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Abstract. A graph mining method, Chunkingless Graph-Based Induc-
tion (Cl-GBI), finds typical patterns that appear in a graph structured
data by the operation called chunkingless pairwise expansion which gen-
erates pseudo-nodes from selected pairs of nodes in the data. Cl-GBI
enables to extract overlapping subgraphs, while its time and space com-
plexities could be extremely high. Thus, it happens that Cl-GBI cannot
extract patterns that need be large enough to describe characteristics
of data within a limited time and a given computational resource. In
such a case, extracted patterns may not be so much of interest for do-
main experts. To mine more discriminative patterns which cannot be ex-
tracted by the current Cl-GBI, we introduce a search algorithm in which
patterns to be searched are guided by domain knowledge or interests
of domain experts. We further experimentally show that the proposed
method can efficiently extract more discriminative patterns using a real
world dataset.

1 Introduction

Over the last decade, there has been much research work on data mining which
intend to find useful and interesting knowledge from massive data on computers.
Especially on mining frequent patterns from graph structured data, or simply
graph mining, a number of studies have been made in recent years because of
the high expressive power of graph representation [1, 13, 6, 12, 4, 5].

Chunkingless Graph Based Induction (Cl-GBI) [8] is one of the latest algo-
rithms in graph mining and an extension of Graph Based Induction (GBI) [13]
that can extract typical patterns from graph structured data by stepwise pair
expansion, i.e., by recursively chunking two adjoining nodes. Similarly to GBI
and its another extension, Beam-wise (B-GBI) [6], Cl-GBI extracts typical pat-
terns based on the stepwise pair expansion principle, but never chunks adjoining
nodes. Instead, Cl-GBI regards a pair of adjoining nodes as a pseudo node and
assigns a new label to it. This operation is called pseudo-chunking and can fully
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solve the problems caused by chunking, i.e., ambiguity in selecting nodes to
chunk and incompleteness of the search. This is because every node is available
to make a new pseudo node at any time in Cl-GBI. However Cl-GBI sacrificed
its time and space complexities in gaining the ability of extracting overlapping
patterns. Thus, it happens that Cl-GBI cannot extract patterns that need be
large enough to describe characteristics of data within a limited time and a given
computational resource. In such a case, extracted patterns may not be so much
of interest for domain experts.

From this background, in this paper, we propose a method of guiding the
search of Cl-GBI using domain knowledge or interests of domain experts. The
basic idea is adopting patterns representing knowledge or interests of domain
experts as constraints on the search, in order to effectively restrict the search
space and extract more discriminative or interesting patterns than those which
can be extracted by the current Cl-GBI. For that purpose, we use two types of
patterns as the constraints: one is the pattern that should be included in the
extracted ones, and the other is the pattern that should not be included in them.
These patterns allow us to specify patterns of interest and patterns trivial for
domain experts, respectively. We also experimentally show the effectiveness of
the proposed search method by applying the constrained Cl-GBI to the hepatitis
dataset which is a real world dataset.

In this paper, we deal with only connected labeled graphs, and use informa-
tion gain [10] as the discriminativity criterion. In addition, “a pair” denotes a
pair of adjoining nodes in a graph.

2 Chunkingless Graph-Based Induction(Cl-GBI)

Stepwise pair expansion is an essential operation in GBI and its variants, which
recursively generates new nodes from pairs of two adjoining nodes and links
between them. In GBI, a pair is selected according to a certain criterion based
on frequency, and all of its occurrences in graphs are replaced with a node
having a newly assigned label. Namely each graph is rewritten each time a pair
is chunked, and never restored in any subsequent chunking. On one hand, this
chunking mechanism is suitable for extraction of patterns from either a very large
single graph or graph database because extracted patterns can rapidly grow. On
the other hand, it involves ambiguity in selecting nodes to chunk, which causes
a crucial problem, i.e., possibility of overlooking important subgraphs due to
inappropriate chunking order. Beam search adopted by B-GBI can alleviate this
problem by chunking the b (beam width) most frequent pairs and copying each
graph into respective states, but not completely solve it because chunking process
is still involved.

In contrast to GBI and B-GBI, Cl-GBI does not chunk a selected pair, but
regards it as a pseudo node and assigns a new label to it. Thus, graphs are not
“compressed” nor copied into respective states. Figure 1 illustrates examples of
pseudo-chunking in Cl-GBI, in which a typical pattern consisting of nodes 1, 2,
and 3 is extracted from the input graph. Cl-GBI first finds the pair 1 → 3 based
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Fig. 1. An Example of Pseudo-chunking in Cl-GBI

on its frequency, and pseudo-chunks it, i.e., registers it as the pseudo node 10,
but does not rewrite the graph. Then, in the next iteration, it finds the pair
2 → 10, and pseudo-chunks and registers it as the pseudo-node 11. As a result,
the typical pattern is extracted. In the rest of the paper, we refer to each iteration
in Cl-GBI as “level”.

The algorithm of Cl-GBI is shown in Fig.2. The search of Cl-GBI is controlled
by the following parameters: a beam width b, the maximal number of levels of
pseudo-chunking N , and a frequency threshold θ. In other words, at each level,
the b most frequent pairs are selected from a set of pairs whose frequencies are
not less than θ, and are pseudo-chunked.

3 Constrained Search for Cl-GBI

3.1 Patterns Used as Constraints

The current Cl-GBI blindly extracts a huge number of frequent pairs without
any clues other than frequency and selects pairs to pseudo-chunk from among
them. However, if the goal is finding patterns which are either discriminative
or of interest for domain experts, the current method of extracting pairs is too
naive and inefficient in both time and space complexities. This is because such
patterns are not always frequent in a database. If discriminative patterns are
not so frequent in a database and there are a large number of patterns that are
more frequent than them, it is difficult to extract such discriminative patterns
within a limited time and a given computational resource.

Note that such a goal, i.e., finding discriminative/interesting patterns is not
special. In DT-ClGBI [9] which constructs a decision tree from graph structured
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Input. A graph database D, a beam width b, the maximal number of levels
of pseudo-chunking N , a frequency threshold θ

Output. A set of typical patterns S
Step 1. Extract all the pairs consisting of two connected nodes in the graphs,

register their positions using node id (identifier) sets. From the 2nd level
on, extract all the pairs consisting of two connected nodes with at least
one node being a new pseudo-node.

Step 2. Count frequencies of extracted pairs and eliminate pairs whose fre-
quencies count below θ.

Step 3. Select the b most frequent pairs from among the remaining pairs at
Step 2 (from the 2nd level on, from among the unselected pairs in the
previous levels and the newly extracted pairs). Each of the b selected pairs
is registered as a new node. If either or both nodes of the selected pair are
not original but pseudo-nodes, they are restored to the original patterns
before registration.

Step 4. Assign a new label to each pair selected at Step 3 but do not rewrite
the graphs. Go back to Step 1.

Fig. 2. Algorithm of Cl-GBI

data, Cl-GBI is adopted to extract discriminative patterns used as test nodes
in a tree. When we analyzed the hepatitis dataset [11] provided by Chiba Uni-
versity Hospital with Cl-GBI, domain experts (medical doctors) expected that
patterns that are interesting for them were extracted, but in fact we could not
find satisfactory ones with the current Cl-GBI.

Therefore, in this paper, we introduce domain knowledge or interests of do-
main experts and impose them as constraints on patterns that are extracted in
Cl-GBI in order to efficiently extract discriminative/interesting patterns which
the current Cl-GBI could not extract within a limited time and a given compu-
tational resource. We represent such domain knowledge and interests of domain
experts as graphs, or patterns, and call them the constraint patterns.

Although various types of constraint patterns can be considered, in this pa-
per, we focus on the following two types of patterns: one is the pattern that
should be included in extracted patterns, and the other is the pattern that
should not be included in them. We refer to the former type as the INpattern,
and the latter as the EXpattern. Thus, the constraints we introduce in this paper
are defined as follows:

Constraint 1. Extracted patterns must include INpatterns.
Constraint 2. Extracted patterns must not include EXpatterns.

Figures 3 (a) and (b) show the examples of Constraints 1 and 2, respec-
tively. Note that in case of Constraint 1, not only patterns including the given
INpatterns, but also patterns including at least one proper subgraph of the IN-
patterns should be extracted in order to extract patterns satisfying the imposed
constraints based on the stepwise pair expansion principle. The case is illustrated
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Fig. 3. Examples of INpatterns and EXpatterns

at the bottom right in Fig.3 (a). We call such a pattern including only proper
subgraphs of the given INpatterns a neighborhood pattern. In other words, an
INpattern does not necessarily have to be identical to a pattern representing do-
main knowledge or interests of domain experts, but need merely include at least
one of its proper subgraphs. Namely, Constraint 1 is useful to specify patterns
of interest for domain experts and to aggressively search around them, while
Constraint 2 is useful to avoid extracting trivial or boring patterns for domain
experts.

In addition, in case of Constraint 1, we can discard a pair if it does not include
any node/link labels appearing in the given INpatterns as shown in Fig.3 (a).
This is because such a pair, or pattern is unnecessary to make a pattern that
includes at least one of the given INpatterns. Even if in fact the discarded pattern
is a subgraph of a pattern P satisfying all constraints and a given evaluation
criterion such as the minimal frequency, P can be constructed from another
pattern including at least one node/link label appearing in the given INpatterns.
In other words, enumerating only the pairs with at least one node/link label in
the given INpatterns as candidates to be pseudo-chunked allows us to effectively
restrict the search space. However, it is noted that a label with high frequency
does not effectively work as a constraint because it may appear also in many
pairs which the user intends to exclude from the search space. Thus, if a set of
node (link) labels contains such frequent ones, we do not use the set to restrict
pairs in the enumeration process.

3.2 Design of Constrained Search

To guide the search process of Cl-GBI using either INpatterns or EXpatterns,
we have to check if an enumerated pair includes them, which requires additional
subgraph isomorphism checking. Since subgraph isomorphism checking is known
to be NP-complete [2], it is obvious that a naive approach could be computa-
tionally expensive. To reduce the computational cost as much as possible, we
should detect pairs that have no possibility of including constraint patterns be-
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fore the checking. For that purpose, we focus on the quantities that characterize
the topological structure of a graph, especially the number of node/link labels
in patterns.

First of all, for two arbitrary pairs, or patterns x and y, we define a quantity
Tnum as follows:

Tnum(x, y) =
∑

Lk∈L(y)

f(x, Lk), (1)

where L(y) is a set of labels appearing in y, and f(x, Lk) is the number of occur-
rences of the label Lk ∈ L(y) in x. Note that if x is identical to y, Tnum(x, y) must
be equal to Tnum(y, y). Similarly, Tnum(x, y) must be greater than Tnum(y, y) if
y is a subgraph of x. Consequently, we can skip subgraph isomorphism check-
ing for the pair of an enumerated pattern Pi and a constraint pattern Tj if
Tnum(Pi, Tj) < Tnum(Tj , Tj) because Pi never includes Tj .

Furthermore, we can prune more subgraph isomorphism checking even if
Tnum(Pi, Tj) ≥ Tnum(Tj , Tj) because it does not guarantee that Pi necessarily
includes Tj . In order for Pi to include Tj , for every label appearing in Tj , the
number of its occurrences in Pi has to be greater than or equal to that in Tj .
Namely, we can skip subgraph isomorphism checking for Pi if Pi does not satisfy
this condition. To check this condition, we define the following boolean value
Pinfo for two patterns x and y.

Pinfo(x, y) =
∧

Lk∈L(y)

p(x, y, Lk), (2)

where

p(x, y, Lk) =

{
true if f(x, Lk) ≥ f(y, Lk),
false otherwise.

If Pinfo(Pi, Tj) is true, then subgraph isomorphism checking has to be done;
otherwise it can be skipped.

These ideas discussed above are summarized in Fig.4 as the algorithm that
extracts pairs, which is embedded, or invoked at Step 1 in the algorithm shown
in Fig.2, and provides a set of candidate pairs to be pseudo-chunked at each level.
As input, a graph database D, a set of constraint patterns T consisting of either
INpatterns or EXpatterns, a parameter Lv specifying the current level, and a list
of pairs L consisting of patterns that have been extracted before are given. Then
it outputs L adding newly extracted pairs. PD(Pi, Tj) in this algorithm is the
procedure for subgraph isomorphism checking, which returns true if Pi includes
Tj ; otherwise false. In fact, it applies Cl-GBI to a graph database consisting of
only Pi and Tj after deleting all nodes and links that never appear in Tj from
Pi. By running Cl-GBI without the constraint patterns until Tj is extracted and
checking the occurrences of Tj in Pi, one can detect whether Pi includes Tj or
not.
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ExtPair(D, T , L, Lv, M)
Input: a database D, a set of constraint patterns T , the current level Lv,

a set of extracted pairs L (initially empty),
the constraint mode M (either “INpattern” or “EXpattern”);

Output: a set of extracted pairs L with newly extracted pairs;
begin

if Lv = 1 then
if M = “INpattern” then

Enumerate pairs in D, which consist of nodes or links
appearing in T , and store them in E;

else
Enumerate all the pairs in D and store them in E;

else
Enumerate pairs, which consist of one or both
pseudo nodes in L, and store them in E;

for each Pi ∈ E begin
if Pi is marked then

L := L ∪ {Pi}; next;
register := 1;
for each Tj ∈ T begin

if T num(Pi, Tj) ≥ T num(Tj , Tj) then
if Pinfo(Pi, Tj) = true then

if M = “INpattern” then
if PD(Pi, Tj) = true then mark Pi;

else
if PD(Pi, Tj) = true then

discard Pi; register := 0; break;
end
if register = 1 then L := L ∪ {Pi};

end
return L;

end

Fig. 4. Algorithm of the constrained pattern extraction

4 Experimental Evaluation

4.1 Experimental settings

To evaluate the proposed method, we implemented Cl-GBI with the algorithm
shown in Fig.4 on PC (CPU: Pentium 4 3.2GHz, Memory: 4GB, OS: Fedora
Core release 3) in C++, and applied this constrained Cl-GBI to the hepatitis
dataset. At preset, only either INpatterns or EXpatterns is available at a time.
In this experiment, we used two classes, Response and Non-Response, in the
dataset, denoted by R and N , respectively. R consists of patients to whom the
interferon therapy was effective, while N consists of those to whom it was not
effective. We used 24 inspection items as attributes, and converted the records
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Table 1. Size of graphs of the hepatitis dataset

class R N

number of graphs 38 56

average number of nodes in a graph 104 112

maximal number of nodes in a graph 145 145

minimum number of nodes in a graph 24 20

total number of nodes 3,944 6,296

kinds of node labels 12

average number of links in a graph 108 117

maximal number of links in a graph 154 154

minimum number of links in a graph 23 19

total number of links 4,090 6,577

kinds of link labels 30

of each patient into a graph in the same way as [3]. The statistics on the size of
resulting graphs are shown in Table. 1.

In this experiment, we used 4 sets of INpatterns shown in Fig.5, in which (a)
to (c) are patterns reported in [7] and represent typical examination results for
patients belonging to R, while (d) is the pattern with the highest information
gain, or the most discriminative pattern among ones extracted by the current
Cl-GBI. In the following, we refer to the most discriminative pattern as the
MDpattern. The node with the label “d” in Fig.5 is a dummy node representing
a certain point of time. For example, the leftmost pattern in Fig.5 (a) means that
at a certain point of time, the value of GPT is High and the value of PLT is Low.
Note that node labels in this dataset such as “d”, “H”, etc. are common and
may appear with large frequency. Thus, we used only the link labels appearing
in the INpatterns as constraints for the pair enumeration as discussed above.
As for the parameters of Cl-GBI, we set them as follows: b = 10, N = 10, and
θ = 0%.
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Table 2. Experimental results

time[sec] max information gain

original 44,973 ( — ) 0.1139

No.1 9,355 (66,211) 0.1076

No.2 6,893 (31,527) 0.1698

No.3 20,495 (159,434) 0.1110

No.4 4,970 (14,923) 0.1297

4.2 Experimental Results

We gave each set of patterns shown in Fig.5 as INpatterns to the constrained Cl-
GBI, and observed the computation time, the MDpattern, and its information
gain in each case. The results regarding the computation time and information
gain of the MDpatterns are shown in Table. 2, in which the row named “original”
contains the results by the current Cl-GBI with the same parameter settings.
Namely, the MDpattern shown in Fig.5 (d) corresponds to the MDpattern in the
case of “original”, and its information gain is 0.1139. The resulting MDpatterns
obtained by the constrained Cl-GBI are illustrated in Fig. 6.

First, focusing on the column of “max information gain” in Table 2, it is
found that the MDpatterns extracted by the constrained Cl-GBI are more dis-
criminative than the MDpattern by the current Cl-GBI in the cases of No.2 and
No.4. In the cases of No.1 and No.3, the values of information gain of the MD-
patterns are compatible with that of the MDpattern extracted by the current
Cl-GBI. In addition, the computation times in all 4 cases using INpatterns are
much less than in the case of the current Cl-GBI. Note that the values in paren-
theses in the column “time” of Table 2 are corresponding computation times by
the constrained Cl-GBI without pruning subgraph isomorphism checking. Com-
paring with computation times in the same row, it could be said that checking
if pairs include constraint patterns based on the number of nodes/links could
reduce the computation time significantly. From these results, we can say that
given appropriate constraints, the constrained Cl-GBI could efficiently extract
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patterns which are more discriminative than those which are extracted by the
current Cl-GBI.

Next, as shown in Fig.6, except in the case of No.3, the MDpatterns extracted
by the constrained Cl-GBI include one of the given INpatterns completely. In
the case of No.3, the MDpattern includes a subgraph of one of the INpatterns.
Thus, it is expected that the proposed constrained search method may work well
even if it is not sure that given INpatterns are genuinely appropriate ones. This
is because it can extract not only patterns completely including them, but also
the neighborhood patterns.

In addition, note that the INpattern used in the case of No.4 is the MDpattern
obtained by the current Cl-GBI with the same parameter settings, and works as
a good constraint, succeeding in extracting more discriminative patterns. From
this result, it is expected that MDpatterns obtained before may work as good
constraints to guide the search, which would be desirable if no domain knowl-
edge is available to restrict the search space: in such a case, instead of running
the current Cl-GBI only once setting the maximal level L to a large value, re-
peatedly running the constrained Cl-GBI setting L to a smaller value and using
the MDpattern extracted by the previous run as the new INpattern might allow
us to extract patterns that are more discriminative in a less computation time.
Verifying this expectation is one of our future work.

5 Conclusion

In this paper, we proposed a constrained search method that effectively restricts
the search space of Cl-GBI by imposing domain knowledge or interests of domain
experts as constraints on patterns to be searched, and embedded it in Cl-GBI,
resulting in the constrained Cl-GBI. The proposed method avoids conducting
subgraph isomorphism checking as much as possible based on the number of
node/link labels in patterns because it is computationally expensive. Experi-
mental results showed that if given constraints are appropriate, the constrained
Cl-GBI can extract more discriminative patterns in a less computation time
than the current Cl-GBI. In addition, the results also showed the possibility
that discriminative patterns extracted before may work as good constraints in
the constrained Cl-GBI and contribute to extracting more discriminative pat-
terns. It is worth saying that the basic idea of imposing constraints on extracting
patterns in graph mining does not rely on how to construct candidate patterns.
Namely, this approach could apply to any grpah mining method if the patterns
were constructed step by step.

As future work, we plan to provide more flexible ways to give constraints
such as a combination of INpatterns and EXpatterns, and further examine the
effect of reusing the MDpatterns extracted before as new INpatterns. We will
also evaluate the effectiveness of using EXpatterns, as well as the usefulness of
the constrained Cl-GBI as a feature construction method in DT-ClGBI.
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