete time step. No time delay is considered, or one can say that every
action is uniformly delayed exactly by one discrete time step. However, it is indispensable
to be able to cope with asynchronous time delay to do realistic analyses of information
diffusion because, in the real world, information propagates along the continuous time axis,
and time-delays can occur while information propagates by various reasons. Incorporating
time-delay makes the time-sequence observation data structural, which makes the analyses
of diffusion process difficult because it is not self-evident from the observed sequence data
which node has activated which other node. What is observed is just a sequence of time
when each node has been activated. Saito et al. (2009, 2010) have extended the basic IC and
LT models to incorporate asynchronous time delay and successfully solved this parameter
estimation problem by maximizing the likelihood function using a variant of EM algorithm,
but they have not carefully examined that there are different types of time delay and node
activation scheme1.

In this paper, we revisit the generative model and carefully analyze what kind of time
delay and activation scheme is considered realistic because, in general, the way the param-
eters are estimated depends on how the generative model is given. We identified that there
are two different types of time delay: link delay and node delay. The former corresponds
to the delay associated with information propagation, and the latter corresponds to the
delay due to human action. We further identified that there are two types of the way the
activation from the multiple parents is updated: non-override and override. The former
sticks to the initial activation and the latter can decide to update the time to activate
multiple times. We rigorously formulated the likelihood function of the IC and the LT
models, extending them to incorporate asynchronous time delay with the difference in two
types of time delay and two types of update scheme taken into account2. There are a total

1. Two examples explaining the different types of time delay are given in subsection 3.1.
2. We refer to asynchronous time delay versions of the IC and the LT models as the AsIC and AsLT models,

respectively.
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of three different models for each of the AsIC and the AsLT models, but the theoretical
analysis revealed that particular combinations of time delay and update scheme result in
the same likelihood function (with a minor notational difference) and it suffices to consider
two different models for each. We performed how the difference in the time delay and the
update scheme affects the information diffusion results as a function of time, varying the
values of diffusion parameters using four real world networks. The simulation results reveal
that there are differences in the spread of information diffusion and they strongly depend
on the choice of the parameter values and the denseness of the network, confirming that it
is important to distinguish the different types of time delay and update scheme. The results
are well interpretable.

The paper is organized as follows. We revisit the basic information diffusion models
in section 2 describing the likelihood functions. In section 3 we first explain different time
delay types and update schemes, and then, based on these differences, derive the rigorous
likelihood function for each of the possible combinations of these types and schemes for
both the AsIC and AsLT models. We show the experimental result in subsection 5.2, and
summarize the main conclusions in section 6.

2. Basic Information Diffusion Models

We mathematically model the spread of information through a directed network G = (V,E)
without self-links, where V and E (⊂ V × V ) stand for the sets of all the nodes and links,
respectively. For each node v in the network G, we denote F (v) as a set of child nodes of
v, i.e., F (v) = {w; (v,w) ∈ E}. Similarly, we denote B(v) as a set of parent nodes of v,
i.e., B(v) = {u; (u, v) ∈ E}. We call nodes active if they have been influenced with the
information. In the following models, we assume that nodes can switch their states only
from inactive to active, but not the other way around, and that, given an initial active node
set S, only the nodes in S are active at an initial time.

2.1 Independent Cascade Model

We first recall the definition of the IC model according to Kempe et al. (2003). In the
IC model, we specify a real value κu,v with 0 < κu,v < 1 for each link (u, v) in advance.
Here κu,v is referred to as the diffusion probability through link (u, v). The diffusion process
unfolds in discrete time-steps t ≥ 0, and proceeds from a given initial active set S in the
following way. When a node u becomes active at time-step t, it is given a single chance
to activate each currently inactive child node v, and succeeds with probability κu,v. If u
succeeds, then v will become active at time-step t+1. If multiple parent nodes of v become
active at time-step t, then their activation attempts are sequenced in an arbitrary order,
but all performed at time-step t. Whether or not u succeeds, it cannot make any further
attempts to activate v in subsequent rounds. The process terminates if no more activations
are possible.

2.2 Linear Threshold Model

Next, we present the definition of the LT model. In this model, for every node v ∈ V , we
specify a weight (ωu,v > 0) from its parent node u in advance such that

∑
u∈B(v) ωu,v ≤ 1.
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The diffusion process from a given initial active set S proceeds according to the following
randomized rule. First, for any node v ∈ V , a threshold θv is chosen uniformly at random
from the interval [0, 1]. At time-step t, an inactive node v is influenced by each of its active
parent nodes, u, according to weight ωu,v. If the total weight from active parent nodes of v
is no less than θv, that is,

∑
u∈Bt(v) ωu,v ≥ θv, then v will become active at time-step t + 1.

Here, Bt(v) stands for the set of all the parent nodes of v that are active at time-step t.
The process terminates if no more activations are possible.

2.3 Likelihood

As emphasized in section 1, our main focus is to formalize the information diffusion process
as a generative model in machine learning problem setting. The generative model is a model
of the world which can predict the future from the past, and the model must be consistent
with the observation as much as possible. Thus, it is crucial to formulate the likelihood
function as realistically as possible so that the model with these parameters (including κu,v

and ωu,v above) that maximize the likelihood can best reflect the reality and generate the
data close enough to the observation.

We denote an observed data set of M independent information diffusion results as
{Dm; m = 1, · · · ,M}. Here, each Dm is a set of pairs of active nodes and their acti-
vation times in the mth diffusion result, Dm = {(u, tm,u), (v, tm,v), · · ·}. For each Dm,
we denote the observed initial time by tm = min{tm,v; (v, tm,v) ∈ Dm}, and the observed
final time by Tm ≥ max{tm,v; (v, tm,v) ∈ Dm}. Note that these are just sequences of
(u, tm,u) pairs and do not tell which parent node of u actually activated u. Further note
that Tm is not necessarily equal to the final activation time. Hereafter, we express our
observation data by DM = {(Dm, Tm); m = 1, · · · ,M}. For any t ∈ [tm, Tm], we set
Cm(t) = {v; (v, tm,v) ∈ Dm, tm,v < t}. Namely, Cm(t) is the set of active nodes before time
t in the mth diffusion result. For convenience sake, we use Cm as referring to the set of all
the active nodes in the mth diffusion result. Moreover, we define a set of non-active nodes
with at least one active parent node for each by ∂Cm = {v; (u, v) ∈ E, u ∈ Cm, v /∈ Cm}.

Next we formulate the likelihood function L(DM ;Θ), where Θ denotes the parameters
that we want to optimize by maximizing L. Nodes in Cm are a part of the nodes in the
graph G and those not in Cm have not been activated. Since non-activated nodes, unless
they get activated, never activate the other non-activated node, we only need to consider
nodes in Cm and ∂Cm. Thus, the likelihood function is basically described by the product
of two factors, one representing the probabilities that nodes in Cm are activated at their
respective times and the other representing the probabilities that nodes in ∂Cm have not
been activated during the observed time period [tm, Tm].

The likelihood functions for the IC and the LT models take slightly different forms. L
for the IC model is given by Equation (1), and L for the LT model is given by Equation
(2).

L(DM ;Θ) =
M∏

m=1

∏
v∈Cm

(hm,v gm,v) , (1)

where hm,v is the probability density that the node v such that v ∈ Dm with tm,v > 0 for
the mth diffusion result is activated at time tm,v, and gm,v is the probability that a node v
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fails to activate its child nodes for the mth diffusion result.

L(DM ;Θ) =
M∏

m=1

( ∏
v∈Cm

hm,v

)⎛⎝ ∏
v∈∂Cm

gm,v

⎞
⎠ , (2)

where the definition of hm,v is the same as above and gm,v is the probability that the node
v is not activated within the observed time period [tm, Tm]. The specific formulae of hm,v

and gm,v for the IC model are

hm,v = 1 −
∏

u∈B(v)∩C̃(tm,v)

(1 − κu,v), gm,v =
∏

w∈F (v)\C(tm,v+1)

(1 − κv,w), (3)

and those for the LT model are

hm,v =
∑

u∈B(v)∩C̃(tm,v)

ωu,v, gm,v = 1 −
∑

u∈B(v)∩Cm

ωu,v, (4)

where C̃(tm,v) = C(tm,v) \ C(tm,v − 1). Note that Equations (3) have been described in ?,
and Equations (4) are special forms of the corresponding equations described in Saito et al.
(2010).

3. Asynchronous Information Diffusion Models

In this section, we first explain notions of time-delay identifying two different types of time
delay and two different types of the way the activation from the multiple parents is updated.
Then, we derive the rigorous likelihood function for each of the possible combinations of
these time-delay types and update schemes for asynchronous time delay versions of the IC
and the LT models.

3.1 Notions of Time-delay

The basic information diffusion models briefly described in section 2 do not account for time
delay. In reality it takes time for the information to diffuse by various reasons, and further,
the way the delay takes place is asynchronous. Each parent u of a node v can be activated
independently of the other parents in an asynchronous way and because the associated time
delay from a parent to its child is different for every single pair, which parent u actually
affects the node v in which order is more or less opportunistic. In case of the IC model
which is sender-oriented, it may look more natural to attach the delay to the link, i.e., when
a node u is activated and is ready to send the information, it does not necessarily reach its
child node v instantaneously but with some delay attached to the link (u, v). On the other
hand, in case of the LT model which is receiver-oriented, it may look more natural to attach
the delay to the node (receiver), i.e. when the sum of the weights from the active parents
of a node v exceeds the threshold θ and the node v is ready to receive the information, it
does not necessarily reach the node v instantaneously but with some delay attached to the
node v. However, in both models information diffuses from a parent to its child and there
is no reason to exclude other combinations than the above.
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To explicate the information diffusion process in a more realistic setting, we think of
two examples, one associated with blog posting and the other associated with electronic
mailing. In case of blog posting, assume that some blogger u posts an article. Then it
is natural to think that it takes some time before another blogger v comes to notice the
posting. It is also natural to think that if the blogger v reads the article, he or she takes an
action to respond (activated) because the act of reading the article is an active behavior.
In this case, we can think that there is a delay in information diffusion from u to v but
there is no delay in v taking an action. In case of electronic mailing, assume that someone
u sends a mail to someone else v. It is natural to think that the mail is delivered to the
receiver v instantaneously. However, this does not necessarily mean that v reads the mail
as soon as it has been received because the act of receiving a mail is a passive behavior. In
this case, we can think that there is no delay in information diffusion from u to v but there
is a delay in v taking an action. Further, when v notices the mail, v may think to respond
to it later. But before v responds, a new mail may arrive which needs a prompt response
and v sends a mail immediately. We can think of this as an update of acting time3. These
are just two examples, but it appears worth distinguishing the difference of these two kinds
of time delay and update scheme (override of decision) in a more general setting.

In what follows we formulate the likelihood function distinguishing the difference of
assumed time delay and override policy, and show that these distinctions indeed affect the
form of the likelihood function. According to the discussion above, we define two types
of delay: link delay and node delay. It is easiest to think that link delay corresponds to
propagation delay and node delay corresponds to action delay. We further assume that
they are mutually exclusive. This is a strong restriction as well as a strong simplification
by necessity because the activation time we can observe is a sum of the two delays and
we cannot distinguish between these two. Thus we have to choose either one of the two
as occurring exclusively for the likelihood maximization to be feasible. In addition, we
assume that there are two types of activation associated with time delay: non-override and
override. The former sticks to the initial decision when to activate and the latter can decide
to update (override) the time of activation multiple times each time one of the parents gets
newly activated. Due to the mutual exclusiveness of link delay and node delay, override is
only associated with node delay. As mentioned in section 1, we call the time delay versions
of the IC and the LT models as Asynchronous Independent Cascade Model (AsIC) and
Asynchronous Linear Threshold Model (AsLT), respectively.

In summary, node delay can go with either override or non-override, and link delay can
only go with non-override. In the following subsections, we will derive hm,v and gm,v for each
of the AsIC model and the AsLT model. We choose a delay-time δ from the exponential
distribution with parameter r for the sake of convenience, but of course other distributions
such as power-law and Weibull can be employed. The time delay parameter r is expressed
explicitly as ru,v if it is link delay and rv (or ru) if it is node delay. Once the likelihood
function is formalized, any optimization method can be used to find the best estimates
of the parameter values. In practice, variants of EM algorithm has been shown to work
satisfactorily (Saito et al., 2009, 2010).

3. Note that there are two actions here, reading and sending, but the activation time in the observed
sequence data corresponds to the time v sends a mail
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3.2 Asynchronous Independent Cascade Models

Link delay with non-override The diffusion process unfolds in continuous-time t, and
proceeds from a given initial active set S in the following way. Suppose that a node u
becomes active at time t. Then, u is given a single chance to activate each currently inactive
child node v. If v has not been activated before time t + δ, then u attempts to activate v,
and succeeds with probability κu,v. If u succeeds, then v will become active at time t + δ.
Under the continuous time framework, it is unlikely that v is activated simultaneously by
its multiple parent nodes exactly at time t + δ. So we ignore this possibility. The process
terminates if no more activations are possible. Note that this delay is due to propagation
delay. Once the node v receives the information, it instantaneously gets activated and there
is no action delay in v.

We order the active parent node u ∈ B(v)∩Cm(tm,v) of a node v according to the time
tu it was activated: B(v) ∩ Cm(tm,v) = {u1, u2, ..., uK} such that tu1 < tu2 < ... < tuK

.
The probability density hm,v is the sum of the probability density that ui activates v

but all the other uj , j �= i fail to activate v over all i (i = 1, 2, ...,K).

hm,v =
K∑

k=1

κuk,vruk,v exp(−ruk,v(tm,v − tm,uk
))

×
K∏

i=1,i�=k

(1 −
∫ tm,v

tm,ui

κui,vrui,v exp(−rui,v(t − tm,ui))dt)

=
K∑

k=1

κuk,vruk,v exp(−ruk,v(tm,v − tm,uk
))

×
K∏

i=1,i�=k

(κui,v exp(−rui,v(tm,v − tm,ui)) + (1 − κui,v)) . (5)

The probability gm,v is given by

gm,v =
∏

w∈F (v)\Cm

(
1 −

∫ Tm

tm,v

κv,w exp(−rv,w(t − tm,v))dt

)

=
∏

w∈F (v)\Cm

(κv,w exp(−rv,w(Tm − tm,v)) + (1 − κv,w)) . (6)

Note that the formulation in Saito et al. (2009) corresponds to this category.

Node delay with non-override The difference of diffusion process from Link delay with
non-override is that there is no delay in propagating the information to the node v from
the node u, but there is a delay δ before the node v gets actually activated. Assume that
it is the node ui that first succeeded in activating the node v (more precisely satisfying the
activation condition). Since there is no link delay, it must be the case that all the other
parents that had become active before tui must have failed in activating v (more precisely
satisfying the activation condition). Since the node v decides when to actually activate
itself at the time the node ui succeeded in satisfying the activation condition and would not
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change its mind, other nodes which may possibly activate the node v at a later time can do
nothing on the node v. Thus, the probability density hm,v is given by

hm,v =
K∑

k=1

κuk,v

k−1∏
i=1

(1 − κui,v)rv exp(−rv(tm,v − tm,uk
)). (7)

The probability gm,v is the same as Equation (6).

Node delay with override The difference of diffusion process from Node delay with
non-override is that here the actual activation time is allowed to be updated. For example,
suppose that the node ui first succeeded in satisfying the activation condition of the node
v and the node v decided to activate itself at time tui + δi. At some time later but before
tui + δi, other parent uj also succeeded in satisfying the activation condition of the node v.
Then the node v is allowed to change its actual activation time to time tuj + δj which may
be before tui + δi. Thus, the probability density hm,v is given by

hm,v =
K∑

k=1

κuk,vrv exp(−rv(tm,v − tm,uk
))

×
K∏

i=1,i�=k

(1 −
∫ tm,v

tm,ui

κui,vrv exp(−rv(t − tm,ui))dt)

=
K∑

k=1

κuk,vrv exp(−rv(tm,v − tm,uk
))

×
K∏

i=1,i�=k

(κui,v exp(−rv(tm,v − tm,ui)) + (1 − κui,v)) . (8)

The probability gm,v is the same as Equation (6).

3.3 Asynchronous Linear Threshold Models

Link delay with non-override The diffusion process unfolds in continuous-time t, and
proceeds from a given initial active set S in the following way. When a node ui is activated
at tui , it exerts its effect on its child node v with a delay δi. Suppose that the accumulated
weight from the active parents of node v has become no less than θv at time t for the first
time. The node v becomes active without any delay (no node delay) and exerts its effect on
its child with a delay δv. Because there is no override, there is no update of the activation
time of the node v. This process is repeated until no more activations are possible.

It is to be noted that because δi is a random variable, tui + δi is not monotonic with
respect to i even though ui is ordered according to the activation time tui . We define a new
ordering of the parent node i according to the time tui + δi that it exerts its effect on its
child v. Suppose the node v first become activated for i of this new ordering. Then the
threshold θv is between

∑i−1
j=1 ωuj ,v and

∑i−1
j=1 ωuj ,v+ωui,v. Since θv is uniformly distributed,

the probability that θv is chosen from this range is ωui,v. Thus, the probability density hm,v
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that the node v is activated at time tm,v can be expressed as

hm,v =
K∑

k=1

ωuk,vruk,v exp(−ruk,v(tm,v − tm,uk
)). (9)

The probability gm,v that a node v is not activated with the observed time period [tm, Tm]
is given by

gm,v = 1 −
K∑

k=1

ωuk,v

∫ Tm

tm,uk

ruk,v exp(−ruk,v(t − tm,uk
))dt

= 1 −
K∑

k=1

ωuk,v(1 − exp(−ruk,v(Tm − tm,uk
))). (10)

Node delay with non-override The difference of diffusion process from Link delay
with non-override is that as soon as the parent node ui is activated, its effect is immediately
exerted to its child v. The delay depends on the node v’s choice.

Suppose the node v first became activated for i of the parent ordering according to the
time tui . Then by the same reasoning as before, the threshold θv is between

∑i−1
j=1 ωuj ,v and∑i−1

j=1 ωuj ,v + ωui,v, and the probability density hm,v can be expressed as

hm,v =
K∑

k=1

ωuk,vrv exp(−rv(tm,v − tm,uk
)). (11)

The probability gm,v is the same as Equation (10). Note that the formulation in Saito et al.
(2010) corresponds to this category.

Node delay with override The difference of diffusion process from Node delay with non-
override is that multiple updates of the activation time of the node v is allowed. Suppose
that the node v first became activated by receiving the effect of the parent uk. All the
parents that have become activated after that can still influence the updates. Considering
the probability that node ui’s effect eventually leads the node v’s activation at a time later
than tm,v, the probability density that the node v is activated at time tm,v by one of its
parent nodes which get activated later than uk for which the threshold is first exceeded is

hm,uk,v = ωuk,v

K∑
j=k

rv exp(−rv(tm,v − tm,uj ))
K∏

i=k,i�=j

∫ ∞

tm,v

rv exp(−rv(t − tm,ui))dt

= ωuk,v(K − k + 1)rv

K∏
i=k

exp(−rv(tm,v − tm,ui)). (12)

Thus, finally we obtain

hm,v =
K∑

k=1

hm,uk,v. (13)

The probability gm,v is the same as Equation (10).
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4. Properties of Asynchronous Time-delay models

In this section, we describe some properties of asynchronous time-delay models in terms of
the expected influence degree and behavioral analysis.

4.1 Expected Influence Degree

The expected influence degree of each node v, which is defined by the expected length of
information diffusion sequence starting from the node v, plays a crucial role to solve the
several important problems such as influence maximization and contamination minimiza-
tion. Here we can easily see that for the same diffusion parameters κu,v (or ωu,v), the
expected influence degree of each node obtained by the basic IC (or LT) model is equal to
the one obtained by any variant of AsIC (or AsLT) model after a substantially large time
has passed. This is because what the asynchronous time models are doing is simply con-
trolling the activation time of each node in relative to the basic models, but the asymptotic
values of the expected influence degree remain the same. Thus, for the purpose of obtaining
the expected influence degree, it suffices to use the basic models and we can apply any kind
of efficient methods such as the bond percolation method (Kimura et al., 2010).

However, for some applications, such as the maximization of information spread to
promote sales during a certain period of time, estimating the expected influence degree at
a specific time or at a specific time interval may become very important and essential, i.e.
a transient phenomenon becomes important. In particular, we can naturally conceive that
each variant of the asynchronous time-delay models shows a different effect of time-delay
on information diffusion. Since it is quite difficult to obtain analytical results, we attempt
to clarify such effect by performing the experimental evaluation shown in the next section.

4.2 Behavioral Analysis

It has been shown in Saito et al. (2009, 2010) that behavioral analysis can reveal intrinsic
characteristics of a given information diffusion sequence, under the assumption that people
behave quite similarly for the same topic of information diffusion. Thus far, we have as-
sumed that Θ can vary with respect to nodes and links but is independent of the topic of
information diffused. However, as predicted, they may be sensitive to the topic. If we place
a constraint that Θ depends only on topics but not on nodes and links of the network G,
we can assign a different m to a different topic. Under this setting, we can set rm,u,v = rm

or rm,v = rm, κm,u,v = κm and ωm,u,v = ωm = qm|B(v)|−1 for any link (u, v) ∈ E and for
any node v ∈ V . Here note that the newly introduced parameter qm(0 < qm < 1) is the
one which corresponds to κ in the AsIC model and ωv,v = 1 − qm. Using each pair of the
estimated parameters, (rm, κm) for the AsIC model and (rm, qm) for the AsLT model, we
can discuss which model is more appropriate for each topic, and analyze the behavior of
people with respect to the topics of information by simply plotting them as a point in the
two-dimensional space. The validity of the above assumption has been confirmed using a
real diffusion dataset in blogsphare as exemplified in Saito et al. (2009, 2010).

Looking through the results in the previous subsections, we note that in case of the
AsIC model hm,v takes the same form for Link delay with non-override and Node delay
with override, and in case of the AsLT model hm,v takes the same form for Node delay with
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non-override and Link delay with non-override. This means that in terms of the behavioral
analysis as is explained above, interestingly these respective two different time delay models
give the same results.

5. Evaluation of Effect of Time-delay on Information Diffusion

As mentioned earlier, we empirically evaluate the effect of the difference in the time-delay
models on information diffusion using four real world networks. To this end, we introduce
the following unified measure to quantify the average speed of propagation for networks
of different sizes, as well as with various parameter settings in the information diffusion
models.

p(t) =
∑M

m=1 |{(vm, tm,v) ∈ Dm; tm,v ≤ t}|∑M
m=1 |Dm| . (14)

For a given set of information results {Dm; m = 1, · · · ,M} and a specified time t, this
measure gives the expected ratio of the number of activated nodes until t to that of the
total activated nodes. In our experiments, the initial and final times were set to tm = 0 and
Tm = ∞, respectively, for each information diffusion sequence m.

5.1 Network Data

We employed four datasets of large real networks (all bidirectionally connected) and used
their structures to generate diffusion data. The first one is a coauthorship network used
in Palla et al. (2005) and has 12, 357 nodes and 38, 896 directed links (the coauthorship
network). The second one is a trackback network of Japanese blogs used in Kimura et al.
(2009) and has 12, 047 nodes and 79, 920 directed links (the blog network). The third one is
a network derived from the Enron email dataset (Klimt and Yang, 2004) by extracting the
senders and the recipients and linking those that had bidirectional communications. It has
4, 254 nodes and 44, 314 directed links (the Enron network). The fourth one is a network
of people derived from the “list of people” within Japanese Wikipedia, also used in Kimura
et al. (2009), and has 9, 481 nodes and 245, 044 directed links (the Wikipedia network).

As a practical situation, we evaluated the information diffusion models in the framework
of behavioral analyses. Then, as explained in the previous section, link delay with non-
override and node delay with override are indistinguishable for the AsIC model, while link
delay and node delay both with non-override are indistinguishable for the AsLT model.
Thus, we focused on node delay and evaluated the effect of override and non-override for
both the AsIC and AsLT models, i.e., κu,v = κ, rv = r for AsIC, and ωu,v = q|B(v)|−1,
rv = r for AsLT. In our preliminary experiments, changing the parameter r worked only
for scaling the time axis of the diffusion results. Thus, we fixed its value at 1 (r = 1) for all
cases and evaluated the effects of other diffusion parameters (κ for the AsIC model and q
for the AsLT model). We prepared two different values (small and big) for both κ and q for
each network. The values for κ were chosen to be the double and the half of the baseline
value which is defined by 1/d̄, where d̄ is the mean out-degree of a network. Each baseline
value of κ becomes 0.2 for the coauthorship network, 0.1 for the blog and Enron networks,
and 0.04 for the Wikipedia network. The values for q were set to 1 and 0.5, respectively
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Figure 1: Results for the AsIC models in the coauthor network.
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Figure 2: Results for the AsIC models in the blog network.

and used for all networks. Eventually, M = 1, 000 information diffusion results with the
sequence length of at least 10 were generated for each of these parameter values for each
network, randomly selecting an initial active node for each diffusion result.

5.2 Experimental Results

In Figures 1, 2, 3, and 4, we show experimental results for the AsIC models by using
the respective networks: coauthorship, blog, Enron, and Wikipedia. We note that it takes
longer for the ratio to converge to 1.0 in Figure 1a than in Figure 1b although the diffusion
probability κ is larger in Figure 1a than in Figure 1b. This does not necessarily mean
that the diffusion is slower for the case where the diffusion probability is larger. The main
reason is due to the difference of the number of active nodes. A larger diffusion probability
generates a longer diffusion sequence which, in turn, takes a longer time. This tendency
is not clear for the other figures because the diffusion probability is at most κ = 0.2. The
same is true for the AsLT model.

We further see that there is very little difference between non-override and override
schemes when the diffusion parameter is small (half of the baseline value), but the difference
becomes larger and the speed of information diffusion becomes faster for override scheme
when the diffusion parameter is large (double of the baseline value). Here note that we
chose each diffusion parameter according to the ratio of the numbers of nodes to links. This
means that the value for κ is set to be reversely proportional to the network denseness and
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Figure 3: Results for the AsIC models in the enron network.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

time

ra
tio

 

 

non−override
override

(a) κ = 0.08

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

time

ra
tio

 

 

non−override
override

(b) κ = 0.02

Figure 4: Results for the AsIC models in the wiki network.

the diffusion properties are supposed to be similar to each other. Thus, the results indicate
that the effects of time-delay on the information diffusion models become much larger for a
denser network when the diffusion parameter is large although no such difference is observed
among the networks of different denseness when the diffusion parameter is small.

In Figures 5, 6, 7, and 8, we show experimental results for the AsLT models by using
the respective networks: coauthorship, blog, Enron, and Wikipedia. Similarly to the AsIC
model, here again we see hardly the difference between non-override and override schemes
when the diffusion parameters are small (q = 0.5), but we do see that there is the difference
between the two schemes and the speed of information diffusion becomes faster for override
scheme when the diffusion parameters are large (q = 1). The effect of the difference of the
network denseness is similar to the results for the AsIC model. In particular, we observe this
difference is larger in the order of the Wikipedia, Enron, blog, and coauthorship networks.
Here note that this order coincides with the descending order of their average degrees, i.e.,
denseness of the network. This suggests that the effects of time-delay on the information
diffusion models become much larger for a denser network when the diffusion parameter is
large.

6. Conclusion

We formalized an information diffusion process as a generative model in the machine learning
framework. In particular, we emphasized that the treatment of the time delay is important
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Figure 5: Results for the AsLT models in the coauthor network.
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Figure 6: Results for the AsLT models in the blog network.
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Figure 7: Results for the AsLT models in the enron network.
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Figure 8: Results for the AsLT models in the wiki network.
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in deriving the likelihood function. Diffusion comes with the notion of time and the proba-
bilistic nature of the diffusion model hides the time delay structure from the surface of the
observed sequence data, and makes the analysis difficult. We identified that there are two
different types of time delay which we named link delay and node delay. The former corre-
sponds to the delay associated with information propagation, and the latter corresponds to
the delay associated with human action. We further identified that there are two different
schemes of the way the activation from the multiple parents is updated which we named
non-override and override. The former sticks to the initial activation and the latter can
decide to update the time to activate multiple times. We applied these different notions of
time delay to the well known basic information diffusion models: independent cascade (IC)
and linear threshold (LT), and formalized asynchronous time delay versions of the IC and
the LT models (AsIC and AsLT). We then derived a rigorous likelihood function for the fea-
sible combinations of the time delay and update scheme for each of the AsIC and the AsLT
models. There are a total of three different models for each diffusion models (AsIC and
AsLT), but the theoretical analysis revealed that particular combinations of time delay and
update scheme result in the same likelihood function (with a minor notational difference)
and it is sufficient to consider two different models for each. We performed experiments
to see how the difference in the time delay and the update scheme affects the information
diffusion results as a function of time, varying the values of diffusion parameters using four
real world networks. The simulation results reveal that there are differences in the spread
of information diffusion and they strongly depend on the choice of the parameter values and
the denseness of the network. We confirmed that it is important to distinguish the different
types of time delay and update scheme in particular for a dense network that has a large
information diffusion parameter value.
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