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Abstract
We address the problem of estimating changes in diffusion probability over a social network from
the observed information diffusion results, which is possibly caused by an unknown external sit-
uation change. For this problem, we focused on the asynchronous independent cascade (AsIC)
model in the SIS (Susceptible/Infected/Susceptible) setting in order to meet more realistic situa-
tions such as communication in a blogosphere. This model is referred to as the AsIC-SIS model.
We assume that the diffusion parameter changes are approximated by a series of step functions,
and their changes are reflected in the observed diffusion results. Thus, the problem is reduced to
detecting how many step functions are needed, where in time each one starts and how long it lasts,
and what the hight of each one is. The method employs the derivative of the likelihood function
of the observed data that are assumed to be generated from the AsIC-SIS model, adopts a divide-
and-conquer type greedy recursive partitioning, and utilizes an MDL model selection measure to
determine the adequate number of step functions. The results obtained using real world network
structures confirmed that the method works well as intended. The MDL criterion is useful to avoid
overfitting, and the found pattern is not necessarily the same in terms of the number of step func-
tions as the one assumed to be true, but the error is always reduced to a small value.
Keywords: pattern change detection, information diffusion, parameter learning, social networks

1. Introduction

Recent technological innovation in the web such as blogosphere and knowledge/media-sharing
sites is remarkable, which has made it possible to form various kinds of large social networks,
through which behaviors, ideas, rumors and opinions can spread, and our behavioral patterns are to
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a considerable degree affected by the interaction with these networks and substantial attention has
been directed to investigating the spread of information in these networks (Newman et al., 2002;
Newman, 2003; Gruhl et al., 2004; Domingos, 2005; Leskovec et al., 2006; Crandall et al., 2008;
Wu and Huberman, 2008).

These studies have shown that it is important to consider the diffusion mechanism explicitly
and the measures based on network structure alone, i.e., various centrality measures such as degree,
betweenness, closeness, etc., are not enough to identify the important nodes (Kimura et al., 2009a,
2010a). Information diffusion is modeled typically by probabilistic models. Most representative
and fundamental ones are independent cascade (IC) model (Goldenberg et al., 2001; Kempe et al.,
2003), linear threshold (LT) model (Watts, 2002; Watts and Dodds, 2007) and their extensions that
include incorporating asynchronous time delay (Saito et al., 2009b, 2010a). In the IC model the
information sender (a node) tries to push the information to the neighboring receivers (child nodes)
in a probabilistic way, whereas in the LT model the information receiver (a node) tries to pull the
information from the neighoring senders (parents nodes) in a probabilistic way. These models place
the constraint that a node is given a single chance to activate the other node, i.e., the same node is not
activated multiple times. This setting is called SIR (Susceptible/Infectious/Recovered) in analogy
with epidemic disease. Explicit use of these models to solve such problems as the influence max-
imization problem (Kempe et al., 2003; Kimura et al., 2010a) and the contamination minimization
problem (Kimura et al., 2009a) clearly shows the advantage of the model. They showed that the
identified influential nodes and links are considerably different from the ones identified by the stan-
dard centrality measures. The SIR setting is simple, but does not model well such communication
as in a blogosphere where the same person can post on the same topic multiple times. The SIS (Sus-
ceptible/Infectiouse/Susceptible) setting is better suited to this situation, where a node is allowed to
activate the other nodes multiple times, i.e., the same node is activated multiple times (Kimura et al.,
2009b).

What is common to all the above models is that they are all probabilistic models and have param-
eters to characterize the information diffusion, and these parameters are assumed to be stationary,
i.e., they do not change over time. Evidently, the parameters must be known in advance for the model
to be usable for analysis, but it is generally difficult to determine the values of these parameters the-
oretically. Therefore, attempts have been made to learn these parameter values by the observed
information diffusion sequence data (Saito et al., 2009a,b, 2010a,b; Gomez-Rodriguez et al., 2010;
Myers and Leskovec; Kimura et al., 2010b). In essence the likelihood of generating the observed
data by the model employed is first derived, and then the parameter values are determined such that
the likelihood is maximized. In particular, Myers and Leskovec showed that for a certain class of
diffusion models, the problem can effectively be transformed to a convex programming for which a
global solution is guaranteed.

This paper also deals with a parameter learning problem, but addresses a different aspect of
information diffusion. We do not assume that the parameter values are stationary, but allow that
they change over time. They may change abruptly or gradually depending on the cause of changes
which we do not know. Ideally we intend to be able to deal with any shape of changes over time.
However, in this paper, we limit the change pattern to those that can be approximated by a series of
step functions, and further assume that the change takes place uniformly in space, i.e., the param-
eters of all nodes change in the same way. We use AsIC-SIS, Asynchronous Independent Cascade
model in SIS setting. This is a model in which the original discrete time step IC-SIR model is
extended to continuous time model allowing asynchronous time delay (Saito et al., 2009b, 2010a)
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as well as allowing multiple activations of the same nodes. We learn the parameter values from
an observed sequence of information diffusion under AsIC-SIS model setting, i.e., the problem is
reduded to detecting how many step functions are needed, where in time each one starts and how
long it lasts, and what the hight of each one is. This is viewed as a generalization of our previous
work (Ohara et al., 2011) in which we used the AsIC-SIR model, limited the change pattern to be
a single rect-linear shape, and devised an efficient algorithm which searches the optimal window.
However, this algorithm works only to this restricted type of the problem.

We extended the parameter optimization algorithm that was developed in Saito et al. (2009b);
Kimura et al. (2010b), i.e., the EM-like algorithm for the AsIC-SIR model that iteratively updates
the values to maximize the model’s likelihood of generating the observed data sequences, to AsIC-
SIS. The core part of this paper is how to efficiently search the change pattern. We employed the
idea of using the first order derivative of the likelihood with respect to the parameters (Ohara et al.,
2011), and newly developed an efficent algorithm that uses a divide-and-conquer type greedy recur-
sive partitioning as a search strategy and an MDL model selection measure as a stopping criterion
to determine the most adequate number of step functions. We tested our algorithm to artificially
generated change patterns using four real world network structures. The results obtained confirmed
that the method works well as intended. The algoritm is efficent because it needs to do expensive
parameter optimization only once for each partitioning (which is not that many in many cases). The
MDL criterion is useful to avoid overfitting. In many cases it identifies the correct number of step
functions, but in some cases the found pattern is not necessarily the same in terms of the number of
step functions, but the error is always reduced to a small value.

The paper is organized as follows. After very briefly introducing the AsIC-SIS model in Section
2, we define the problem in Section 3 and derive the liklihood function in Section 4, which is
the objective function to be maximized. The parameter estimation algorithm is summarized in
Appendix. We then describe how we efficiently search for the change pattern in Section 5 together
with the restricted search method used for comparative study. The experimental results are reported
in Section 6. We end this paper by summarizing the main result in Section 7.

2. Information Diffusion Model

An SIS model for the spread of a disease is based on the cycle of disease in a host. A person is first
susceptible to the disease, and becomes infected with some probability and time-delay if he or she
has contact with an infected person. The infected person becomes susceptible to the disease again
without moving to the immune state. We consider an asynchronous-time SIS model for information
diffusion on a network. In this context, infected nodes mean that the nodes have adopted the infor-
mation, and we call these infected nodes active nodes. This can be mapped to realistic situations
such as communication in a blogsphere. A typical example would be the following propagation
phenomenon of a topic in the blogsphere: A blogger who has not yet posted a message about a
certain topic becomes interested in the topic by reading the blog of his or her friend, and posts a
message about it with some time-delay from the friend’s posting time, i.e., becoming infected (acti-
vated) with some time-delay. Right after posting the message, the same blogger can read any other
blogs of his or her friends, i.e., becoming susceptible again. The same blogger reads a new message
about the topic posted by some other friend, and may post another message, i.e., becoming infected
again. This process is repeated.

3



Koide Saito Ohara KimuraMotoda

Let G = (V, E) be a directed network, where V and E stand for the sets of all the nodes and
(directed) links, respectively. Here, note that E is a subset of V ×V . For any v ∈ V , the set of all the
nodes that have links from v (child nodes) is denoted by F(v) = {u ∈ V; (v, u) ∈ E}, and the set of
all the nodes that have links to v (parent nodes) is denoted by B(v) = {u ∈ V; (u, v) ∈ E}. We define
the AsIC-SIS model for information diffusion on G. In the model, the diffusion process unfolds in
continuous-time t ≥ 0, and it is assumed that the state of a node is either active or inactive. For
every link (u, v) ∈ E, we specify a real value pu,v with 0 < pu,v < 1 in advance. Here, pu,v is referred
to as the diffusion probability through link (u, v). Given an initial active node v and a time span T ,
the diffusion process proceeds in the following way. Suppose that node u becomes active at time t
(< T ). Then, node u attempts to activate every v ∈ F(u), and succeeds with probability pu,v. If node
u succeeds, then node v will become active at time t + δ. We assume that a delay-time δ is chosen
from some probability distribution, and we used the exponential distribution with parameter ru,v for
the sake of convenience, but of course other distributions such as power-law and Weibull can be
employed. Suppose that u, one of the parent nodes of v, succeeds to activate v at some time after
some delay. In our SIS model, when some other parent node also succeeds to activate v before it
gets activated by u, we assume that v’s activation time is overridden by the one earliest possible. On
the other hand, node u gets back inactive right after time t (the time it gets activated) and it can only
be reactivated by those parent nodes that have become active after time t1. The process terminates
if the current time reaches the time limit T .

The AsIC-SIS model is the SIS version of the asynchronous independent cascade (AsIC) model
proposed by Saito et al. (2009b) that is an extension of the independent cascade (IC) model studied
by Kempe et al. (2003). As mentioned earlier, the AsIC-SIS model was extended to meet more
realistic situations.

3. Problem Definition

We address the problem of estimating diffusion probability changes. In this problem, we assume
that some changes have happened in the way the information diffuses, and we observe the diffusion
results of a certain topic in which the changes are embedded, and consider estimating the diffusion
probability as a function with respect to time t.

An information diffusion result generated by the AsIC-SIS model is represented as a set of pairs
of active nodes and their activation times; i.e., {· · · , (v(η), tv(η)), · · · }, where v(η) indicates v’s η-th
activation. We consider a diffusion resultD(0, T ), where the initial activation time is set to 0 and the
final observation time is denoted by T . Since we employ only a single diffusion result D(0, T ), we
place a constraint that pu,v and ru,v do not depend on link (u, v), i.e., pu,v = p, ru,v = r (∀(u, v) ∈ E),
which should be acceptable noting that we can naturally assume that people behave quite similarly
when talking about the same topic. In fact, our previous experiments (Saito et al., 2009b, 2010a,b)
give some evidences which support the validity of this constraint.

Let p(t) be a function of diffusion probability with respect to time t. Here we assume that p(t)
is reasonably approximated by combining a number of step functions, i.e.,

p(t) = pi−1 if t ∈ [ti−1, ti), i ∈ {1, · · · ,K + 1}, (1)

1. In theory we can go back to all the past time points at which the parents of u got activated multiple times in the past,
but this is unrealistic and we thought it natural to limit the parents only to those that got activated after time t.
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where t0 = 0 < · · · < ti < · · · tK+1 = T and K stands for the number of change points. Here we
assume for simplicity that the time-delay parameter r does not change and takes the same value for
the entire period [0, T ). Then, the diffusion probability estimation problem is reduced to detecting
the change points {t1, · · · , tK} and estimating the associated diffusion probabilities {p0, · · · , pK} from
the observed diffusion result D(0, T ). For a given integer K, we define the change point vector tK
and the diffusion-probability vector pK by tK = (t1, · · · , tK) and pK = (p0, · · · , pK), respectively.

4. Model parameter learning

We describe the framework of model parameter learning as a likelihood maximization problem for
the AsIC-SIS model.

First, we consider estimating the values of diffusion probability p and time-delay parameter r
from an observed diffusion result D(0, T ) = {· · · , (v(η), tv(η)), · · · } when there is no change point.
Recall that the initial activation time is set to 0 and the final observation time is denoted by T . Let
D be the set of all the activated nodes in D(0, T ), i.e., D = {v(η) ∈ V; (v(η), tv(η)) ∈ D(0, T )}. For
each node v(η) ∈ D, letAPv(η) be the set of its parent nodes that had a chance to activate it, i.e.,

APv(η) = {u(ζ); u ∈ B(v), (u(ζ), tu(ζ)) ∈ D(0, T ), tv(η−1) < tu(ζ) < tv(η)},

and NCv(η) be the set of its child nodes that was not activated by a node v(η) within (tv(η), T ), i.e.,

NCv(η) = {z ∈ F(v); ¬∃ z(ξ), s.t. (z(ξ), tz(ξ)) ∈ D(0, T ), tv(η) < tz(ξ) < T )}.

Note that from the observed diffusion result, we know that a node v at the η-th activation did not
succeed to activate any child node in NCv(η) within the time limit T , and we use this fact for our
parameter estimation in order to improve its performance.

Let Xu(ζ),v(η)(p, r) denote the probability density that a node u(ζ) ∈ APv(η) activates the node
v(η) at time tv(η), that is,

Xu(ζ),v(η)(p, r) = p r exp(−r(tv(η) − tu(ζ))). (2)

Let Yu(ζ),v(η)(p, r) denote the probability that the node v(η) is not activated by a node u(ζ) ∈ APv(η)
within the time-period (tu(ζ), tv(η)), that is,

Yu(ζ),v(η)(p, r) = 1 − p
∫ tv(η)

tu(ζ)

r exp(−r(t − tu(ζ)))dt

= p exp(−r(tv(η) − tu(ζ))) + (1 − p). (3)

By using Eqs. (2) and (3), we can obtain the probability density φv(η)(p, r) that some node u(ζ) ∈
APv(η) succeeds to activate a node v(η) at a time tv(η),

φv(η)(p, r) =
∑

u(ζ)∈APv(η)

Xu(ζ),v(η)(p, r)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∏

z(ξ)∈APv(η)\{u(ζ)}
Yz(ξ),v(η)(p, r)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (4)

and the probability ψv(η)(p, r) that a node v(η) cannot activate any node z ∈ NCv(η) within (tv(η), T ),

ψv(η)(p, r) =
(
p exp(−r(T − tv(η))) + (1 − p)

)|NCv(η) |
. (5)
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Then, from Eqs. (4) and (5), the following log likelihood function L(p, r;D(0, T )) can be obtained
for observed data D(0, T )

L(p, r;D(0, T )) =
∑

v(η)∈D

(
log φv(η)(p, r) + logψv(η)(p, r)

)
. (6)

The values of parameters p and r can be stably obtained by maximizing Eq. (6) using an EM-like
algorithm. (see Appendix A for more details).

Now, we assume that there exist change points specified by the change point vector tK and
the associated diffusion-probability vector pK . For any v(η) ∈ D(0, T ), let φv(η)(pK , r; tK) be the
probability density that some node u(ζ) ∈ APv(η) succeeds to activate a node v(η) at time tv(η), i.e.,

φv(η)(pK , r; tK) =
∑

u(ζ)∈APv(η)

Xu,v(p(tu(ζ)), r)
∏

z(ξ)∈APv(η)\{u(ζ)}
Yz,v(p(tz(ξ)), r) (7)

and ψv(η)(p(tv(η)), r; tK) be the probability that a node v(η) cannot activate any node z ∈ NCv(η)
within (tv(η), T ], i.e.,

ψv(η)(p(tv(η)), r; tK) =
(
p(tv(η)) exp(−r(T − tv(η))) + (1 − p(tv(η)))

)|NCv(η)|
. (8)

Using Eqs. (7) and (8), we can define the following objective function L(pK, r;D(0, T ), tK).

L(pK , r;D(0, T ), tK) =
∑

v(η)∈D

(
log φv(η)(pK , r; tK) + logψv(η)(p(tv(η)), r; tK)

)
. (9)

Clearly, L(pK , r;D(0, T ), tK) is expected to be maximized by setting tK to the true change points
vector t∗K = (t∗1, · · · , t

∗
K) if a substantial amount of data D(0, T ) is available. Thus, our diffusion

probability estimation problem is formalized as the following maximization problem:

ˆtK = arg max
tK

L( p̂K(tK), r̂(tK);D(0, T ), tK), (10)

where p̂K(tK) and r̂(tK) denote the maximum likelihood estimators for a given tK .

5. Estimation Methods

For a given number of change points, K, in order to obtain the optimal change point vector t̂K
according to Eq. (10), we need to prepare a reasonable set of candidate change poits, denoted by T .
One way of doing so is to construct T by considering all of the observed activation time points.

T = {tv(η); (v(η), tv(η)) ∈ D(0, T )} ∪ {T } = {τ0, τ1, · · · , τN}, (0 = τ0 < τ1 < · · · < τN = T ).

Here N is equal to the number of activated nodes in a information diffusion result, i.e., N = |D(0, T )|.
Hereafter, we denote the model parameter vector by θK ; i.e., θK = (pK , r) for the AsIC-SIS model.
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5.1. Proposed Method

Our proposed method employs a greedy strategy. Clearly, we can obtain the parameter vector θ0
from the original objective function of Eq. (6). Now, under the condition that we have obtained the
K chage point(s), we consider selecting the next (K + 1)-th change point. Of course, we can obtain
the maximum likelihood estimators, θ̂K , from the extended objective function of Eq. (9). Then, we
focus on the first-order partial derivative of the objective function L(θ̂K ;D(0, T )) with respect to a
new parameter pv(η) introduced by considering as if each node v ∈ V has an individual diffusion
probability pv(η) at each activation time tv(η). Note that under this situation, by posing the restriction
of parameter sharing setting, defined by pv(η) = pi if tv(η) ∈ [ti, ti+1), we obtain each maximum
likelihood estimator by p̂v(η) = p̂i. Thus, from the optimal necessary condition of the maximum
likelihood estimation, we have

0 =
∂L(θ̂K ;D(0, T ))

∂pi
=

∑
tv(η)∈[ti ,ti+1)

∂L̃(θ̂K ;D(0, T ))
∂pv(η)

. (11)

Now we assume that there exists an undetected change point t j ∈ [ti, ti+1). Then the estimated
parameter p̂i for the time span [ti, ti+1) is nothing but a compromised value between diffusion prob-
abilities of [ti, t j) and [t j, ti+1). Thus, we can expect that the following relation holds for the product
of the partial derivatives between many pairs of pu(ζ) and pv(η) if both tu(ζ) and tv(η) are included in
either before the change point [ti, t j) or after the change point [t j, ti+1).

∂L̃(θ̂K;D(0, T ))
∂pu(ζ)

∂L̃(θ̂K ;D(0, T ))
∂pv(η)

> 0 (12)

Here, we consider the following partial sum for the derivatives:

g(τn) =
∑

tv(η)<τn

∂L̃(θ̂K ;D(0, T ))
∂pv(η)

, n = 1, · · · ,N, (13)

where g(τn) = 0 if τn = ti. By Eqs. (11) to (13), we can expect that |g(n)| is locally maximized
at each undetected change point τn = t j. This is because the sign of the product of the partial
derivatives ∂L(θ̂K;D(0, T ))/∂pu(ζ) and ∂L(θ̂K ;D(0, T ))/∂pv(η) changes at the boundaries of the
undetected change points {t j}. Therefore, we propose the method of detecting the next change point
by

τ̂n = arg max
τn∈T
|g(τn)|. (14)

Here note that we can incrementally calculate g(τn). More specifically, we can obtain the following
formula by tv(η) = τn+1:

g(τn+1) = g(τn) +
∂L(θ̂K ;D(0, T ))

∂pv(η)
(15)

for any τn, τn+1 ∈ T .
Thus far, we assumed that the number of change points, K, is known. However, since this

assumption does not hold in many applications, we need to obtain an adequate K from a given
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diffusion result. For this purpose, we can utilize some statistical measure such as MDL (Mini-
mum Description Length). Note that due to a time-series nature of our observation data, we cannot
straightforwardly apply a resampling technique such as k-fold cross-validation for this model selec-
tion. In our experiments, we employed the following MDL value.

MDL(θK) = −L(θ̂K ;D(0, T )) + (K + 1) log M, M =
∑

v(η)∈D
|F(v(η))| , (16)

where K +1 and M correspond to the number of parameters and the number of coin-flips performed
by the AsIC-SIS model, respectively. Note that we regard M as the number of samples for our
learning. Then we can summarize our proposed method below.

1. Set K = 0 and t0 to an empty list, and intialize θ0 adequately.
2. Maximize L(θK ;D(0, T )) by using the parameter estimation method, and calculate MDL(θK).
3. If K > 0 and MDL(θK) > MDL(θK−1), output tK−1 and θK−1.
4. Detect the change point τ̂n by Eq. (14), construct tK+1 by adding τ̂n to tK , set K = K + 1,

and return to step 2.

Here note that the proposed method requires likelihood maximization by using the parameter esti-
mation method only (K + 1) times.

5.2. Comparison Method

As mentioned earlier, we have already proposed a hot span detection method for the AsIC model
in the SIR (Susceptible/Infected/Recover) setting, although this method is only applicable to a
restricted form of the change pattern expressed by a pair of t2 = (t1, t2) and p2 = (p0, p1, p0)
(Ohara et al., 2011). The results reported are good. Thus, we extend this method to the SIS (Sus-
ceptible/Infected/ Susceptible) setting, and use the extended method for performance comparison,
knowing that the method is intended to a single rect-linear pattern change. In what follows, we
outline this method.

The comparison method also utilizes a modified version of Eq. (13) as the measure of interval
selection, expressed by

[τ̂m, τ̂n) = arg max
τm,τn∈T

∣∣∣∣∣∣∣∣
∑

tv(η)∈[τm,τn)

∂L(θ̂K ;D(0, T ))
∂pv(η)

∣∣∣∣∣∣∣∣ . (17)

However, this method can be extremely inefficient when the number of candidate time points N is
large. Thus, in order to make it work with a reasonable computational cost, we consider restricting
the number of candidate time points to a smaller value, denoted by J, i.e., we construct TJ (⊂ T )
by randomly selecting J points from T ; then we construct a restricted set of candidate spans by

HJ = {S = [τi, τ j); τi < τ j, τi ∈ TJ , τ j ∈ TJ}.

Note that |HJ | = J(J − 1)/2, which is large when J is large.
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6. Experimental Evaluation

We experimentally evaluated, given an observed diffusion result, how accurately the proposed
method can estimate diffusion probability changes underlying it by investigating the difference be-
tween the estimated change pattern and the one that is assumed true using four real world networks.

6.1. Datasets

Here we adopted four large networks in the real world, all of which are bidirectional. The first one
is a trackback network of Japanese blogs used in Kimura et al. (2009a), where there are 12, 047
nodes and 79, 920 directed links (the blog network). The second one is a network representing
the co-occurrence relation extracted from the “list of people” within Japanese Wikipedia that is
used in Kimura et al. (2008), which has 9, 481 nodes and 245, 044 directed links (the Wikipedia
network). The third one is a network derived from the Enron Email Dataset (Klimt and Yang, 2004)
where the sender and the recipient extracted from the dataset were linked if they had bidirectional
communications. It contains 4, 254 nodes and 44, 314 directed links (the Enron network). The last
one is a coauthorship network employed in Palla et al. (2005). It has 12, 357 nodes and 38, 896
directed links (the coauthorship network).

6.2. Experimental Setting

We generated diffusion results using the AsIC-SIS model for each of the above networks under the
following setting. We considered p = 1/d̄ as the base value of the diffusion probability of each
link in a network, where d̄ is the mean out-degree of the network. For an arbitrary node in the
network, the expected number of its children that it succeeds to activate is approximately one at
least at an early phase of the information diffusion for this base value. If the diffusion probability
is much smaller than the base value, the diffusion process could terminate soon resulting in only
few active nodes on the average. If it is much larger, the information rapidly spreads out the entire
network and the majority of nodes could be active at any time point in the process, which would also
be unrealistic. As a result, too little or too much amount of information diffusion is inappropriate
to our aim of investigating the diffusion probability change estimation. Thus, we set the initial
diffusion probability, p0, to be a value slightly smaller than the base value, which is 0.10 for the blog
network, 0.02 for the Wikipedia network, 0.05 for the Enron network, and 0.20 for the Coauthorship
network, respectively. We considered two kinds of change pattern: one is a rect-linear pattern that
has two change points, which is the same as the one used in Ohara et al. (2011) and can be regarded
as the most fundamental; and the other is a two-step pattern having three change points, which
represents a situation where an event that caused an increase in the diffusion probability of a certain
topic occurred, followed by an even bigger event that futher increased the probability, and then
the probability returned back to the normal value due to the cease of the event. As for the former
pattern, we set the diffusion probability during the second period, p1, to be three times as large as
p0, and the probability during the third period, p2, to be the same as p0. Table 1 summarizes the
diffusion probability p∗2 that is assumed true. For all the networks we used the same t∗2 = (10, 15)
as the change point vector that is assmued true and T = 20 as the final observation time. As for the
latter pattern, we set the second and the third diffusion probability, p1 and p2, to be twice and three
times as large as p0, respectively, and the last one, p3 to be the same as p0. Table 2 summarizes
the diffusion probability p∗3 that is assumed true. We used t∗3 = (10, 15, 20) and T = 25 for all
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Table 1: The diffusion probability p∗2 that is assumed true for each of the networks .
diffusion probability (p∗2) Blog Wikipedia Enron Coauthorship

p0 0.10 0.02 0.05 0.20
p1 0.30 0.06 0.15 0.60
p2 0.10 0.02 0.05 0.20

Table 2: The diffusion probability p∗3 that is assumed true for each of the networks .
diffusion probability (p∗3) Blog Wikipedia Enron Coauthorship

p0 0.10 0.02 0.05 0.20
p1 0.20 0.04 0.10 0.40
p2 0.30 0.06 0.15 0.60
p3 0.10 0.02 0.05 0.20

the networks. As we mentioned in Section 3, we assumed that the time delay parameter does not
change, and fixed its value to be 1 (r = 1) for every network as changing r works only for scaling
the time axis of the diffusion results. In all we generated 100 information diffusion results for each
pattern, using the above parameter values, each starting from a randomly selected initial active node
for each network.

The initial values for p0 and r were set to a reasonably small random value and a random value
around 1, respectively. The termination condition of our parameter learning was as follws:

max
θi∈θK

|∂L(θK;D(0, T ))/∂θi | < 10−4.

We then estimated both the change point vector t̂K and the model parameter vector θ̂K, and evaluated
their accuracy by integrating the absolute error of the estimated diffusion probability with respect to
time t, i.e.,

E =
∫ T

0
|p∗(t) − p̂(t; t̂K , θ̂K)|dt,

where p∗(t) is the diffusion probability that is assumed true at time t and p̂(t; t̂K , θ̂K) is its estimation.
The estimation with a smaller E is a better approximation of the true change pattern. In this regards
it is not essential that the estimated number of change points, K̂, is identical to K∗, the number
of change points used to generate the diffusion result. What matters is how close is the estimated
pattern as a whole to the true patteren. In fact, K∗ is unknown in reality.

6.3. Experimental Results

Table 3 summarizes the results for the first (rect-linear) change pattern, where the integrated esti-
mation errors are the average over independent 100 trials for distinct 100 diffusion results. Here
we executed our method until K = 10 ignoring the stopping condition at Step 3 of the algorithm
shown in Section 5.1, and investigated how the estimation error E changes over K. The value in the
parenthes is the number of trials where the MDL value defined by Eq. (16) took the minimal at that
K, which is what the proposed method outputs as the optimal pattern. The row indicated by “MDL
estimation” contains the averaged integral error of such optimal patterns. In addition, we showed
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Table 3: Integral error E of the proposed method averaged over 100 trials to estimate a rect-linear
change pattern (the value in parentheses is the number of trials where the obtained pattern
took the minimal MDL value at K).

�change points (K) Blog Wikipedia Enron Coauthorship
0 1.296 (0) 0.273 (5) 0.692 (0) 3.494 (0)
1 1.610 (0) 0.348 (0) 0.575 (0) 3.575 (0)
2 (= K∗) 0.126 (64) 0.150 (25) 0.025 (74) 0.614 (7)
3 0.130 (12) 0.108 (41) 0.029 (12) 0.176 (31)
4 0.134 (16) 0.099 (10) 0.032 (6) 0.162 (29)
5 0.136 (4) 0.084 (7) 0.036 (4) 0.156 (12)
6 0.139 (1) 0.081 (4) 0.037 (4) 0.153 (6)
7 0.139 (2) 0.075 (3) 0.039 (0) 0.155 (9)
8 0.139 (0) 0.070 (4) 0.041 (0) 0.155 (1)
9 0.140 (1) 0.070 (1) 0.044 (0) 0.157 (5)

MDL estimation 0.122 0.060 0.022 0.117
Comparison method 0.120 0.047 0.028 0.117

Table 4: Integral error E of the proposed method averaged over 100 trials to estimate a two-step
change pattern (the value in parentheses is the number of trials where the obtained pattern
took the minimal MDL value at K).

�change points (K) Blog Wikipedia Enron Coauthorship
0 1.500 (0) 0.358 (1) 0.750 (0) 3.837 (0)
1 1.725 (0) 0.379 (0) 0.420 (0) 3.721 (0)
2 0.871 (0) 0.213 (18) 0.324 (0) 1.889 (0)
3 (= K∗) 0.133 (95) 0.138 (37) 0.128 (12) 0.279 (32)
4 0.135 (3) 0.116 (18) 0.057 (18) 0.157 (37)
5 0.135 (2) 0.113 (10) 0.052 (20) 0.149 (15)
6 0.135 (0) 0.107 (8) 0.046 (29) 0.154 (9)
7 0.135 (0) 0.107 (4) 0.047 (11) 0.155 (4)
8 0.135 (0) 0.107 (2) 0.046 (12) 0.162 (0)
9 0.135 (0) 0.107 (2) 0.047 (8) 0.169 (3)

MDL estimation 0.133 0.103 0.038 0.123
Comparison method 0.845 0.180 0.321 2.043

the estimation error for the comparison method described in Section 5.2 in the row indicated by
”Comparison method” as a reference value for evaluation, where J was set to 1, 000.

From these results, we see that the esitmation error drastically drops down at K = 2 (= K∗) for
every network, which means that the proposed method succeeded in detecting the correct change
points and estimating the diffusion probabilities in good accuracy. In fact, the errors of the optimal
patterns obtained by the proposed method (shown in the row indicated by “MDL estimation”) are
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very favorably comparable to those obtained by the comarison method that is optimized solely to a
single rect-linear pattern used here. Further, the comparison method explicitly uses the constraint
p0 = p2, but the proposed method does not use this constraint and estimates p2 independenly of
p0. This implies that the pattern obtained by the proposed method can be a good approximation
of the changes of the diffusion probability underlying the observed diffusion result. The number
of trials where the MDL reaches the minimum is largest either at K = 2 or 3, which means that
the MDL criteron works well to avoid an over-fitting that could be attained by introducing many
change points. There are some differences in the performace over the networks. We observe that
there are more trias that the MDL criterion gives a larger K than the correct K∗ for Wikipedia and
Coauthorship netowrks. This is mainly attiributed to the diffusion data we used. However, more
deeper alanysis is needed to understand what causes this difference, but it is true to say that the error
is always small enough for the MDL results on the average.

Table 4 show the results for the second (two-step) pattern. The results are qualitatively the same
as in the first pattern. The estimation error drops down drastically at K = 3(= K∗) and the MDL
value takes the minimum at around K = 3 in most of the cases. For every network, the estimation
errors of the optimal patterns obtained by the proposed method are about the same to those for the
first pattern, and are much better than those obtained by the corresponding comparison method.
In fact, it is unfair to compare the results with the comparison method because the latter is not
designed to detect patterns other than the rect-linear shape, It simply shows that the comparison
method cannot approximate the correct pattern by any means. The proposed method can estimate
the underlying diffusion probability change in good accuracy, and the MDL based criterion to select
an optimal K works well as intended also for the case of two-step pattern.

In order to analyze our experimental results more closely, we examined the diffusion probabil-
ity patterns obtained by our proposed method. Figure 1 shows typical examples of desirable and
undesirable cases for Wikipedia network by which a relatively large number of undesirable ones
were observed. Here we simply denoted our obtained result p̂(t; t̂k, θ̂k) as p(t; K = k) for a nota-
tional convenience. From this figure, we observe that for both cases, similar change points were
detected until K ≤ 2, but their results are drastically different in the optimal number of change
points, K = K∗ = 3. In the desirable case, an almost accurate change point around t = 10 was
detected at K = 3, and after that, several change points that bring about over-fitting results were
detected. Actually, in terms of the MDL criterion, we could obtain the optimal number of change
points and a reasonably accurate diffusion probability pattern in this case. On the other hand, in
the undesirable case, a change point that brings about over-fitting results was detected at K = 3.
At K = 5, a change point between t = 10 and 15 was detected, but this point is not so accurate
compared to the point detected in the desirable case. The main reason why such undesirable cases
happen for Wikipedia network is that for a relatively large number of diffusion results generated by
using this network, the numbers of active nodes at an early period before t = 10 was quite small due
to our setting of the diffusion probability p0 = 0.02, which is small. As for the comparison method
shown in case of the rect-linear shape in Table 3, we consider that this problem caused by small
numbers of active nodes at an early period was alleviated by the imposed constraint p0 = p2.

In summary, we can say that the proposed method can approximate the changes of diffusion
probability underlying the observed diffusion result in good accuracy, and the MDL criteron helps
avoid the over-fitting.
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(a) Desirable Case for Wikipedia Network

(b) Undesirable Case for Wikipedia Network

Figure 1: Examples of Diffusion Probability Functions Obtained by Varying K.

7. Conclusion

We addressed the problem of estimating diffusion probability changes, which are caused by changes
in unknown external factors, for the AsIC-SIS (Asynchronous Indepdendent Cascade - Suscepti-
ble/Infectious/Susceptible) model over a social network from an observed information diffusion
sequence. Here, the AsIC-SIS model is an information diffusion model in which the well-known
discrete time IC-SIR (Independent Cascade - Susceptible/Infectious/Recovered) model is extended
to contiuous time model allowing asynchronous time-delay as well as allowing multiple activations
of the same nodes. We assumed that the change pattern of diffusion parameter for the AsIC-SIS
model is approximated by a series of step functions, and proposed a method for detecting how many
step functions are needed, where in time each one starts and how long it lasts, and what the height
of each one is, from an observed sequence of information diffusion under the AsIC-SIS model. The
proposed method employs “model parameter learning” by maximizing the likelihood function of
the observed data (which is embedded inside the pattern search loop) and “efficient search” that
uses the first order derivative of the likelihood function with respect to the parameters as a primary
guide to search. The search algorithm adopts a divide-and-conquer type greedy recursive partioning
that requires the expensive parameter learning only once for each partitioning, and utilizes an MDL
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selection measure to determine the adequate number of step functions, i.e., when to stop the search.
Using four real world network structures, we confirmed the effectiveness of the proposed method.
We evaluated the performance of the proposed method in terms of the L1 norm of the difference
between the true and the estimated diffusion probability patterns. We tested two kinds of artificially
generated change pattern: One is a rect-linear pattern having two change points, and the other is
a two-step pattern having three change points. For the rect-linear pattern, the perfomance of the
proposed method was very close to that of the existing method which was devised soley for this
restricted change pattern and known to work well. The performance of the proposed method for the
two-step pattern did not degrade and the errors were comparable to those for the rect-linear pattern.
The MDL criterion was useful to decide when to stop the search in order to avoid overfitting, and
it identified the correct number of step functions in many cases. It returned a slightly large number
in some cases, but the the L1 norm of the difference between the two patterns which we use as a
measure for the goodness of the found pattern was always small. Since the diffusion probability
may change abruptly or gradually over time, our immediate future work is to evaluate the proposed
method for a wide range of change patterns over time and reenforce the results obtained in this
paper. Another immediate future work is to do a deeper analysis about why different networks give
different results and understand the key factors to explain this.

Appendix A. Estimation Algorithm for AsIC-SIS Model

We briefly describe the estimation algorithm of parameters p and r for the AsIC-SIS model from an
observed dataD(0, T ) (see Saito et al. (2009b, 2010a) for more details about the parameter learning
algorithm of the AsIC model).

We employ an EM-like algorithm. Let p̄ and r̄ be the current estiamtes of p and r. Using Eqs.
(2) and (3), we define ᾱu(ζ),v(η) and β̄u(ζ),v(η) as follows:

αu(ζ),v(η) =
Xu(ζ),v(η)(p̄, r̄)/Yu(ζ),v(η)(p̄, r̄)∑

z(ξ)∈APv(η) Xz(ξ),v(η)(p̄, r̄)/Yz(ξ),v(η)(p̄, r̄)

βu(ζ),v(η) =
p̄ exp(−r̄(tv(η) − tu(ζ)))
Yu(ζ),v(η)(p̄, r̄)

The update formulas of p and r are as follows:

p =

∑
v(η)∈D

∑
u(ζ)∈APv(η)

(
ᾱu(ζ),v(η) + (1 − ᾱu(ζ),v(η))β̄u(ζ),v(η)

)
∑

u(ζ)∈D |F(u(ζ))|

r =

∑
v(η)∈D

∑
u(ζ)∈APv(η) ᾱu(ζ),v(η)∑

v(η)∈D
∑

u(ζ)∈APv(η)

(
ᾱu(ζ),v(η) + (1 − ᾱu(ζ),v(η))β̄u(ζ),v(η)

)
(tv(η) − tu(ζ))

.
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