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Abstract. We address the problem of estimating the parameters for a continu-
ous time delay independent cascade (CTIC) model, a more realistic model for
information diffusion in complex social network, from the observed information
diffusion data. For this purpose we formulate the rigorous likelihood to obtain
the observed data and propose an iterative method to obtain the parameters (time-
delay and diffusion) by maximizing this likelihood. We apply this method first to
the problem of ranking influential nodes using the network structure taken from
two real world web datasets and show that the proposed method can predict the
high ranked influential nodes much more accurately than the well studied con-
ventional four heuristic methods, and second to the problem of evaluating how
different topics propagate in different ways using a real world blog data and show
that there are indeed differences in the propagation speed among different topics.

1 Introduction

The rise of the Internet and the World Wide Web accelerates the creation of various
large-scale social networks, and considerable attention has been brought to social net-
works as an important medium for the spread of information [1–5]. Innovation, topics
and even malicious rumors can propagate through social networks in the form of so-
called “word-of-mouth” communications. This forms a virtual society forming various
kinds of communities. Just like a real world society, some community grows rapidly
and some other shrinks. Likewise, some information propagates quickly and some other
only slowly. Good things remain and bad things diminish as if there is a natural selec-
tion. The social network offers a nice platform to study a mechanism of society dy-
namics and behavior of humans, each as a member of the society. In this paper, we



2 Kazumi Saito, Masahiro Kimura, Kouzou Ohara, and Hiroshi Motoda

address the problem of how information diffuses through the social network, in partic-
ular how different topics propagate differently by inducing a diffusion model that can
handle continuous time delay.

There are several models that simulate information diffusion through a network.
A widely-used model is the independent cascade (IC), a fundamental probabilistic
model of information diffusion [6, 7], which can be regarded as the so-called suscepti-
ble/infected/recovered (SIR) model for the spread of a disease [2]. This model has been
used to solve such problems as the influence maximization problem which is to find a
limited number of nodes that are influential for the spread of information) [7, 8] and the
influence minimization problem which is to suppress the spread of undesirable informa-
tion by blocking a limited number of links [9]. The IC model requires the parameters
that represent diffusion probabilities through links to be specified in advance. Since
the true values of the parameters are not available in practice, this poses yet another
problem of estimating them from the observed data [10].

One of the drawbacks of the IC model is that it cannot handle time-delays for infor-
mation propagation, and we need a model to explicitly represent time delay. Gruhl et al.
is the first to extend the IC model to include the time-delay [3]. Their model now has
the parameters that represent time-delays through links as well as the parameters that
represent diffusion probabilities through links. They presented a method for estimating
the parameter values from the observed data using an EM-like algorithm, and experi-
mentally showed its effectiveness using sparse Erdös-Renyi networks. However, it is not
clear what they are optimizing in deriving the update formulas of the parameter values.
Further, they treated the time as a discrete variable, which means that it is assumed that
information propagate in a synchronized way in a sense that each node can be activated
only at a specific time. In reality, time flows continuously and thus information, too,
propagates on this continuous time axis. For any node, information must be received
at any time from other nodes and must be allowed to propagate to yet other nodes at
any other time, both in an asynchronous way. Thus, for a realistic behavior analyses of
information diffusion, we need to adopt a model that explicitly represents continuous
time delay.

In this paper, we deal with an information diffusion model that incorporates con-
tinuous time delay based on the IC model (referred to as CTIC model), and propose
a novel method for estimating the values of the parameters in the model from a set of
information diffusion results that are observed as time-sequences of infected (active)
nodes. What makes this problem difficult is that incorporating time-delay makes the
time-sequence observation data structural. There is no way of knowing from the data
which node activated which other node that comes later in the sequence. We introduce
an objective function that rigorously represents the likelihood of obtaining such ob-
served data sequences under the CTIC model on a given network, and derive an iterative
algorithm by which the objective function is maximized. First we test the convergence
performance of the proposed method by applying it to the problem of ranking influen-
tial nodes using the network structure taken from two real world web datasets and show
that the parameters converge to the correct values by the iterative procedure and can
predict the high ranked influential nodes much more accurately than the well studied
conventional four heuristic methods. Second we apply the method to the problem of be-



Learning Continuous-Time Information Diffusion Model 3

havioral analysis of topic propagation, i.e., evaluating how different topics propagate in
different ways, using a real world blog data and show that there are indeed differences
in the propagation speed among different topics.

2 Information Diffusion Model and Learning Problem

We first define the IC model according to [7], and then introduce the continuous-time
IC model. After that, we formulate our learning problem.

We mathematically model the spread of information through a directed network G
= (V, E) without self-links, where V and E (⊂ V × V) stands for the sets of all the
nodes and links, respectively. We call nodes active if they have been influenced with
the information. In the model, it is assumed that nodes can switch their states only from
inactive to active, but not from active to inactive. Given an initial set S of active nodes,
we assume that the nodes in S have first become active at an initial time, and all the
other nodes are inactive at the time.

In this paper, node u is called a child node of node v if (v, u) ∈ E, and node u is
called a parent node of node v if (u, v) ∈ E. For each node v ∈ V , let F(v) and B(v)
denote the set of child nodes of v and the set of parent nodes of v, respectively,

F(v) = {w ∈ V; (v,w) ∈ E}, B(v) = {u ∈ V; (u, v) ∈ E}.

2.1 Independent Cascade Model

Let us describe the definition of the IC model. In this model, for each link (u, v), we
specify a real value λu,v with 0 < λu,v < 1 in advance. Here λu,v is referred to as the
diffusion probability through link (u, v).

The diffusion process unfolds in discrete time-steps t ≥ 0, and proceeds from a
given initial active set S in the following way. When a node u becomes active at time-
step t, it is given a single chance to activate each currently inactive child node v, and
succeeds with probability λu,v. If u succeeds, then v will become active at time-step t+1.
If multiple parent nodes of v become active at time-step t, then their activation attempts
are sequenced in an arbitrary order, but all performed at time-step t. Whether or not u
succeeds, it cannot make any further attempts to activate v in subsequent rounds. The
process terminates if no more activations are possible.

2.2 Continuous-Time Independent Cascade Model

Next, we extend the IC model so as to allow continuous-time delays, and refer to the
extended model as the continuous-time independent cascade (CTIC) model.

In the CTIC model, for each link (u, v) ∈ E, we specify real values ru,v and κu,v
with ru,v > 0 and 0 < κu,v < 1 in advance. We refer to ru,v and κu,v as the time-delay
parameter and the diffusion parameter through link (u, v), respectively.

The diffusion process unfolds in continuous-time t, and proceeds from a given initial
active set S in the following way. Suppose that a node u becomes active at time t. Then,
node u is given a single chance to activate each currently inactive child node v. We
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choose a delay-time δ from the exponential distribution with parameter ru,v. If node v
is not active before time t + δ, then node u attempts to activate node v, and succeeds
with probability κu,v. If u succeeds, then v will become active at time t + δ. Under
the continuous time framework, it is unlikely that multiple parent nodes of v attempt
to activate v for the activation at time t + δ. But if they do, their activation attempts
are sequenced in an arbitrary order. Whether or not u succeeds, it cannot make any
further attempts to activate v in subsequent rounds. The process terminates if no more
activations are possible.

For an initial active set S , let ϕ(S ) denote the number of active nodes at the end of
the random process for the CTIC model. Note that ϕ(S ) is a random variable. Let σ(S )
denote the expected value of ϕ(S ). We call σ(S ) the influence degree of S for the CTIC
model.

2.3 Learning problem

For the CTIC model on network G, we define the time-delay parameter vector r and the
diffusion parameter vector κ by

r = (ru,v)(u,v)∈E , κ = (κu,v)(u,v)∈E .

In practice, the true values of r and κ are not available. Thus, we must estimate them
from past information diffusion histories observed as sets of active nodes.

We consider an observed data set of M independent information diffusion results,

DM = {Dm; m = 1, · · · ,M}.

Here, each Dm is a time-sequence of active nodes in the mth information diffusion result,

Dm = 〈Dm(t); t ∈ Tm〉, Tm = 〈tm, · · · , Tm〉,

where Dm(t) is the set of all the nodes that have first become active at time t, and Tm

is the observation-time list; tm is the observed initial time and Tm is the observed final
time. We assume that for any active node v in the mth information diffusion result, there
exits some t ∈ Tm such that v ∈ Dm(t). Let tm,v denote the time at which node v becomes
active in the mth information diffusion result, i.e., v ∈ Dm(tm,v). For any t ∈ Tm, we set

Cm(t) =
⋃

τ ∈Tm ∩ {s; s< t}
Dm(τ)

Note that Cm(t) is the set of active nodes before time t in the mth information diffusion
result. We also interpret Dm as referring to the set of all the active nodes in the mth in-
formation diffusion result for convenience sake. In this paper, we consider the problem
of estimating the values of r and κ fromDM .

3 Proposed Method

We explain how we estimate the values of r and κ fromDM . Here, we limit ourselves to
outline the derivations of the proposed method due to the lack of space. We also briefly
mention how we do behavioral analysis with the method.
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3.1 Likelihood function

For the learning problem described above, we strictly derive the likelihood function
L(r, κ;DM) with respect to r and κ to use as our objective function.

First, we consider any node v ∈ Dm with tm,v > 0 for the mth information diffusion
result. LetAm,u,v denote the probability density that a node u ∈ B(v) ∩ Cm(tm,v) activates
the node v at time tm,v, that is,

Am,u,v = κu,vru,v exp(−ru,v(tm,v − tm,u)). (1)

Let Bm,u,v denote the probability that the node v is not activated from a node u ∈ B(v) ∩
Cm(tm,v) within the time-period [tm,u, tm,v], that is,

Bm,u,v = 1 − κu,v
∫ tm,v

tm,u
ru,v exp(−ru,v(t − tm,u))dt

= κu,v exp(−ru,v(tm,v − tm,u)) + (1 − κu,v). (2)

If there exist multiple active parents for the node v, i.e., η = |B(v) ∩ Cm(tm,v)| > 1, we
need to consider possibilities that each parent node succeeds in activating v at time tm,v.
However, in case of the continuous time delay model, we can ignore simultaneous acti-
vations by multiple active parents due to the continuous property. Thus, the probability
density that the node v is activated at time tm,v, denoted by hm,v, can be expressed as

hm,v =
∑

u∈B(v)∩Cm(tm,v)

Am,u,v

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∏

x∈B(v)∩Cm(tm,v)\{u}
Bm,x,v

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
=

∏
x∈B(v)∩Cm(tm,v)

Bm,x,v

∑
u∈B(v)∩Cm(tm,v)

Am,u,v(Bm,u,v)−1. (3)

Note that we are not able to know which node u actually activated the node v. This can
be regarded as a hidden structure.

Next, for the mth information diffusion result, we consider any link (v,w) ∈ E such
that v ∈ Cm(Tm) and w � Dm. Let gm,v,w denote the probability that the node w is not
activated by the node v within the observed time period [tm, Tm]. We can easily derive
the following equation:

gm,v,w = κv,w exp(−rv,w(Tm − tm,v)) + (1 − κv,w). (4)

Here we can naturally assume that each information diffusion process finished suffi-
ciently earlier than the observed final time, i.e., Tm � max{t; Dm(t) � ∅}. Thus, as
Tm → ∞ in equation (4), we assume

gm,v,w = 1 − κv,w. (5)

Therefore, by using equations (3), (5), and the independence properties, we can
define the likelihood functionL(r, κ;DM) with respect to r and κ by

L(r, κ;DM) =
M∏

m=1

⎛⎜⎜⎜⎜⎜⎜⎝
∏
t∈Tm

∏
v∈Dm(t)

hm,v

∏
v∈Dm

∏
w∈F(v)\Dm

gm,v,w

⎞⎟⎟⎟⎟⎟⎟⎠ . (6)
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Here, we retained the product with respect to v ∈ Dm(t) for completeness, but in practice
there is only one v in Dm(t).

In this paper, we focus on the above situation (i.e., equation (5)) for simplicity, but
we can easily modify our method to cope with the general one (i.e., equation (4)). Thus,
our problem is to obtain the values of r and κ, which maximize equation (6). For this
estimation problem, we derive a method based on an iterative algorithm in order to
stably obtain its solution.

3.2 Estimation method

We describe our estimation method. Let r̄ = (r̄u,v) and κ̄ = (κ̄u,v) be the current estimates
of r and κ, respectively. For each v ∈ Dm and u ∈ B(v) ∩ Cm(tm,v), we define αm,u,v by

αm,u,v = Am,u,v(Bm,u,v)−1 /
∑

x∈B(v)∩Cm(tm,v)

Am,x,v(Bm,x,v)−1. (7)

Let Ām,u,v, B̄m,u,v, h̄m,v, and ᾱm,u,v denote the values of Am,u,v, Bm,u,v, hm,v, and αm,u,v

calculated by using r̄ and κ̄, respectively.
From equations (3), (5), (6), we can transform our objective function L(r, κ;DM)

as follows:
logL(r, κ;DM) = Q(r, κ; r̄, κ̄) − H(r, κ; r̄, κ̄), (8)

where Q(r, κ; r̄, κ̄) is defined by

Q(r, κ; r̄, κ̄) =
M∑

m=1

⎛⎜⎜⎜⎜⎜⎜⎝
∑
t∈Tm

∑
v∈Dm(t)

Qm,v +
∑
v∈Dm

∑
w∈F(v)\Dm

log(1 − κv,w)

⎞⎟⎟⎟⎟⎟⎟⎠ ,
Qm,v =

∑
u∈B(v)∩Cm(tm,v)

log
(
Bm,u,v

)
+

∑
u∈B(v)∩Cm(tm,v)

ᾱm,u,v log
(
Am,u,v(Bm,u,v)−1

)
(9)

and H(r, κ; r̄, κ̄) is defined by

H(r, κ; r̄, κ̄) =
M∑

m=1

∑
t∈Tm

∑
v∈Dm(t)

∑
u∈B(v)∩Cm(tm,v)

ᾱm,u,v logαm,u,v. (10)

Since H(r, κ; r̄, κ̄) is maximized at r = r̄ and κ = κ̄ from equation (10), we can increase
the value of L(r, κ;DM) by maximizing Q(r, κ; r̄, κ̄) (see equation (8)). Note here that
although logAm,u,v is a linear combination of log κu,v, log ru,v, and ru,v, logBm,u,v cannot
be written as such a linear combination (see equations (1), (2)). In order to cope with
this problem of logBm,u,v, we transform logBm,u,v in the same way as above, and define
βm,u,v by

βm,u,v = κu,v exp(−ru,v(tm,v − tm,u)) /Bm,u,v

Finally, as the solution which maximizes Q(r, κ; r̄, κ̄), we obtain the following update
formulas of our estimation method:

ru,v =

∑
m∈M+u,v ᾱm,u,v∑

m∈M+u,v (ᾱm,u,v + (1 − ᾱm,u,v)β̄m,u,v)(tm,v − tm,u)
,

κu,v =
1

|M+u,v| + |M−u,v|

∑
m∈M+u,v

(ᾱm,u,v + (1 − ᾱm,u,v)β̄m,u,v),
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whereM+u,v andM−u,v are defined by

M+u,v = {m ∈ {1, · · · ,M}; u, v ∈ Dm, v ∈ F(u), tm,u < tm,v},
M−u,v = {m ∈ {1, · · · ,M}; u ∈ Dm, v � Dm, v ∈ F(u)}.

Note that we can regard our estimation method as a kind of the EM algorithm.

3.3 Behavioral analysis

Thus far, we assumed that the parameters (time-delay and diffusion) can vary with re-
spect to links but remain the same irrespective of the topic of information diffused,
following Gruhl et al. [3]. However, they may be sensitive to the topic.

Our method can cope with this by assigning m to a topic, and placing a constraint
that the parameters depends only on topics but not on links throughout the network G,
that is rm,u,v = rm and κm,u,v = κm for any link (u, v) ∈ E. This constraint is required
because, without this, we have only one piece of observation for each (m, u, v) and there
is no way to learn the parameters. Noting that we can naturally assume that people
behave quite similarly for the same topic, this constraint should be acceptable. Under
this setting, we can easily obtain the parameter update formulas. Using each pair of the
estimated parameters, (rm, κm), we can analyze the behavior of people with respect to
the topics of information, by simply plotting (rm, κm) as a point of 2-dimensional space.

3.4 Simple case analysis

We analyze a few properties of our proposed estimation method by using simple cases.
Assume that a node v became active at time t on some information result. We denote the
active parent nodes of v by u1, · · · , uN . First, we consider a simple case that diffusion
parameter κ is 1 for any link, time-delay parameter r is the same for all links, and
the activation times of u1, · · · , uN are all zeros. Then, as shown in equation (3), the
probability density that the node v is activated at time t by one of the parent nodes, can
be expressed as follows

hv =

N∑
n=1

r exp(−rt)
(
1 −

∫ t

0
r exp(−rτ)dτ

)N−1

= Nr exp(−Nrt).

Similarly, for a case that the parent nodes u1, · · · , uN became active at times t1, · · · tN

(< t), respectively, we can easily obtain the following probabilty.

hv = Nr exp

⎛⎜⎜⎜⎜⎜⎝−Nr

⎛⎜⎜⎜⎜⎜⎝t − 1
N

N∑
n=1

tn

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ .

For the information diffusion result, by solving the maximum likelihood problem which
maximizes log hv with respect to r, the estimation of the average delay time of our model
can be obtained as follows:

r−1 = N

⎛⎜⎜⎜⎜⎜⎝t − 1
N

N∑
n=1

tn

⎞⎟⎟⎟⎟⎟⎠ .
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Thus, we can see that this estimation is N times larger than the simple average of time
differences. Namely the information diffuses more quickly when there exist multiple ac-
tive parents, i.e., r−1/N, and this fact coincide with our intuition. Thus for information
diffusion phenomena, some simple statistics such as average delay time may fail to ob-
tain the intrinsic property, and this suggest that adequate information diffusion models
are vital.

Next, we consider another simple case that diffusion parameter κ is the same for
all links, time-delay parameter r is the same for all links, and the activation times of
u1, · · · , uN are all zeros. Here diffusion parameter is also a variable. Then the probability
density that the node v is activated at time t can be expressed as follows

hv = Nκr exp(−rt)(κ exp(−rt) + (1 − κ))N−1.

Now, by setting f (κ, r) = log hv, we consider maximizing f (κ, r) with respect to κ and
r. Here we obtain the first- and second-order derivatives of f (κ, r) with respect to κ as
follows:

∂ f (κ, r)
∂κ

=
1
κ
+ (N − 1)

exp(−rt) − 1
κ exp(−rt) + (1 − κ)

∂2 f (κ, r)
∂κ∂κ

= −
1
κ2
− (N − 1)(

exp(−rt) − 1
κ exp(−rt) + (1 − κ)

)2

Thus, for a given parameter r, since the above second-order derivative is negative defi-
nite, we can see that there exists a unique global solution with respect to κ. As for r, we
obtain the following derivatives:

∂ f (κ, r)
∂r

=
1
r
− t − (N − 1)

tκ exp(−rt)
κ exp(−rt) + (1 − κ)

∂2 f (κ, r)
∂r∂r

= − 1
r2 + (N − 1)

t2κ(1 − κ) exp(−rt)
(κ exp(−rt) + (1 − κ))2

Clearly, we cannot guarantee that the above second-order derivative is negative definite.
More specifically, this value is likely to be negative one when r � 1, but the configura-
tion of the objective function can be relatively complex when r � 1. In our experiments,
we empirically evaluate this point by using models with r = 2 and r = 0.5. However,
in case that the diffusion parameters are sufficiently, the second term of right-hand-side
of the above equation becomes positive but substantially small one, Here, such a case
has been widely explored by most exiting studies including our own experiments. This
means that we can expect to have a desirable property for estimating parameter r, as
described for parameter κ. Clearly, we need to perform further theoretical and empirical
studies because our estimation problem is slightly more complex than the simple case,
especially we need to simultaneously estimate both diffusion and time-delay parame-
ters, κ and r. Whereas, we consider that our estimation problem still have a desirable
property due to the above facts.

4 Experiments with Artificial data

We evaluated the effectiveness of the proposed learning method using the topologies
of two large real network data. First, we evaluated how accurately it can estimate the
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parameters of the CTIC model from DM . Next, we considered applying our learning
method to the problem of extracting influential nodes, and evaluated how well our
learned model can predict the high ranked influential nodes with respect to influence
degree σ(v), (v ∈ V) for the true CTIC model.

4.1 Experimental Settings

In our experiments, we employed two datasets of large real networks used in [9], which
exhibit many of the key features of social networks. The first one is a trackback network
of Japanese blogs. The network data was collected by tracing the trackbacks from one
blog in the site goo2 in May, 2005. We refer to this network data as the blog network.
The blog network was a strongly-connected bidirectional network, where a link created
by a trackback was regarded as a bidirectional link since blog authors establish mutual
communications by putting trackbacks on each other’s blogs. The blog network had
12, 047 nodes and 79, 920 directed links. The second one is a network of people that was
derived from the “list of people” within Japanese Wikipedia. We refer to this network
data as the Wikipedia network. The Wikipedia network was also a strongly-connected
bidirectional network, and had 9, 481 nodes and 245, 044 directed links.

Here, we assumed the simplest case where ru,v and κu,v are uniform throughout the
network G, that is, ru,v = r, κu,v = κ for any link (u, v) ∈ E. Then, our task is to
estimate the values of r and κ. According to [7], we set the value of κ relatively small.
In particular, we set the value of κ to a value smaller than 1/d̄, where d̄ is the mean
out-degree of a network. Since the values of d̄ were about 6.63 and 25.85 for the blog
and the Wikipedia networks, respectively, the corresponding values of 1/d̄ were about
0.15 and 0.03. Thus, as for the true value of the diffusion parameter κ, we decided to
set κ = 0.1 for the blog network and κ = 0.01 for the Wikipedia network. As for the
true value of the time-delay parameter r, we decided to investigate two cases: one with
a relatively high value r = 2 (a short time-delay case) and the other with a relatively
low value r = 0.5 (a long time-delay case) in both networks. We used the training data
DM in the learning stage, which is constructed by generating each Dm from a randomly
selected initial active node Dm(0) using the true CTIC model. Tm was chosen to be
effectively∞.

We note that the influence degree σ(v) of a node v is invariant with respect to the
values of the delay-parameter r. In fact, the effect of r is to delay the times when nodes
become active, that is, parameter ru,v only controls how soon node v actually becomes
active when node u activates node v. Therefore, the set of active nodes under the CTIC
model coincides with that under the IC model after a sufficiently long time-period. As
described in Section 3.1, we assume that the observed time-period is sufficiently long.
Thus, we can evaluate the σ(v) of the CTIC model by the influence degree of v for
the corresponding IC model. We estimated the influence degrees {σ(v); v ∈ V} using
the method of [8] with the parameter value 10, 000, where the parameter represents the
number of bond percolation processes (we do not describe the method here due to the
page limit). The average value and the standard deviation of the influence degrees was
87.5 and 131 for the blog network, and 8.14 and 18.4 for the Wikipedia network.

2 http://blog.goo.ne.jp/
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Table 1: Learning performance by the proposed method.

Blog network
(r = 2)

M Er Eκ
20 0.013 0.015
40 0.010 0.010
60 0.008 0.008
80 0.007 0.007

100 0.005 0.005

Wikipedia network
(r = 2)

M Er Eκ
20 0.036 0.034
40 0.024 0.016
60 0.013 0.015
80 0.012 0.013
100 0.006 0.011

Blog network
(r = 0.5)

M Er Eκ
20 0.011 0.012
40 0.010 0.007
60 0.009 0.005
80 0.004 0.004
100 0.004 0.004

Wikipedia network
(r = 0.5)

M Er Eκ
20 0.026 0.028
40 0.021 0.023
60 0.018 0.021
80 0.014 0.012

100 0.007 0.006

4.2 Comparison Methods

We compared the predicted result of the high ranked influential nodes for the true CTIC
model by the proposed method with four heuristics widely used in social network anal-
ysis.

The first three of these heuristics are “degree centrality”, “closeness centrality”, and
“betweenness centrality”. These are commonly used as influence measure in sociology
[11], where the out-degree of node v is defined as the number of links going out from
v, the closeness of node v is defined as the reciprocal of the average distance between
v and other nodes in the network, and the betweenness of node v is defined as the
total number of shortest paths between pairs of nodes that pass through v. The fourth
is “authoritativeness” obtained by the “PageRank” method [12]. We considered this
measure since this is a well known method for identifying authoritative or influential
pages in a hyperlink network of web pages. This method has a parameter ε; when we
view it as a model of a random web surfer, ε corresponds to the probability with which
a surfer jumps to a page picked uniformly at random [13]. In our experiments, we used
a typical setting of ε = 0.15.

4.3 Experimental Results

First, we examined the parameter estimation accuracy by the proposed method. Let r0

and κ0 be the true values of the parameters r and κ, respectively, and let r̂ and κ̂ be
the values of r and κ estimated by the proposed method, respectively. We evaluated the
learning performance in terms of the error rates,

Er =
|r0 − r̂|

r0
, Eκ =

|κ0 − κ̂|
κ0
.

Table 1 shows the average values of Er and Eκ for different numbers of training sam-
ples, M, where we performed the same experiment ten times independently. Here, the
true value of r is r = 2 and r = 0.5. Our algorithm can converge to the true values
efficiently when there is a reasonable amount of training data. The results demonstrate
the effectiveness of the proposed method.

Next, we compared the proposed method with the out-degree, the betweenness, the
closeness, and the PageRank methods in terms of the capability of ranking the influen-
tial nodes. For any positive integer k (≤ |V |), let L0(k) be the true set of top k nodes,
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(a) blog network (r = 2)
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(b) Wikipedia network (r = 2)
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(c) blog network (r = 0.5)
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(d) Wikipedia network (r = 0.5)

Fig. 1: Performance comparison in extracting influential nodes.

and let L(k) be the set of top k nodes for a given ranking method. We evaluated the
performance of the ranking method by the ranking similarity F(k) at rank k, where F(k)
is defined by

F(k) =
|L0(k) ∩ L(k)|

k
.

We focused on ranking similarities only at high ranks since we are interested in ex-
tracting influential nodes. Figures 1a and 1c show the results for the blog network, and
Figures 1b and 1d show the results for the Wikipedia network, where the true value of
r is r = 2 and r = 0.5 for Figures 1a and 1b, and Figures 1c and 1d, respectively. In
these figures, circles, triangles, diamonds, squares, and asterisks indicate ranking simi-
larity F(k) as a function of rank k for the proposed, the out-degree, the betweenness, the
closeness, and the PageRank methods, respectively. For the proposed method, we plot-
ted the average value of F(k) at k for five experimental results in the case of M = 100.
The proposed method gives far better results than the other heuristic based methods for
the both networks, demonstrating the effectiveness of our proposed learning method.
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5 Behavioral Analysis of Real World Blog Data

We applied our method to behavioral analysis using a real world blog data based on
the method described in 3.3 and investigated how each topic spreads throughout the
network.

5.1 Experimental Settings

The network we used is a real blogroll network in which bloggers are connected to each
other. We note that when there is a blogroll link from blogger y to another blogger x,
this means that y is a reader of the blog of x. Thus, we can assume that topics propagate
from blogger x to blogger y. According to [14], we suppose that a topic is represented
as a URL which can be tracked down from blog to blog. We used the database of
a blog-hosting service in Japan called Doblog 3. The database is constructed by all
the Doblog data from October 2003 to June 2005, and contains 52, 525 bloggers and
115, 552 blogroll links.

We identified all the URLs mentioned in blog posts in the Doblog database, and
constructed the following list for each URL from all the blog posts that contain the
URL:

〈(v1, t1), · · · , (vk, tk)〉, (t1 < · · · < tk),

where vi is a blogger who mentioned the URL in her/his blog post published at time
ti. By taking into account the blogroll relations for the list, we estimated such paths
that the URL might propagate through the blogroll network. We extracted 7, 356 URL
propagation paths from the Doblog dataset, where we ignored the URLs that only one
blogger mentioned. Out of these, only those that are longer than 10 time steps are chosen
for analyses, resulting into 172 sequences. Each sequence data represents a topic, and
a topic can be distributed in multiple URLs. The same URL can appear in different
sequences. Here note that the time stamp of each blog article is different from each other
and thus, the time intervals in the sequence < t1, t2, ..., tk > are not a fixed constant.

5.2 Experimental Results

We ran the experiments for each identified URL and obtained the corresponding param-
eters κ and r. Figure 2 is a plot of the results for the major URLs. The horizontal axis
is the diffusion parameter κ and the vertical axis is the delay parameter r. The latter is
normalized such that r = 1 corresponds to a delay of one day, meaning r = 0.1 cor-
responds delay of 10 days. We only explain three URLs that exhibit some interesting
propagation properties. The circle is a ULR that corresponds to the musical baton which
is a kind of telephone game on the Internet. It has the following rules. First, a blogger
is requested to respond to five questions about music by some other bologger (receive
the baton) and the requested blogger replies to the questions and designate the next five
bloggers with the same questions (pass the baton). It is shown that this kind of message
propagates quickly (less than one day on the average) with a good chance (one out of

3 Doblog(http://www.doblog.com/), provided by NTT Data Corp. and Hotto Link, Inc.
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Fig. 2: Results for the Doblog database.

25 to 100 persons responds). This is probably because people are interested in this kind
of message passing. The square is a URL that corresponds to articles about a missing
child. This also propagates quickly with a meaningful probability (one out of 80 persons
responds). This is understandable considering the urgency of the message. The cross is
a ULR that corresponds to articles about fortune telling. Peoples responses are diverse.
Some responds quickly (less than one day) and some late (more than one month af-
ter), and they are more or less uniformly distributed. The diffusion probability is also
nearly uniformly distributed. This reflects that each individual’s interest is different on
this topic. The dot is a URL that corresponds to one of the other topics. Interestingly,
the one in the bottom right which is isolated from the rest is a post of an invitation to a
rock music festival. This one has a very large probability of being propagated but with
very large time delay. In general, it can be said that the proposed method can extract
characteristic properties of a certain topics reasonably well only from the observation
data.

6 Discussion

Being able to handle the time more precisely brings a merit to the analysis of such
information diffusion as in a blog data because the time stamp is available in the unit of
second. There are subtle cases where it is not self evident to which value to assign the
time when the discretization has to be made. We have solved this problem.

There are many pieces of work in which time sequence data is analyzed assuming
a certain model behind. Ours also falls in this category. The proposed approach brings
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in a new perspective in which it allows to use the structure of a complex network as a
kind of background knowledge in a more refined way. There are also many pieces of
work on topic propagation analyses, but they focus mostly on the analyses of average
propagation speed (propagation speed distribution) and average life time. Our method
is new and different in that we explicitly address the diffusion phenomena incorporating
diffusion probability and time delay as well as the structure of the network.

The proposed method derives the learning algorithm in a principled way. The ob-
jective function has a clear meaning of the likelihood by which to obtain the observed
data, and the parameter is iteratively updated in such a way to maximize the likelihood,
guaranteeing the convergence. Due to the property of continuous time, we excluded the
possibility that a node is activated simultaneously by multiple parent nodes. It is also
straightforward to formulate the likelihood taking the possibility of the simultaneous
activation into account. However, the numerical experiments revealed that the results
are not as accurate as the current model. Having to explore millions of paths with very
small probability does harm numerical computation. This is, in a sense, similar to the
problem of feature selection in building a classifier. It is known that the existence of
irrelevant features is harmful even though the classification algorithm can in theory
ignore those irrelevant features.

The CTIC model is a continuous-time information diffusion model that extends the
discrete-time model by Gruhl et al [15]. We note that their model is based on the pop-
ular IC model and models a time-delay by a geometic distribition. In the CTIC model,
we models a time-delay by an exponential distribution as a natural extension. Song et al
[16] also modeled time-delays for information flow by exponential distributions when
they formulated an information flow model as a continuous-time Markov chain (i.e., a
random-surfer model). Thus, we can regard the CTIC model as a natural continuous-
time information diffusion model based on the IC model, and investigating the CTIC
model can be an important research issue. As shown in Section 2.2, the CTIC model is
rather complicated, and developing a learning algorithm of the CTIC model is challeng-
ing. In this paper, we presented an effective method for estimating the parameters of the
CTIC model from observed data, and applied it to node-ranking and social behavioral
data analysis. However, the time-delay distribution for real information diffusion must
be more complex, and a power-law distribution and others might be more suitable. Our
future work includes incorpolating various more realistic distributions as the time-delay
distribution.

We consider that our proposed ranking method presents a novel concept of cen-
trality based on the information diffusion model, i.e., the CTIC model. Actually, nodes
identified as higher ranked by our method are substantially different from those by each
of the conventional methods. This means that our method enables a new type of social
network analysis if past information diffusion data are available. Note that this is not
to claim to replace them with the proposed method, but simply to propose that it is an
addition to them which has a different merit in terms of information diffusion.

We note that the analysis we showed in this paper is the simplest case where κ and r
take a single value each for all the links in E. However, the method is very general. In a
more realistic setting we can divide E into subsets E1, E2, ..., EN and assign a different
value κn and rn for all the links in each En. For example, we may divide the nodes
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into two groups: those that strongly influence others and those not, or we may divide
the nodes into another two groups: those that are easily influenced by others and those
not. We can further divide the nodes into multiple groups. If there is some background
knowledge about the node grouping, our method can make the best use of it.

7 Conclusion

We emphasized the importance of incorporating continuous time delay for the behav-
ioral analysis of information diffusion through a social network, and addressed the
problem of estimating the parameters for a continuous time delay independent cas-
cade (CTIC) model from the observed data by rigorously formulating the likelihood
of obtaining these data and maximizing the likelihood iteratively with respect to the
parameters (time-delay and diffusion). We tested the convergence performance of the
proposed method by applying it to the problem of ranking influential nodes using the
network structure from two real world web datasets and showed that the parameters
converge to the correct values efficiently by the iterative procedure and can predict the
high ranked influential nodes much more accurately than the well studied four heuristic
methods. We further applied the method to the problem of behavioral analysis of topic
propagation using a real world blog data and showed that there are indeed sensible dif-
ferences in the propagation patterns in terms of delay and diffusion among different
topics
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