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Abstract. A graph mining method, Chunkingless Graph-Based Induc-
tion (Cl-GBI), finds typical patterns that appear in graph structured
data by the operation called chunkingless pairwise expansion which gen-
erates pseudo-nodes from selected pairs of nodes in the data. Cl-GBI
enables to extract overlapping subgraphs, while it requires more time
and space complexities. Thus, it happens that Cl-GBI cannot extract
patterns that need be large enough to describe characteristics of data
within a limited time and a given computational resource. In such a case,
extracted patterns may not be so much of interest for domain experts. To
mine more discriminative patterns which cannot be extracted by the cur-
rent Cl-GBI, we introduce a search algorithm guided by domain knowl-
edge or interests of domain experts. We further experimentally show that
the proposed method can efficiently extract more discriminative patterns
using both synthetic and real world datasets.

1 Introduction

Over the last decade, there has been much research work on data mining which
intends to find useful and interesting knowledge from massive data. A number
of studies have been made in recent years especially on mining frequent pat-
terns from graph structured data, or simply graph mining because of the high
expressive power of graph representation [1, 13, 6, 12, 4, 5].

Chunkingless Graph Based Induction (Cl-GBI) [8] is an extension of Graph
Based Induction (GBI) [13] that can extract typical patterns from graph struc-
tured data by stepwise pair expansion, i.e., by recursively chunking two adjoining
nodes. Similarly to GBI, Cl-GBI adopts the stepwise pair expansion principle,
but never chunks adjoining nodes and contracts the graph. Instead, Cl-GBI re-
gards a pair of nodes as a pseudo node and assigns a new label to it. This
operation can fully solve the reported problems caused by chunking, i.e., am-
biguity in selecting nodes to chunk and incompleteness of the search. However
Cl-GBI requires more time and space compelexities to gain the ability of extract-
ing overlapping patterns. Thus, it happens that Cl-GBI cannot extract patterns



that need be large enough to describe characteristics of data within time and
space limitation. In such a case, extracted patterns may not be so much of in-
terest for domain experts.

To improve the search efficiency, in this paper, we propose a method of guid-
ing the search of Cl-GBI using domain knowledge or interests of domain experts.
The basic idea is adopting patterns representing knowledge or interests of do-
main experts as constraints on the search, in order to effectively restrict the
search space and extract more discriminative or interesting patterns than those
which can be extracted by the current Cl-GBI. We also experimentally show the
effectiveness of the proposed search method by applying the constrained Cl-GBI
to a synthetic dataset and the hepatitis dataset which is a real world dataset.

In this paper, we deal with only connected labeled graphs, and use informa-
tion gain [10] as the discriminativity criterion. In what follows, “a pair” denotes
a pair of adjoining nodes in a graph.

2 Constrained Search for Cl-GBI

2.1 Chunkingless Graph-Based Induction(Cl-GBI)

Stepwise pair expansion is an essential operation in GBI, which recursively gener-
ates new nodes from pairs of two adjoining nodes selected according to a certain
criterion based on frequency, and replaces all of its occurrences in graphs with a
node having a newly assigned label. Namely each graph is rewritten each time
a pair is chunked, and never restored in any subsequent chunking 3. Although
thanks to this chunking mechanism, GBI can efficiently extract patterns from
either a huge single graph or a set of graphs, it involves ambiguity in selecting
nodes to chunk, which causes a crucial problem, i.e., possibility of overlooking
some overlapping subgraphs due to inappropriate chunking order. Beam search
adopted by Beam-wise GBI(B-GBI) [6] can alleviate this problem by chunking
the b (beam width) most frequent pairs and copying each graph into respective
states, but not completely solve it because chunking process is still involved.

In contrast to GBI and B-GBI, Cl-GBI does not chunk a selected pair, but
regards it as a pseudo node and assigns a new label to it. Thus, graphs are not
“compressed” nor copied over the iterative pseudo-chunking process. We refer to
each iteration in Cl-GBI as “level”. The algorithm of Cl-GBI is shown in Fig. 1.
The search of Cl-GBI is controlled by the following parameters: a beam width b,
the maximal number of levels of pseudo-chunking N , and a frequency threshold
θ. In other words, at each level, the b most frequent pairs are selected from a set
of pairs whose frequencies are not less than θ, and are pseudo-chunked.

2.2 Patterns Used as Constraints

The current Cl-GBI blindly extracts a huge number of frequent pairs without
any clues other than frequency. However, if the goal is finding patterns which are
3 This does not mean that the link information of the original graphs is lost. It is

always possible to restore how each node is connected in the extracted subgraphs.



Input. A graph database D, a beam width b, the maximal number of levels of pseudo-
chunking N , a frequency threshold θ

Output. A set of typical patterns S
Step 1. Extract all the pairs consisting of two connected nodes in the graphs, register

their positions using node id (identifier) sets. From the 2nd level on, extract all the
pairs consisting of two connected nodes with at least one node being a new pseudo-
node.

Step 2. Count frequencies of extracted pairs and eliminate pairs whose frequencies count
below θ.

Step 3. Select the b most frequent pairs from among the remaining pairs at Step 2 (from
the 2nd level on, from among the unselected pairs in the previous levels and the newly
extracted pairs). Each of the b selected pairs is registered as a new node. If either or
both nodes of the selected pair are not original but pseudo-nodes, they are restored
to the original patterns before registration.

Step 4. Assign a new label to each pair selected at Step 3 but do not rewrite the graphs.
Go back to Step 1.

Fig. 1. Algorithm of Cl-GBI
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Fig. 2. Examples of INpatterns and EXpatterns

either discriminative or of interest for domain experts, the current method is too
naive and inefficient in both time and space complexities. For example, when we
analyzed the hepatitis dataset [11] provided by Chiba University Hospital with
Cl-GBI, domain experts (medical doctors) expected that patterns interesting for
them were extracted, but in fact we could not find satisfactory ones.

Therefore, in this paper, we introduce domain knowledge or interests of do-
main experts and impose them as constraints on patterns extracted in Cl-GBI.
We represent such domain knowledge and interests as graphs and call them the
constraint patterns. Although various types of constraint patterns can be consid-
ered, in this paper, we focus on the following two types of patterns: patterns to be
included in extracted patterns and patterns not to be included in them. We refer
to them as INpatterns and EXpatterns, respectively, and define the following two
types of constraints: “extracted patterns must include INpatterns” (Constraint
1) and “extracted patterns must not include EXpatterns” (Constraint 2).

Figures 2 (a) and (b) show the examples of Constraints 1 and 2, respectively.
Note that in case of Constraint 1, not only patterns including the given INpat-
terns, but also patterns including at least one of their proper subgraphs should
be extracted in order not to prevent patterns satisfying the imposed constraints
from being generated in the succeeding steps based on the stepwise pair expan-
sion principle. The case is illustrated at the far right in Fig. 2 (a). In addition, in
case of Constraint 1, we can discard a pair if it does not include any node/link la-
bels appearing in the given INpatterns as shown in Fig. 2 (a) because such a pair
can never grow to a pattern that includes at least one of the given INpatterns.



2.3 Design of Constrained Search

To guide the search process of Cl-GBI using INpatterns/EXpatterns, we have to
check if an enumerated pair includes them, which requires additional subgraph
isomorphism checking known to be NP-complete [2]. Therefore, to reduce the
computational cost, we should detect pairs that have no possibility of includ-
ing constraint patterns before the checking. For that detection, we define two
conditions based on the number of node/link labels in a pattern.

First of all, for two arbitrary pairs, or patterns x and y, we define a quantity
Tnum as follows:

Tnum(x, y) =
∑

Lk∈L(y)

f(x, Lk), (1)

where L(y) is a set of labels appearing in y, and f(x, Lk) is the number of
occurrences of the label Lk ∈ L(y) in x. Note that if x is identical to y,
Tnum(x, y) must be equal to Tnum(y, y). Similarly, Tnum(x, y) must be greater
than Tnum(y, y) if y is a subgraph of x. Consequently, given a constraint pattern
Tj , we can skip subgraph isomorphism checking for an enumerated pattern Pi if
Tnum(Pi, Tj) < Tnum(Tj , Tj) because Pi never includes Tj .

Furthermore, it is noted that in order for Pi to include Tj , for every label
appearing in Tj , the number of its occurrences in Pi has to be greater than or
equal to that in Tj . Namely, we can skip subgraph isomorphism checking for
Pi if Pi does not satisfy this condition. To check this condition, we define the
following boolean value Pinfo for two patterns x and y.

Pinfo(x, y) =
∧

Lk∈L(y)

p(x, y, Lk), (2)

where

p(x, y, Lk) =

{
true if f(x, Lk) ≥ f(y, Lk),
false otherwise.

If Pinfo(Pi, Tj) is true, then subgraph isomorphism checking has to be done;
otherwise it can be skipped.

These ideas are summarized in Fig. 3 as the algorithm, which is invoked
in the algorithm shown in Fig. 1 and provides a set of candidate pairs to be
pseudo-chunked at each level. PD(Pi, Tj) in Fig. 3 is the procedure for subgraph
isomorphism checking, which returns true if Pi includes Tj ; otherwise false.

3 Experimental Evaluation

To evaluate the proposed method, we implemented Cl-GBI with the algorithm
shown in Fig. 3 on PC (CPU: Pentium 4 3.2GHz, Memory: 4GB, OS: Fedora
Core release 3) in C++, and applied this constrained Cl-GBI to both synthetic
and real-world datasets consisting of directed graphs. The current system has
a limitation that either INpattern constraints or EXpattern constraints can be



ExtPair(D, T , L, Lv, M)

Input: a database D, a set of constraint patterns T , the current level Lv ,

a set of extracted pairs L (initially empty),

the constraint mode M (either “INpattern” or “EXpattern”);

Output: a set of extracted pairs L with newly extracted pairs;

begin

if Lv = 1 then

if M = “INpattern” then

Enumerate pairs in D, which consist of nodes or links

appearing in T , and store them in E;

else

Enumerate all the pairs in D and store them in E;

else

Enumerate pairs, which consist of one or both

pseudo nodes in L, and store them in E;

for each Pi ∈ E begin

if Pi is marked then L := L ∪ {Pi}; next;

else register := 1;

for each Tj ∈ T begin

if T num(Pi, Tj) ≥ T num(Tj , Tj) then

if Pinfo(Pi, Tj) = true then

if M = “INpattern” then

if PD(Pi, Tj) = true then mark Pi;

else

if PD(Pi, Tj) = true then

discard Pi; register := 0; break;

end

if register = 1 then L := L ∪ {Pi};
end

return L;

end

Fig. 3. Algorithm of the constrained pattern extraction

imposed at a time. We verified the efficiency of the proposed method with the
synthetic dataset, and also confirmed that it could extract patterns which are
more discriminative than those by the current Cl-GBI with the real-world one.

3.1 Synthetic Dataset

Experimental Settings: The synthetic dataset was generated in a random
manner same as [9], and divided into two classes of equal size, “active” and
“inactive”. Then, as discriminative patterns, we generated 4 kinds of subgraphs,
or “basic patterns” shown in Fig. 4, and embedded them in transactions of the
class “active”. In Fig. 4, “f” and “IG” denote frequency and information gain,
respectively. The statistics on the size of resulting graphs are shown in Table 1.

In this experiment, we used as INpatterns a subgraph of each basic pattern
shown in Fig. 4 separately to extract the corresponding basic pattern, and set
the parameters of Cl-GBI as follows: b = 5, 7, 10,N = 10, and θ = 0%.
Experimental Results: We observed the computation time and the level at
which the basic pattern was extracted by the constrained Cl-GBI in each case.
The results are summarized in Table 2, in which t and level denote the observed
computation time and level, respectively, and the values in the parentheses are



Table 1. Size of graphs of the synthetic dataset and the hepatitis dataset

Synthetic Hepatitisclass
active inactive R N

number of graphs 150 150 38 56
average number of nodes in a graph 50 50 104 112

total number of nodes 7,524 7,502 3,944 6,296
kinds of node labels 25 12

average number of links in a graph 498 495 108 117
total number of links 74,631 74,198 4,090 6,577
kinds of link labels 25 30

Table 2. Experimental results for the synthetic dataset

constraint b = 5 b = 7 b = 10
pattern t[sec] level IG t[sec] level IG t[sec] level IG

a2 119(5976) 4(10) 0.0421 133(6537) 4(8) 0.0421 170(6810) 4(5) 0.0603
b2 42(–) 4(–) 0.0421 32(–) 3(–) 0.0421 42(–) 3(–) 0.0603
c2 168(–) 6(–) 0.0421 166(–) 5(–) 0.0421 150(–) 4(–) 0.0603
d2 167(–) 6(–) 0.0421 92(–) 4(–) 0.0421 75(–) 3(–) 0.0603
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Fig. 4. Basic patterns and INpatterns used in the experiments for the synthetic dataset

corresponding results by the current Cl-GBI. “–” represents that the current Cl-
GBI could not extract the basic pattern. The column “IG” in Table 2 denotes
the maximal information gain achieved by the current Cl-GBI at the same level
with the same parameter settings.

From this table, we can see that the constrained Cl-GBI succeeded in extract-
ing the basic pattern in all the cases at an early stage, while the current Cl-GBI
extracted only patterns having considerably less information gain and could not
extract some of basic patterns. From these results, it is said that the constrained
Cl-GBI can extract patterns which are more discriminative than those by the
current Cl-GBI in a less computation time and smaller computational resources.

3.2 Real-world Dataset

Experimental Settings: As the real-world dataset, we used the two classes in
the hepatitis dataset, Response and Non-Response, denoted by R and N , respec-
tively [3]. R consists of patients to whom the interferon therapy was effective,
while N consists of those to whom it was not effective. We converted the records
of each patient into a graph in the same way as [3]. The statistics on the size of
resulting graphs are shown in Table 1.

In this experiment, we used 4 sets of INpatterns shown in Fig. 5, in which
(a) to (c) represent typical examination results for patients belonging to R [7],



Table 3. Experimental results for the hepatitis dataset

time[sec] max information gain
original 44,973 0.1139 (L:4, t:1292)
No.1 9,355 0.1076 (L:3, t:18)
No.2 6,893 0.1698 (L:5, t:376)
No.3 20,495 0.1110 (L:3, t:55)
No.4 4,970 0.1297 (L:4, t:39)
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Fig. 5. INpatterns used in the experiments for the hepatitis dataset

while (d) is the most discriminative pattern extracted by the current Cl-GBI.
We refer to the pattern which is the most discriminative one among extracted
patterns as the MDpattern. The node with the label “d” in Fig. 5 represents a
certain point of time. For example, the leftmost pattern in Fig. 5 (a) means that
at a certain point of time, the value of GPT (glutamic-pyruvic transaminase) is
High and the value of PLT (platelet) is Low. The parameters of Cl-GBI were set
as follows: b = 10, N = 10, and θ = 0%.
Experimental Results: We observed the computation time and information
gain of the MDpattern in each case. The results are shown in Table 3, in which
the row “original” contains the results by the current Cl-GBI with the same
parameter settings. Namely, the MDpattern shown in Fig. 5 (d) is identical to
that in the case of “original”. “L” and “t” in parentheses denote the level and
time[sec] spent to extract the MDpattern, respectively.

From Table 3, it is found that the MDpatterns extracted by the constrained
Cl-GBI are more discriminative than the MDpattern by the current Cl-GBI in
the cases of No.2 and No.4. In addition, the computation times in all the 4 cases
using INpatterns are much less than in the case of the current Cl-GBI. From
these results, we can say that given appropriate constraints, the constrained Cl-
GBI could efficiently extract patterns which are more discriminative than those
by the current Cl-GBI. In addition, note that the INpattern used in the case of
No.4 which is the MDpattern obtained by the current Cl-GBI works as a good
constraint. From this result, it is expected that running the constrained Cl-GBI
repeatedly with a small L using the MDpattern extracted by the previous run
as the new INpattern might allow us to extract discriminative patterns in a less
computation time. Verifying this expectation is one of our future work.

4 Conclusion

In this paper, we proposed a constrained search method that effectively restricts
the search space of Cl-GBI by imposing domain knowledge or interests of domain
experts as constraints on patterns to be searched, and embedded it in Cl-GBI,



resulting in the constrained Cl-GBI. Experimental results showed that given ap-
propriate constraints, the constrained Cl-GBI can extract more discriminative
patterns in a less computation time than the current Cl-GBI. In addition, the re-
sults also showed the possibility that discriminative patterns extracted in earlier
steps in the search may work as good constraints in the constrained Cl-GBI.

As future work, we plan to further evaluate the constrained Cl-GBI by com-
paring it with other graph mining methods including ones based on Inductive
Logic Programming, and to verify the resulting patterns cooperating with do-
main experts such as medical doctors.
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