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Abstract- One of the interesting and important problems of information diffusion over a large social network is to identify an appro-
priate model from a limited amount of diffusion information. There are two contrasting approaches to model information diffusion.
One is a push type model, known as Independent Cascade (IC) model and the other is a pull type model, known as Linear Threshold
(LT) model. We extend these two models (called AsIC and AsLT in this paper) to incorporate asynchronous time delay and investigate
1) how they differ from or similar to each other in terms of information diffusion, 2) whether the model itself is learnable or not from
the observed information diffusion data, and 3) which model is more appropriate to explain for a particular topic (information) to
diffuse/propagate. We first show that there can be variations with respect to how the time delay is modeled, and derive the likelihood
of the observed data being generated for each model. Using one particular time delay model, we show that the model parameters are
learnable from a limited amount of observation. We then propose a method based on predictive accuracy by which to select a model
which better explains the observed data. Extensive evaluations were performed using both synthetic data and real data. We first show
using synthetic data with the network structures taken from four real networks that there are considerable behavioral differences
between the AsIC and the AsLT models, the proposed methods accurately and stably learn the model parameters, and identify the
correct diffusion model from a limited amount of observation data. We next apply these methods to behavioral analysis of topic prop-
agation using the real blog propagation data, and show that there is a clear indication as to which topic better follows which model
although the results are rather insensitive to the model selected at the level of discussing how far and fast each topic propagates from
the learned parameter values. The correspondence between the topic and the model selected is well interpretable considering such
factors as urgency, popularity and people’s habit.

Keywords- Social networks; Information diffusion models; Parameter learning; Model selection; Behavioral analysis

I. INTRODUCTION

The growth of Internet has enabled to form various kinds of large-scale social networks, through which a variety of information
including innovation, hot topics and even malicious rumors can be propagated in the form of so-called “word-of-mouth” commu-
nications. Social networks are now recognized as an important medium for the spread of information, and a considerable number
of studies have been made [1, 2, 3, 4, 5, 6, 7, 8].

Widely used information diffusion models in these studies are theindependent cascade (IC)[9, 10, 11] and thelinear thresh-
old (LT) [12, 13]. They have been used to solve such problems as theinfluence maximization problem[10, 14, 15] and the
contamination minimization problem[11]. These two models assume different mechanisms for information diffusion which are
based on two opposite views. In the IC model each active nodeindependentlyinfluences its inactive neighbors with given diffu-
sion probabilities (information push style model). In the LT model a node is influenced by its active neighbors if their total weight
exceeds the threshold for the node (information pull style model). Which model is more appropriate depends on the situation and
selecting the appropriate one for a particular problem is an interesting and important problem. To answer this question, first of
all, we have to understand the behavioral difference between these two models.

Both models have parameters that need be specified in advance: diffusion probabilities for the IC model, and weights for the
LT model. However, their true values are not known in practice, which poses a challenging problem of estimating them from a
limited amount of information diffusion data that are observed as time-sequences of influenced (activated) nodes. Fortunately this
falls in a well defined parameter estimation problem in machine learning setting. Given a generative model with its parameters
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and the independent observed data, we can calculate the likelihood that the data are generated and can estimate the parameters
by maximizing the likelihood. This approach has a thorough theoretical background. The way the parameters are estimated
depends on how the generative model is given. To the best of our knowledge, we were the first to follow this line of research.
We addressed this problem first for the basic IC model [16, 17] and then its variant that incorporates asynchronous time delay
(referred to as the AsIC model) [18]. We further applied this to a variant of the LT model that also incorporates asynchronous
time delay (referred to as the AsLT model) [19, 20].

Gruhl et al [3] also challenged the same problem of estimating the parameters and proposed an EM-like algorithm, but they
did not formalize the likelihood and it is not clear what is being optimized in deriving the parameter update formulas. Goyal
et al [21] attacked this problem from a different angle. They employed a variant of the LT model and estimated the parameter
values by four different methods, all of which are directly computed from the frequency of the events in the observed data. Their
approach is efficient, but it is more likely ad hoc and lacks in theoretical evidence. Bakshy et al [22] addressed the problem
of diffusion of user-created content (asset) and used the maximum likelihood method to estimate the rate of asset adoption.
However, they only modeled the rate of adoption and did not consider the diffusion model itself. Their focus was data analysis.
Gomez-Rodriguez et al [23] proposed an efficient method of inferring a network from the observed diffusion sequences based
on the continuous time version of the IC model, assuming the probability that a node affects its child node is a function of the
difference of the activation times between the two nodes. Their focus is inferring the structure of the network rather than inferring
the best predictive model for a known network. They fixed a model and approximated the likelihood function in such a way that
the simplified likelihood function can be maximized by adding a link in each iteration. Recent work of Myers and Leskovec [24]
is close to ours. They used a model similar to but different in details from the AsIC model and showed that the likelihood
maximization problem can effectively be transformed to a convex programming for which a global solution is guaranteed1. Their
focus was also inferring the structure of the network.

In this paper, we first detail the Asynchronous Independent Cascade Model and the Asynchronous Linear Threshold Model as
two contrasting information diffusion models. Both are extensions of the basic Independent Cascade Model and Linear Threshold
Model that incorporate time delay in an asynchronous way. Especially we focus on the likelihood derivation of these models.
We show that there are a few variations of time delay and different time delay models result in different likelihood formulations.
We then show for a particular time delay model how to obtain the parameter values that maximize the respective likelihood
by deriving an EM-like iterative approach using the observed sequence data. Indeed, being able to cope with asynchronous
time delay is indispensable to do realistic analysis of information diffusion because, in the real world, information propagates
along the continuous time axis, and time-delays can occur during the propagation asynchronously. In fact, the time stamps of
the observed data are not equally spaced. This means that the proposed learning method has to estimate not only the diffusion
parameters (diffusion probabilities for the AsIC model and weights for the AsLT model) but also the time-delay parameters from
the observed data. We identified that there are basically two types of delay:link delayandnode delay. The former corresponds to
the delay associated with information propagation, and the latter corresponds to the delay associated with human action which is
further divided into two types:non-overrideandoverride. We chooselink delayto explain the learning algorithms and perform
the experiments on this model. For the other time delay models we only derive the likelihood functions that are required for the
learning algorithms. Incorporating time-delay makes the time-sequence observation data structural, which makes the analysis of
diffusion process difficult because there is no way of knowing which node has activated which other node from the observation
data sequence.

Knowing the optimal parameter values does not mean that the observation follows the model well. We have to decide which
model better explains the observation and select the right (or more appropriate) model. We solve this problem by comparing the
predictive accuracy of each model. We use a variant of hold-out method applied to a set of sequential data, which is similar to
the leave-one-out method applied to a multiple time sequence data, i.e., we use a part of the data, train the model, predict the
activation probability at one step later and compare it with the observation. We repeat this by changing the size of the training
data.

In summary, we want to 1) clarify how the AsIC model and the AsLT model differ from or similar to each other in terms of
information diffusion, 2) propose a method to learn the model parameters from a limited number of observed data and show that
the method is effective, and 3) show that how the information diffuses depend on the topic and the proposed method can identify
which model is more appropriate to explain for a particular topic (information) to diffuse/propagate.

We have performed extensive experiments to verify the proposed approaches using both synthetic data and real data. Exper-
iments using synthetic data generated by the models (AsIC and AsLT) with network structures taken from four real networks
revealed that there are considerable behavioral difference between the AsIC and the AsLT models, and the difference can be
explained by the diffusion mechanism qualitatively. It is also shown that the proposed likelihood maximization methods accu-
rately and stably learn the model parameters, and identify the correct diffusion model from a limited amount of observation data.
Experiments of behavioral analysis of topic propagation using the real blog data show that the results are rather insensitive to
the model selected at an abstract level of discussing how relatively far and fast each topic propagates from the learned parameter
values but still there is a clear indication as to which topic better follows which model. The correspondence between the topic
and the model selected is well interpretable considering such factors as urgency, popularity and people’s habit.

1We discuss the difference between their model and our model in Section VII.
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This paper is an extension and integration of what we have reported in [18, 19, 20, 25]. In [18], we defined the AsIC model,
presented its learning algorithm, and applied it to social behavioral data analysis. In [19, 20], we introduced the AsLT model,
extended our theory for the AsIC model to the case of the AsLT model, and addressed the model selection problem for the AsIC
and AsLT models. In [25], we investigated time-delay phenomena for the AsIC and AsLT models in more depth. In this paper,
we elaborate our previous analysis of information diffusion process over social networks for the AsIC and AsLT models in a
more integrative way. In particular, we newly analyze the behavioral difference between the AsIC and AsLT models by extensive
experiments using large real networks (see Section IV). We also add detailed experimental results for examining the performance
of the proposed learning method (see Section V). Moreover, we newly discuss recent related-work, including the other leaning
method of the IC model (see Section VII).

The paper is organized as follows. In Section II, we introduce the two contrasting information diffusion models (AsIC and
AsLT) we used in this paper, and in Section III, we detail how the likelihood functions can be formulated for various variations
of time delay model and in Appendix how the parameters can be obtained using one particular model of time delay (link delay).
In Section IV, we show the detailed analysis results of behavioral difference between AsIC and AsLT obtained by using four
real network structures. In Section V, we detail the learning performance (accuracy of parameter learning and influential node
ranking) using the synthetic data obtained by the same four real network structure. In Section VI, we focus on model selection
using both synthetic data and a real blog network data. In Section VII, we discuss some of the important issues regarding the
related work and those for future work. We end the paper by summarizing what has been achieved in Section VIII.

II. INFORMATION DIFFUSION MODELS

A. Two Contrasting Diffusion Models

It is quite natural to bring in the notion of information sender and receiver. The IC model is sender-centered. It is motivated by
epidemic spread in which the disease carrier is the information sender. If a person gets infected, his or her neighbors also get
infected,i.e., the information sender tries to push information to its neighbors. The LT model is receiver-centered. It is based
on the view that the receiver has a control over the information flow. This models the way innovation propagates. For example,
a person is attempted to buy a new tablet PC if many of his or her neighbors have purchased it and said that it is good,i.e., the
information receiver tries to pull information.

Both models have respective reasons for their working mechanisms, but they are quite contrasting to each other. We are
interested in 1) how they differ from or similar to each other in terms of information diffusion, 2) whether the model itself is
learnable or not from the observed information diffusion data, and 3) which model is more appropriate to explain for a particular
topic (information) to diffuse/propagate. Both models have parameters,i.e., diffusion probability attached to each directional
link in the IC model and weight attached to each directional link in the LT model. As shown later in Section III-B, the weight is
equivalent to a probability. Thus, intuitively both models appear to be comparative in terms of the average influence degree if the
parameter values are comparable. The simulation results, however, show that these two models behave quite differently. We will
explain why they are different in Section IV-B.

In the following two subsections we will describe the two diffusion models that we use in this paper: theasynchronous
independent cascade (AsIC) model, first introduced by Saito et al [18], and theasynchronous linear threshold (AsLT) model, first
introduced by Saito et al [19]. They differ from the basic IC and LT models in that they explicitly handle the time delay. The
diffusion process evolves with time. The basic models deal with time by allowing nodes to change their states in a synchronous
way at each discrete time step,i.e., no time delay is considered, or one can say that every state change is uniformly delayed exactly
by one discrete time step. Their asynchronous time delay versions explicitly treat the time delay of each node independently. We
discuss the notion of time delay in more depth in Section III-C-1.

The models we explain in the following two sub sections and the learning algorithms we describe in Section III are based on
a particular time-delay model, which we calllink delay. This is the model that the time delay is caused by the communication
channel, e.g., network traffic and/or some malfunction, and as soon as the information arrives at the destination, the node responds
without delay.

Before we explain the models, we give the definition of a graph and children and parents of a node. A graph we use is a
directed graphG = (V, E) without self-links, whereV andE (⊂ V ×V ) stand for the sets of all the nodes and links, respectively.
For each nodev in the networkG, we denoteF (v) as a set of child nodes ofv, i.e.,

F (v) = {w ∈ V : (v, w) ∈ E}.

Similarly, we denoteB(v) as a set of parent nodes ofv, i.e.,

B(v) = {u ∈ V : (u, v) ∈ E}.

We call nodesactiveif they have been influenced with the information. In the following models, we assume that nodes can switch
their states only from inactive to active, but not the other way around, and that, given an initial active node setS, only the nodes
in S are active at an initial time.
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B. Asynchronous Independent Cascade Model

We first recall the definition of the IC model according to the work of Kempe et al [10], and then introduce the AsIC model. In
the IC model, we specify a real valuepu,v with 0 < pu,v < 1 for each link(u, v) in advance. Herepu,v is referred to as the
diffusion probabilitythrough link(u, v). The diffusion process unfolds in discrete time-stepst ≥ 0, and proceeds from a given
initial active setS in the following way. When a nodeu becomes active at time-stept, it is given a single chance to activate each
currently inactive child nodev, and succeeds with probabilitypu,v. If u succeeds, thenv will become active at time-stept + 1.
If multiple parent nodes ofv become active at time-stept, then their activation attempts are sequenced in an arbitrary order, but
all performed at time-stept. Whether or notu succeeds, it cannot make any further attempts to activatev in subsequent rounds.
The process terminates if no more activations are possible.

In the AsIC model, we specify real valuesru,v with ru,v > 0 in advance for each link(u, v) ∈ E in addition topu,v, where
ru,v is referred to as thetime-delay parameterthrough link (u, v). The diffusion process unfolds in continuous-timet, and
proceeds from a given initial active setS in the following way. Suppose that a nodeu becomes active at timet. Then,u is given
a single chance to activate each currently inactive child nodev. We choose a delay-timeδ from the exponential distribution2

with parameterru,v. If v has not been activated before timet + δ, thenu attempts to activatev, and succeeds with probability
pu,v. If u succeeds, thenv will become active at timet + δ. Said differently, whichever parentu that succeeds in satisfying
the activation condition and for which the activation time is the earliest considering the time delay associated with each link can
actually activate the node. Under the continuous time framework, it is unlikely thatv is activated simultaneously by its multiple
parent nodes exactly at timet + δ. So we do not consider this possibility. Whether or notu succeeds, it cannot make any further
attempts to activatev in subsequent rounds. The process terminates if no more activations are possible.

C. Asynchronous Linear Threshold Model

Same as the above, we first recall the LT model. In this model, for every nodev ∈ V , we specify aweight(qu,v > 0) from its
parent nodeu in advance such that ∑

u∈B(v)

qu,v ≤ 1.

The diffusion process from a given initial active setS proceeds according to the following randomized rule. First, for any node
v ∈ V , a thresholdθv is chosen uniformly at random from the interval[0, 1]. At time-stept, an inactive nodev is influenced by
each of its active parent nodes,u, according to weightqu,v. If the total weight from active parent nodes ofv is no less thanθv,
that is, ∑

u∈Bt(v)

qu,v ≥ θv,

thenv will become active at time-stept+1. Here,Bt(v) stands for the set of all the parent nodes ofv that are active at time-step
t. The process terminates if no more activations are possible.

The AsLT model is defined in a similar way to the AsIC. In the AsLT model, in addition to the weight set{qu,v}, we specify
real valuesru,v with ru,v > 0 in advance for each link(u, v). Same as for AsIC, we refer toru,v as thetime-delay parameter
through link(u, v). The diffusion process unfolds in continuous-timet, and proceeds from a given initial active setS in the
following way. Each active parentu of the nodev exerts its effect onv with the time delayδ drawn from the exponential
distribution with the delay parameterru,v. Suppose that the accumulated weight from the active parents of nodev has become
no less thanθv at timet for the first time. Then, the nodev becomes active att without any delay and exerts its effect on its child
with a delay associated with its link. This process is repeated until no more activations are possible.

III. LEARNING ALGORITHMS

We define the diffusion parameter vectorp and the time-delay parameter vectorr by

p = (pu,v)(u,v)∈E r = (ru,v)(u,v)∈E

for the AsIC model, and the weight parameter vectorq and the time-delay parameter vectorsr by

q = (qu,v)(u,v)∈E r = (ru,v)(u,v)∈E

for the AsLT model. We next consider an observed data set ofM independent information diffusion results,

{Dm : m = 1, · · · ,M}.

2Similar formulation can be derived for other distributions such as power-law and Weibull.
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Here, eachDm is a set of pairs of active node and its activation time in them-th diffusion result,

Dm = {(u, tm,u), (v, tm,v), · · ·}.

We denote bytm,v the activation time of nodev for them-th diffusion result. For eachDm, we denote the observed initial time
by

tm = min{tm,v : (v, tm,v) ∈ Dm},
and the observed final time by

Tm ≥ max{tm,v : (v, tm,v) ∈ Dm}.
Note thatTm is not necessarily equal to the final activation time. Hereafter, we express our observation data by

DM = {(Dm, Tm) : m = 1, · · · ,M}.

For anyt ∈ [tm, Tm], we set
Cm(t) = {v ∈ V : (v, tm,v) ∈ Dm, tm,v < t}.

Namely,Cm(t) is the set of active nodes before timet in them-th diffusion result. For convenience sake, we useCm as referring
to the set of all the active nodes in them-th diffusion result, i.e.,

Cm =
⋃

t≥tm

Cm(t).

Moreover, we define a set of non-active nodes with at least one active parent node for each by

∂Cm = {v ∈ V : (u, v) ∈ E, u ∈ Cm, v /∈ Cm}.

For each nodev ∈ Cm ∪ ∂Cm, we define the following subset of parent nodes, each of which had a chance to activatev.

Bm,v =
{

B(v) ∩ Cm(tm,v) if v ∈ Cm,
B(v) ∩ Cm if v ∈ ∂Cm.

Note that the underlying model behind the observed data is not available in reality. Thus, we investigate how the model
affects the information diffusion results, and consider selecting a model which better explains the given observed data from the
candidates, i.e., AsIC and AsLT models. To this end, we first have to estimate the values ofr andp for the AsIC model, and the
values ofq andr for the AsLT model for the givenDM .

A. Learning Parameters of AsIC Model

First, we propose a method of learning the model parameters from the observed data for the AsIC model. To estimate the values
of r andp fromDM for the AsIC model, we derive the likelihood functionL(r,p;DM ) to use as the objective function.

First, for them-th information diffusion result, we consider any nodev ∈ Cm with tm,v > tm, and derive the probability
densityhm,v that the nodev is activated at timetm,v. Note thathm,v = 1 if tm,v = tm. Let Xm,u,v denote the probability
density that a nodeu ∈ Bm,v activates the nodev at timetm,v, that is,

Xm,u,v = pu,vru,v exp(−ru,v(tm,v − tm,u)). (1)

LetYm,u,v denote the probability that the nodev is not activated by a nodeu ∈ Bm,v within the time-period[tm,u, tm,v], that is,

Ym,u,v = 1− pu,v

∫ tm,v

tm,u

ru,v exp(−ru,v(t− tm,u))dt

= pu,v exp(−ru,v(tm,v − tm,u)) + (1− pu,v). (2)

If there exist multiple active parents for the nodev, i.e., |Bm,v| > 1, we need to consider possibilities that each parent node suc-
ceeds in activatingv at timetm,v. However, in case of the continuous time delay model, we don’t have to consider simultaneous
activations by multiple active parents due to the continuous property. Here, for anyu ∈ Bm,v, let hm,v(u) be the probability
density that the nodeu activatesv at timetm,v but all the other nodesz in Bm,v have failed in activatingv within the time-period
[tm, tm,v] for them-th information diffusion result. Then, we have

hm,v(u) = Xm,u,v

∏

z∈Bm,v\{u}
Ym,z,v.
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Since the probability densityhm,v is given byhm,v =
∑

u∈Bm,v
hm,v(u), we have

hm,v =
∑

u∈Bm,v

Xm,u,v


 ∏

z∈Bm,v\{u}
Ym,z,v


 .

=
∏

z∈Bm,v

Ym,z,v

∑

u∈Bm,v

Xm,u,v(Ym,u,v)−1. (3)

Note that we are not able to know which nodeu actually activated the nodev. This can be regarded as a hidden structure.
Next, for them-th information diffusion result, we consider any link(v, w) ∈ E such thatv ∈ Cm andw /∈ Cm, and derive

the probabilitygm,v that the nodev fails to activate its child nodes. Note thatgm,v = 1 if F (v) \ Cm = ∅. Let gm,v,w denote
the probability that the nodew is not activated by the nodev within the observed time period[tm, Tm]. We can easily derive the
following equation:

gm,v,w = pv,w exp(−rv,w(Tm − tm,v)) + (1− pv,w). (4)

Here we can naturally assume that each information diffusion process finished sufficiently earlier than the observed final time,
i.e.,Tm À max{tm,v : (v, tm,v) ∈ Dm}. Thus, asTm →∞ in Equation (4), we can assume

gm,v,w = 1− pv,w. (5)

Therefore, the probabilitygm,v is given by

gm,v =
∏

w∈F (v)\Cm

gm,v,w. (6)

By using Equations (3) and (6), and the independence properties, we can define the likelihood functionL(r,p;DM ) with
respect tor andp by

L(r,p;DM ) =
M∏

m=1

∏

v∈Cm

(hm,v gm,v) . (7)

In this paper, we focus on Equation (5) for simplicity, but we can easily modify our method to cope with the general one (i.e.,
Equation (4)). Thus, our problem is to obtain the values ofr andp, which maximize Equation (7). For this estimation problem,
we derive a method based on an iterative algorithm in order to stably obtain its solution. The details of the parameter update
algorithm are given in Appendix A.

B. Learning Parameters of AsLT Model

Next, we propose a method of learning the model parameters from the observed data for the AsLT model. Similar to the AsIC
model, we first derive the likelihood functionL(r, q;DM ) with respect tor andq. For the sake of technical convenience, we
introduce a slack weightqv,v for each nodev ∈ V such that

qv,v +
∑

u∈B(v)

qu,v = 1.

Here note that we can regard each weightq∗,v as a multinomial probability since a thresholdθv is chosen uniformly at random
from the interval[0, 1] for each nodev.

First, for them-th information diffusion result, we fix any nodev ∈ Cm with tm,v > tm, and derive the probability density
hm,v that the nodev is activated at timetm,v. Note thathm,v = 1 if tm,v = tm. Suppose any parent nodez ∈ Bm,v exerts its
effect onv with a delayδz,v. Further suppose that the thresholdθv is first exceeded when the effect ofu ∈ Bm,v reachesv after
the delayδu,v. We define the subsetBm,v(u) of Bm,v by

Bm,v(u) = {z ∈ Bm,v : tm,z + δz,v < tm,u + δu,v}.

Then, we have ∑

z∈Bm,v(u)

qz,v < θv ≤ qu,v +
∑

z∈Bm,v(u)

qz,v.

This implies that the probability thatθv is chosen from this range isqu,v. LetXm,u,v denote the probability density that nodeu
activates nodev at timetm,v. Then, we have

Xm,u,v = qu,vru,v exp(−ru,v(tm,v − tm,u)). (8)
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Since the probability densityhm,v is given byhm,v =
∑

u∈Bm,v
Xm,u,v, we have

hm,v =
∑

u∈Bm,v

qu,vru,v exp(−ru,v(tm,v − tm,u)). (9)

Next, for them-th information diffusion result, we consider any nodev ∈ ∂Cm, and derive the probabilitygm,v that nodev
is not activated within the observed time period[tm, Tm]. We can calculategm,v as

gm,v = 1−
∑

u∈Bm,v

qu,v

∫ Tm

tm,u

ru,v exp(−ru,v(t− tm,u))dt

= 1−
∑

u∈Bm,v

qu,v(1−exp(−ru,v(Tm − tm,u)))

= qv,v +
∑

u∈B(v)\Bm,v

qu,v +
∑

u∈Bm,v

qu,v exp(−ru,v(Tm − tm,u)). (10)

Therefore, by using Equations (9) and (10), and the independence properties, we can define the likelihood functionL(r, q;DM )
with respect tor andq by

L(r, q;DM ) =
M∏

m=1

( ∏

v∈Cm

hm,v

)( ∏

v∈∂Cm

gm,v

)
. (11)

Thus, our problem is to obtain the time-delay parameter vectorr and the weight parameter vectorq, which together maximize
Equation (11). The details of the parameter update algorithm are given in Appendix B.

C. Alternative Time-delay models

In Section II, we introduced one instance of time delay, i.e., link delay. In this subsection we discuss time delay phenomena in
more depth for both the AsIC and the AsLT models.

1) Notion of Time-delay:

Each parentu of a nodev can be activated independently of the other parents and because the associated time delay from a
parent to its child is different for every single pair, which parentu actually affects the nodev in which order is more or less
opportunistic.

To explicate the information diffusion process in a more realistic setting, we consider two examples, one associated with blog
posting and the other associated with electronic mailing. In case of blog posting, assume that some bloggeru posts an article.
Then it is natural to think that it takes some time before another bloggerv comes to notice the posting. It is also natural to think
that if the bloggerv reads the article, he or she takes an action to respond (activated) because the act of reading the article is
an active behavior. In this case, we can think that there is a delay in information diffusion fromu to v (from u’s posting and
v’s reading) but there is no delay inv taking an action (fromv’s reading tov’s posting). In case of electronic mailing, assume
that someoneu sends a mail to someone elsev. It is natural to think that the mail is delivered to the receiverv instantaneously.
However, this does not necessarily mean thatv reads the mail as soon as it has been received because the act of receiving a mail
is a passive behavior. In this case, we can think that there is no delay in information diffusion fromu to v (u’s sending andv’s
receiving) but there is a delay inv taking an action (fromv’s receiving tov’s sending). Further, whenv notices the mail,v may
think to respond to it later. But beforev responds, a new mail may arrive which needs a prompt response andv sends a mail
immediately. We can think of this as an update of acting time.3 These are just two examples, but it appears worth distinguishing
the difference of these two kinds of time delay and update scheme (override of decision) in a more general setting.

In view of the discussion above, we define two types of delay: link delay and node delay. It is easiest to think that link
delay corresponds to propagation delay and node delay corresponds to action delay. We further assume that they are mutually
exclusive. This is a strong restriction as well as a strong simplification by necessity because the activation time of a node we can
observe is a sum of the activation time of its parent node and the two delays and we cannot distinguish between these two delays.
Thus we have to choose either one of the two as occurring exclusively for the likelihood maximization to be feasible. In addition,
in case of node delay there are two types of activation: non-override and override. The former sticks to the initial decision when
to activate and the latter can decide to update (override) the time of activation multiple times to the earliest possible each time
one of the parents gets newly activated. In summary, node delay can go with either override or non-override, andlink delaycan
only go with non-override.

3Note that there are two actions here, reading and sending, but the activation time in the observed sequence data corresponds to the timev sends a mail.
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Since we have already derived the likelihood function for link delay, here we consider the likelihood function for node delay.
In this case, the time delay parameter vectorr is expressed asr = (rv)v∈V . The likelihood functionL(r,p;DM ) for the AsIC in
the case of node delay is given by Equation (7), wherehm,v is the probability density that nodev is activated at timetm,v for the
m-th information result, andgm,v is the probability that nodev does not activate its child nodes within the observed time period
[tm, Tm] for them-th information result. Note thatgm,v remains the same as in the case of link delay (see Equations (5) and (6)).
The likelihood functionL(r, q;DM ) for the AsLT in the case of node delay is given by Equation (11), where the definition of
hm,v is the same as above, andgm,v is the probability that the nodev is not activated within the observed time period[tm, Tm]
for themth information result. Note also thatgm,v remains the same as in the case of link delay (see Equation (10)). Therefore,
our task now is: we fix any nodev ∈ Cm with tm,v > tm, and present the probability densityhm,v that nodev is activated at
time tm,v for them-th information result in the case of node delay. Here for simplicity, we order the active parent nodeu ∈ Bm,v

of nodev according to the timetu it was activated, and set

Bm,v = {u1, u2, ..., uJ}, tm,u1 < tm,u2 < · · · < tm,uJ
.

2) Alternative Asynchronous Independent Cascade Model:

First, we derivehm,v for node delay with non-override andhm,v for node delay with override in the case of the AsIC model.

Node delay with non-override There is no delay in propagating the information to the nodev from the nodeu, but there is a
delayδ before the nodev gets actually activated. Assume that it is the nodeui that first succeeded in activating the nodev (more
precisely satisfying the activation condition). Since there is no link delay and no override, it must be the case that all the other
parents that had become active beforetui

must have failed in activatingv (more precisely satisfying the activation condition).
Since the nodev decides when to actually activate itself at the time the nodeui succeeded in satisfying the activation condition
and would not change its mind, other nodes which may have been activated after the nodeui got activated could do nothing on
the nodev. Thus, the probability densityhm,v is given by

hm,v =
J∑

j=1

Xm,uj ,v

j−1∏

i=1

(1− pui,v),

whereXm,uj ,v is the probability density that nodeuj activates nodev at timetm,v, and is obtained by

Xm,uj ,v = puj ,vrv exp(−rv(tm,v − tm,uj )), (12)

(see Equation (1)). Note that in comparison to Equation (3), the probabilityYm,ui,v is replaced by(1− pui,v).

Node delay with override In this case the actual activation time is allowed to be updated. For example, suppose that the node
ui first succeeded in satisfying the activation condition of the nodev and the nodev decided to activate itself at timetui + δi. At
some time later but beforetui + δi, other parentuj also succeeded in satisfying the activation condition of the nodev. Then the
nodev is allowed to change its actual activation time to timetuj

+ δj if it is beforetui
+ δi. Thus, the probability densityhm,v

is given by

hm,v =
J∑

j=1

Xm,uj ,v

J∏

i=1,i6=j

Ym,ui,v.

Here,Xm,uj ,v is the probability density that nodeuj activates nodev at time tm,v, and is obtained by Equation (12). Also,
Ym,ui,v is the probability that nodev is not activated by nodeui within the time-period[tm,ui

, tm,v], and is obtained by

Ym,ui,v = pui,v exp(−rv(tm,v − tm,ui)) + (1− pui,v)

(see Equation (2)). Note that this formulahm,v is equivalent to Equation (3) except that the parameterru,v is replaced byrv.

3) Alternative Asynchronous Linear Threshold Model:

Next, we derivehm,v for node delay with non-override andhm,v for node delay with override in the case of the AsLT model.
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Node delay with non-override As soon as the parent nodeui is activated, its effect is immediately exerted to its childv. The
delay depends on the nodev’s choice. Suppose the nodev first became activated for thei-th parent according to the timetui

ordering. Then by the same reasoning as in Section III-B, the thresholdθv is between
∑i−1

j=1 quj ,v and
∑i−1

j=1 quj ,v + qui,v, and
the probability densityhm,v can be expressed as

hm,v =
J∑

j=1

Xm,uj ,v,

whereXm,uj ,v is the probability density that nodeuj activates nodev at timetm,v, and is obtained by Equation (8). Note that
this formula is equivalent to Equation (9) except that the parameterru,v is replaced byrv.

Node delay with override Here, multiple updates of the activation time of the nodev are allowed. Suppose that the nodev’s
threshold is first exceeded by receiving the effect of the parentuj . All the parents that have become activated after that can still
influence the updates. Among these parents, letui be the one which succeeded in activating the nodev and let{uζ} be the other
parents that failed. Then, the probability densityXm,uj ,v that the nodev is activated at timetm,v by the nodeui, which get
activated later thanuj for which the threshold is first exceeded is given by

Xm,uj ,v = quj ,v

J∑

i=j

rv exp(−rv(tm,v − tm,ui
))

J∏

ζ=j,ζ 6=i

∫ ∞

tm,v

rv exp(−rv(t− tm,uζ
))dt

= quj ,v(J − j + 1)rv

J∏

i=j

exp(−rv(tm,v − tm,ui
)).

Thus, we obtain

hm,v =
J∑

j=1

Xm,uj ,v.

Note that this formula is substantially different from Equation (9).

4) Summary of Different Time Delay Models:

We note thathm,v for link delayandnode delay with overrideis identical for the AsIC model and that forlink delayandnode
delay with non-overrideis identical for the AsLT model, except for a minor notational difference in the time delay parameterr
in both. Thus, there are basically two cases for each model. We omit to show how different time delay models affect diffusion
phenomena. There are indeed some differences in transient time period (for the first 10 to 30 time span in unit of average time
delay).4 The difference becomes larger as the values for diffusion parameters become larger as expected. For more details, see
the work of Saito et al [25].

We only showed the parameter learning algorithms for the case of link delay for both AsIC and AsLT models in Appendix.
It is straightforward to derive the similar algorithm for the other time delay models.

D. Assumptions Introduced in Parameter Setting

The formulations so far assumed that the parameters (pu,v, qu,v andru,v
5) that appear both in the AsIC and the AsLT models

depend on individual link(u, v) ∈ E. The number of parameters, thus, is equal to the number of links, which is huge for
any realistic social network. This means that we need a prohibitively huge amount of observation data that passes each link at
least several times to obtain accurate estimates for these parameters that do not overfit the data. This is not realistic and we can
introduce a few alternative simplifying assumptions to avoid this overfitting problem.

The simplest one would be to assume that each of the parameterspu,v, qu,v andru,v be represented by a single variable for
the whole network. For a diffusion probability, we assume a uniform valuepu,v = p for all links. For a weight we assume a
uniform coefficientq such thatqu,v = q

|B(v)| , i.e., the weightqu,v is proportional to the reciprocal of the number ofv’s parents.
This is the simplest realization to satisfy the constraint

∑
u∈B(v) qu,v ≤ 1. As can be shown later in Section VI-C-2, this is a

reasonable approximation to discuss information diffusion for a specific topic. Next simplification would be to divideE (or V )
into subsetsE1, E2, ..., ELE

(or V1, V2, ..., VLV
) and assign the same value for each parameter within each subset. For example,

we may divide the nodes into two groups: those that strongly influence others and those not, or we may divide the nodes into

4Note that difference in the time delay models vanishes when an equilibrium is reached.
5To be more precise we assumed thatru,v = rv in case of node-delay. Simplification in this case can also be made accordingly.
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another two groups: those that are easily influenced by others and those not. Links connecting these nodes can accordingly be
divided into subsets. If there is some background knowledge about the node grouping, our method can make the best use of
it. Obtaining such background knowledge is also an important research topic in the knowledge discovery from social networks.
Yet another simplification which looks more realistic would be to focus on the attribute of each node and assume that there
is a generic dependency between the parameter values of a link and the attribute values of the connected nodes and learn this
dependency rather than learn the parameter values directly from the data. In [26] we adopted this approach assuming a particular
class of attribute dependency, and confirmed that the dependency can be correctly learned even if the number of parameters is
several tens of thousands. Learning a function is much more realistic and does not require such a huge amount of data. This way
it is possible that the parameter values take different values for each link (or node).

IV. BEHAVIORAL DIFFERNECE BETWEEN THE ASIC AND THE ASLT MODELS

A. Data Sets and Parameter Setting

We employed four datasets of large real networks (all bidirectionally connected). The first one is a trackback network of Japanese
blogs used by Kimura et al [11] and has12, 047 nodes and79, 920 directed links (the blog network). The second one is a network
of people derived from the “list of people” within Japanese Wikipedia, also used by Kimura et al [11], and has9, 481 nodes and
245, 044 directed links (the Wikipedia network). The third one is a network derived from the Enron Email Dataset [27] by
extracting the senders and the recipients and linking those that had bidirectional communications. It has4, 254 nodes and44, 314
directed links (the Enron network). The fourth one is a coauthorship network used by Palla et al [28] and has12, 357 nodes and
38, 896 directed links (the coauthorship network). These networks are confirmed to satisfy the typical characteristics of social
networks,e.g., power law for degree distribution, higher clustering coefficient, etc.

In this experiments, we set the value of diffusion probability (AsIC) and the value of the link weight (AsLT) such that they are
consistent in the following sense under the simplest assumption to make a fair comparison:

∑
(u,v)∈E pu,v =

∑
(u,v)∈E qu,v =

|V |. Thus,pu,v = 1/d̄ andqu,v = 1/|B(v)| for any (u, v) ∈ E, whered̄ is the average out-degree of the network. Thus, the
value ofpu,v ((u, v) ∈ E) is given as 0.15, 0.04, 0.1, and 0.32 for the Blog, the Wikipedia, the Enron, and the Coauthorship
networks, respectively.

We compare influence degree obtained by the AsIC and the AsLT models from various angles. Here, the influence degree
σ(v) of a nodev is defined to be the expected number of active nodes at the end of information diffusion process that starts
from a single initial activate nodev. Since the time-delay parameter vectorr does not affect the influence degree (because it is
defined at the end of diffusion process), that is,σ(v) is invariant with respect to the value ofr, we can evaluate the value ofσ(v)
by the influence degree of the corresponding basic IC or LT model. We estimated the influence degree by the bond percolation
based method [15], in which we used300, 000 bond percolation processes according to [10], meaning that the expectation is
approximated by the empirical mean of300, 000 independent simulations.

B. Experimental Results

First, we investigated which of the AsIC and AsLT models can spread information more widely. Figure 1 shows the cumulative
probability of influence degree,fσ(x) = |{v ∈ V : σ(v) ≥ x}|/|V |, for the AsIC and the AsLT models. At a glance we can
see that the AsIC model has by far many more nodes of high influence degrees than the AsLT model. Further, we examined
the difference of influence degree between the two models for the respective influential nodes of both the AsIC and the AsLT
models. We ranked nodes according to the influence degree of AsIC and AsLT, respectively, and extracted the top200 influential
nodes for each. Figures 2 and 3 display the respective influence degree of rankk node of AsIC and AsLT (k = 1, · · · , 200).
Here, the red line indicates the influence degree of AsIC, and the blue line indicates the influence degree of AsLT. We can see
that the difference of influence degree between the two models is quite large for these influential nodes. This clearly indicates
that the information can diffuse more widely under the AsIC model than the AsLT model. This can be attributed to the scale-free
nature (having power-law degree distributions) of the four real networks used in the experiments. It is known [29] thathub nodes,
defined as those having many outgoing links, play an important role for widely spreading information in a scale-free network.
By the information diffusion mechanism of the AsIC and AsLT models, it is more difficult for the AsLT model to transmit
information to hub nodes than the AsIC model in a scale-free network. Therefore, the result is understandable.

Next, we compared the difference of the influential nodes between the AsIC and the AsLT models. The results are shown in
Figures 4 and 5. For both figures the horizontal axes are node ranking (k = 1, · · · , 200), and the actual ranking depends which
model we are considering,e.g., the rankk node for AsIC is different from the same rankk node for AsLT. The vertical axis are
influence degree for both figures, but it is the influence degree for AsIC in Figure 4 and that for AsLT in Figure 5. The red line
corresponds to nodes for AsIC and the blue line corresponds to nodes for AsLT. Thus, by definition of node ranking, the influence
degree of AsIC (red thick line) is non-increasing in Figure 4 and the influence degree of AsLT (blue thick line) in Figure 5 is
non-increasing. However, the corresponding line for AsLT (blue line) in Figure 4 and that for AsIC (red line) in Figure 5 are very
irregular. This means that almost all the nodes that are influential for AsIC model are different from the nodes that are influential
for AsLT, and vice versa. There are small number of influential nodes that overlap for both the models, but how similar the
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Fig. 1 Comparison of influence degree between the AsIC and the AsLT models

influential nodes are (degree of overlapping) depends on the characteristics of the network structure, and no general tendency can
be extracted.

V. LEARNING PERFORMANCE EVALUATION

A. Data Sets and Parameter Setting

We used the same four datasets that are used in Section IV, and employed also the simplest approximation for the parameter
setting but with a slight difference according to the work [18].

We setpu,v = p, ru,v = r for AsIC andqu,v = q|B(v)|−1, ru,v = r for AsLT. Under this assumption there is no need for
the observation sequence data to pass through every link or node at minimum once and desirably several times. This drastically
reduces the amount of data we have to generate to use as the training data to learn the parameters. Then, our task is to estimate
the values of these parameters from the training data. According to the work of Kempe et al [10], we setp to a value slightly
smaller than1/d̄. Thus, the true value ofp was set to0.2 for the coauthorship network,0.1 for the blog and Enron networks, and
0.02 for the Wikipedia network. The true value ofq was set to0.9 for every network to achieve reasonably long diffusion results,
and the true value ofr was set to1.0.6

Using these parameter values, we generated a diffusion sequence from a randomly selected initial active node for each of the
AsIC and the AsLT models in four networks. We then constructed a training dataset such that each diffusion sequence has at least
10 nodes. Parameter updating is terminated when either the iteration number reaches its maximum (set to 100) or the following
condition is first satisfied:|r(s+1) − r(s)| + |p(s+1) − p(s)| ≤ 10−6 for AsIC and|r(s+1) − r(s)| + |q(s+1) − q(s)| ≤ 10−6 for
AsLT, where the superscript(s) indicates the value for thes-th iteration. In most of the cases, the above inequality is satisfied
in less than 100 iterations. The converged values are rather insensitive to the initial parameter values, and we confirmed that the
parameter updating algorithm stably converges to the correct values which we assumed to be the true values.
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Fig. 2 Influence degree of AsIC and AsLT for the influential nodes of the AsIC model

TABLE I PARAMETER ESTIMATION ERROR OF THE LEARNING METHOD FOR THE ASIC MODEL IN FOUR NETWORKS

Network Number of active nodes Er Ep

1,163 0.019 0.026
Blog 5,151 0.018 0.014

10,322 0.011 0.011
1,275 0.060 0.032

Wikipedia 5,386 0.013 0.009
10,543 0.006 0.007
1,456 0.031 0.030

Enron 5,946 0.011 0.011
10,468 0.005 0.006
1,203 0.028 0.022

Coauthorship 5,193 0.009 0.007
10,132 0.006 0.006

B. Parameter Estimation

We generated the training set for each of the AsIC and the AsLT models as follows to evaluate the proposed learning methods as
a function of the number of observed active nodes,i.e., amount of the training data. First we specified the target numberK of the
active nodes we want to have, and the training set is generated by increasing the sequence one by one such that the total number of
active nodes reachesK with each sequence starting from a randomly chosen initial active node, skipping very short ones (those
in which the number of nodes is less than 10). In the experiments, we investigated the cases ofK = 1, 000, 5, 000, 10, 000. Let
r∗, p∗ andq∗ denote the true values ofr, p andq, respectively, and̂r, p̂ andq̂ the estimated values ofr, p andq, respectively. We
define the parameter estimation errorsEr, Ep andEq by

Er =
|r̂ − r∗|

r∗
, Ep =

|p̂− p∗|
p∗

, Eq =
|q̂ − q∗|

q∗
.

6Note that a different value ofr corresponds to a different scaling of the time axis under the assumption of uniform value.
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Fig. 3 Influence degree of AsIC and AsLT for the influential nodes of the AsLT model

TABLE II PARAMETER ESTIMATION ERROR OF THE LEARNING METHOD FOR THE ASLT MODEL IN FOUR NETWORKS

Network Number of active nodes Er Eq

1,023 0.020 0.020
Blog 5,018 0.012 0.020

10,037 0.012 0.020
1018 0.032 0.024

Wikipedia 5,038 0.015 0.020
10,025 0.006 0.017
1,017 0.023 0.014

Enron 5,054 0.013 0.011
10,024 0.007 0.010
1,014 0.017 0.034

Coauthorship 5,023 0.017 0.029
10,023 0.006 0.027

Tables I and II show the parameter estimation errors of the proposed learning methods for the AsIC model and the AsLT model
in four networks as a function of the number of observed active nodes, respectively. Here, the results are averaged over five
independent experiments. As can be expected, the error is progressively reduced as the number of active nodes becomes larger.
The algorithm guarantees to converge but does not guarantee the global optimal solution. In most of the cases, the number of
iterations is less than 100. These results indicate that it converges to the correct solution in practice for all the parameters and for
all the networks, which demonstrate the effectiveness of the proposed methods.

Next, we investigated the performance of the proposed learning method when the training set is a single diffusion sequence.
Table III shows the results for four networks, where the results are averaged over100 independent experiments. Compared with
Tables I and II, the errors become larger. The average error ofp andr for AsIC is 6% and 8%, and the average error ofq andr for
AsLT is 8% and 18%, respectively. The best results for AsIC are Enron network (2% forp and 3% forr), and the best results for
AsLT are Wikipedia network (7% forq) and Enron network (14% forr). The worst results for AsIC are Coauthorship network
(12% forp and 11% forr), and the worst results for AsLT are Coauthorship network (9% forq and 21% forr). In general the
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Fig. 4 Comparison of the influential nodes of AsIC and AsLT measured in the influence degree of AsIC

TABLE III PARAMETER ESTIMATION ERROR OF THE LEARNING METHOD FROM A SINGLE OBSERVED SEQUENCE FOR
FOUR NETWORKS (VALUES IN PARENTHESES ARE STANDARD DEVIATIONS)

Network Blog Wikipedia Enron Coauthorship

AsIC Er 0.091 (0.121) 0.088 (0.132) 0.029 (0.020) 0.119 (0.173)
Ep 0.064 (0.085) 0.043 (0.056) 0.022 (0.019) 0.121 (0.255)

AsLT Er 0.188 (0.219) 0.192 (0.272) 0.143 (0.140) 0.214 (0.194)
Eq 0.078 (0.049) 0.069 (0.043) 0.077 (0.053) 0.086 (0.054)

accuracy is better for AsIC than for AsLT. This is because the lengths of the sequences are larger for AsIC. Further,r is more
difficult to correctly estimate thanp andq. In order to see the difference in the learning result for each sequence in more depth,
we plotted the number of active nodes as a function of time (the influence curve),7 and the values of the parameters learned,(p, r)
for AsIC and(q, r) for AsLT, in Figures 6 and 7. The length of each sequence varies considerably. Some sequences are short and
some others are long. The color of the dots for the learned parameters is determined in such a way that it goes from true blue to
true red in proportion to the sequence length, i.e., the shortest sequence is true blue and the longest sequence is true red. From
these results we can see the algorithm learns the parameter values within 10% of the correct values if the length is reasonably
long. For example, Enron network generates long sequences from all the randomly chosen initial active nodes in case of AsIC
and the learning accuracy is very good. We draw a conclusion that although it is not desirable we can still estimate the parameter
values from a single observation sequence if this is the only choice available.

C. Node Ranking

We measure the influence of nodev by the influence degreeσ(v) for the diffusion model that has generatedDM . We compared
the result of the high ranked influential nodes for the true model that uses the assumed true parameter values with 1) the proposed
method that uses the learned parameter values, 2) four heuristics widely used in social network analysis (all computed by the
network topology alone) and 3) the same proposed method in which an incorrect diffusion model is assumed,i.e., data generated
by AsIC but learning assumed AsLT and vice versa. Here again the influence degree is estimated by the bond percolation

7This is different from the influence degreeσ described in Section IV-A, which is the expected value of the number of active nodes at the final time.
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Fig. 5 Comparison of the influential nodes of AsIC and AsLT measured in the influence degree of AsLT

0 10 20 30 40 50
0

600

1200

1800

time

nu
m

be
r 

of
 a

ct
iv

e 
no

de
s

0.05 0.1 0.15
0.5

1

1.5

p

r

(a)Blog network

0 5 10 15 20 25 30 35
0

500

1000

1500

time

nu
m

be
r 

of
 a

ct
iv

e 
no

de
s

0.01 0.02 0.03
0.5

1

1.5

p

r

(b) Wikipedia network

0 5 10 15 20
0

400

800

1200

1600

time

nu
m

be
r 

of
 a

ct
iv

e 
no

de
s

0.05 0.1 0.15
0.5

1

1.5

p

r

(c) Enron network

0 20 40 60
0

200

400

600

800

1000

1200

time

nu
m

be
r 

of
 a

ct
iv

e 
no

de
s

0.1 0.2 0.3
0.5

1

1.5

p

r

(d) Coauthorship network

Fig. 6 Influence curve and the learned parameter values from a single observed sequence in case of AsIC (There are 100 sequences and 100
points in each figure)

method [30, 15], where we used10, 000 bond percolation processes according to [11] and [15].
We call the proposed method the model based method. We call it the AsIC model based method if it employs the AsIC

model as the information diffusion model. We then learn the parameters of the AsIC model from the observed dataDM , and
rank nodes according to the influence degrees based on the learned model. The AsLT model based method is defined in the
same way. Among the four heuristics we used, the first three are “degree centrality”, “closeness centrality”, and “betweenness
centrality”. These are commonly used as influence measure in sociology [31], where the out-degree of nodev is defined as the
number of links going out fromv, the closeness of nodev is defined as the reciprocal of the average distance betweenv and
other nodes in the network, and the betweenness of nodev is defined as the total number of shortest paths between pairs of nodes
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Fig. 7 Influence curve and the learned parameter values from a single observed sequence in case of AsLT (There are 100 sequences and 100
points in each figure)

that pass throughv. The fourth is “authoritativeness” obtained by the “PageRank” method [32]. We considered this measure as
one alternative since this is a well known method for identifying authoritative or influential pages in a hyperlink network of web
pages. This method has a parameterε; when we view it as a model of a random web surfer,ε corresponds to the probability with
which a surfer jumps to a page picked uniformly at random [33]. In our experiments, we used a typical setting ofε = 0.15.

In terms of extracting influential nodes from the networkG = (V, E), we evaluated the performance of the ranking methods
mentioned above by theranking similarityF(k) = |L∗(k) ∩ L(k)|/k within the rankk(> 0), whereL∗(k) andL(k) are the
true set of topk nodes and the set of topk nodes for a given ranking method, respectively. We focused on the performance
for high ranked nodes since we are interested in extracting influential nodes. Figures 8 and 9 show the results for the AsIC
and the AsLT models, respectively. For the diffusion model based methods, we plotted the average value ofF(k) at k for five
independent experimental results. We see that the proposed method gives better results than the other methods for these networks,
demonstrating the effectiveness of our proposed learning method. It is interesting to note that the model based method in which
an incorrect diffusion model is used is as bad as and in general worse than the heuristic methods. The results imply that it is
important to consider the information diffusion process explicitly in discussing influential nodes and also to identify the correct
model of information diffusion for the task in hand, same observation as in Section IV.

VI. MODEL SELECTION

Now we have a method to estimate the parameter values from the observation for each of the assumed models. In this section we
discuss whether the proposed learning method can correctly identify which of the two models: AsIC and AsLT the observed data
come from,i.e., Model Selectionproblem. We assume that the topic is the decisive factor in determining the parameter values
and place a constraint that the parameters depend only on topics but not on nodes and links of the networkG, and differentiate
different topics by assigning an indexl to topicl.

Therefore, we setrl,u,v = rl andpl,u,v = pl for any link (u, v) ∈ E in case of the AsIC model andrl,u,v = rl and
ql,u,v = ql|B(v)|−1 for any nodev ∈ V and link(u, v) ∈ E in case of the AsLT model. Note that0 < ql < 1 andqv,v = 1− ql.
Since we normally have a very small number of observation for each(l, u, v), often only one, without this constraint, there is no
way to learn the parameters.

A. Model Selection based on Predictive Accuracy

We have to select a model which is more appropriate to the model for the observed diffusion sequence. We decided to use pre-
dictive accuracy as the criterion for selection. We cannot use an information theoretic criterion such as AIC (Akaike Information
Criterion)[34] or MDL (Minimum Description Length)[35] because we need to select the one from models with completely
different probability distributions. Moreover, for both models, it is quite difficult to efficiently calculate the exact activation
probability of each node for more than two information diffusion cascading steps ahead. In order to avoid these difficulties, we
propose a method based on a hold-out strategy, which attempts to predict the activation probabilities at one step ahead and repeat
this multiple times.

We now group the observed data sequencesDm into topics. Assume that each topicl hasMl sequences of observation, i.e.,
Dl = {Dl,m : m = 1, · · · ,Ml}, where eachDl,m is a set of pairs of active node and its activation time in them-th diffusion
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Fig. 8 Performance comparison in extracting influential nodes for the AsIC model

result in thel-th topic. Accordingly we add a subscriptl to other variables,e.g., we denotetl,m,v to indicate the timet that a
nodev is activated in them-th sequence of thel-th topic.

We learn the model parameters for each topic separately. This does not exclude treating each sequence in a topic separately
and learn from each, i.e.,Ml = 1, which would help investigating if the same topic propagate similarly or not. For simplicity,
we assume that for eachDl,m, the initial observation timetl,m is zero, i.e.,tl,m = 0 for m = 1, · · · ,Ml. Then, we introduce a
set of observation periods

Il = {[0, τl,n) : n = 1, · · · , Nl},
whereNl is the number of observation data we want to predict sequentially and eachτl,n has the following property: There exists
some(v, tl,m,v) ∈ Dl,m such that0 < τl,n < tl,m,v. LetDl,m;τl,n

denote the observation data in the period[0, τl,n) for them-th
diffusion result in thelth topic, i.e.,

Dl,m;τl,n
= {(v, tl,m,v) ∈ Dl,m : tl,m,v < τl,n}.

We also setDMl;τl,n
= {(Dl,m;τl,n

, τl,n): m = 1, · · ·, Ml}. Let Θ denote the set of parameters for either the AsIC or the AsLT
models, i.e.,Θ = (r,p) or Θ = (r, q). We can estimate the values ofΘ from the observation dataDMl;τl,n

by using the

learning algorithms in Sections III-A (Appendix A) and III-B (Appendix B). LetΘ̂τl,n
denote the estimated values ofΘ. Then,

we can calculate the activation probabilityqτl,n
(v, t) of nodev at timet (≥ τl,n) usingΘ̂τl,n

.
For eachτl,n, we select the nodev(τl,n) and the timetl,m(τl,n),v(τl,n) by

tl,m(τl,n),v(τl,n) = min

{
tl,m,v : (v, tl,m,v) ∈

Ml⋃
m=1

(Dl,m \Dl,m;τl,n
)

}
.

Note thatv(τl,n) is the first active node int ≥ τl,n. We evaluate the predictive performance for the nodev(τl,n) at time
tl,m(τl,n),v(τl,n). Approximating the empirical distribution by

pτl,n
(v, t) = δv,v(τl,n) δ(t− tl,m(τl,n),v(τl,n))
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Fig. 9 Performance comparison in extracting influential nodes for the AsLT model

with respect to(v(τn), tl,m(τl,n),v(τl,n)), we employ the Kullback-Leibler (KL) divergence

KL(pτl,n
|| qτl,n

) = −
∑

v∈V

∫ ∞

τl,n

pτl,n
(v, t) log

qτl,n
(v, t)

pτl,n
(v, t)

dt,

whereδv,w andδ(t) stand for Kronecker’s delta and Dirac’s delta function, respectively. Then, we can easily show

KL(pτl,n
|| qτl,n

) = − log hm(τl,n),v(τl,n). (13)

By averaging the above KL divergence with respect toIl, we propose the following model selection criterionE (see Equa-
tion (13)):

E(A; Dl,1 ∪ · · · ∪Dl,Ml
) = − 1

Nl

Nl∑
n=1

log hm(τl,n),v(τl,n), (14)

whereA expresses the information diffusion model (i.e., the AsIC or the AsLT models). In our experiments, we adopted

Il = {[0, tl,m,v) : (v, tl,m,v) ∈ Dl,1 ∪ · · · ∪Dl,Ml
, tl,m,v ≥ τ0},

whereτ0 is the median time of all the observed activation time points.

B. Evaluation by Synthetic Data

Our goal here is to evaluate the model selection method to see how accurately it can detect the true model that generated the data,
using topological structure of four large real networks described in Section IV-A. We assumed the true model by which the data
are generated to be either AsLT or AsIC. We have to repeatedly estimate the parameters using the proposed parameter update
algorithms. In actual computation the learned values for observation period[0, τl,n] are used as the initial values for observation
period[0, τl,n+1] for efficiency purpose.

The average KL divergence given by Equation (14) is the measure for the goodness of the modelA for a training setDl of Ml

sequences with respect to topicl. The smaller its value is, the better the model explains the data in terms of predictability. Thus,
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TABLE IV ACCURACY OF THE MODEL SELECTION METHOD FOR FOUR NETWORKS

Network Blog Wikipedia Enron Coauthorship

AsIC 92 100 100 93
(370.2) (920.8) (1500.6) (383.5)

AsLT 79 86 99 76
(28.2) (54.0) (47.7) (19.0)
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Fig. 10 Relation between the length of sequence and the accuracy of model selection for a single diffusion sequence generated from the AsIC
model (There are 100 points)

we can estimate the true model from whichDl is generated to be AsIC ifE(AsIC;Dl) < E(AsLT ;Dl), and vice versa. Using
each of the AsIC and the AsLT models as the true model, we generated a training setDl. Here we setMl = 1, i.e., we generated
a single diffusion sequence, learned a model and performed the model selection. We repeated this 100 times independently for
the four networks mentioned before. We could have setMl = 100 and learned a single parameter set. This is more reliable, but
we wanted to know whether the model selection algorithm works well or not using only a single sequence of data.

Table IV summarizes the number of times that the model selection method correctly identified the true model. The number
within the parentheses is the average length of the diffusion sequences in the training set. From these results, we can say that
the proposed method achieved a good accuracy, 90.6% on average. Especially, for the Enron network, its estimation was almost
perfect. To analyze the performance of the proposed method more deeply, we investigated the relation between the length of
sequence and the model selection result. Figure 10 shows the results for the case thatDl is generated by the AsIC model.
Here, the horizontal axis denotes the length of sequence in each dataset and the vertical axis is the difference of the average KL
divergence defined byJ(AsIC;AsLT ) = E(AsLT ;Dl)−E(AsIC;Dl). Thus,J(AsIC;AsLT ) > 0 means that the proposed
method correctly estimated the true model AsIC because it means

E(AsIC;Dl) is smaller thanE(AsLT ;Dl). From the figure, we can see that there is a correlation between the length of
sequence and the estimation accuracy, and that the misselection occurs when the length of the sequence is short. In particular,
Wikipedia and Blog networks have no misselection. Figure 11 shows the results for the case thatDl is generated by the AsLT
model. Here,J(AsLT ;AsIC) = E(AsIC;Dl) − E(AsLT ;Dl). We notice that the overall accuracy becomes 95.5% when
considering only the sequences that contain no less than 20 nodes. This means that the proposed model selection method is
highly reliable for a long sequence and its accuracy could asymptotically approach to 100% as the sequence gets longer. We
can also see from Figures 10 and 11 that the results for the AsIC model are better than those for the AsLT model. We note that
the plots for the diffusion sequences generated from the AsIC model are shifted to the right in all networks, meaning that the
diffusion sequences are longer for AsIC than for AsLT. The better accuracy is attributed to this.
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Fig. 11 Relation between the length of sequence and the accuracy of model selection for a single diffusion sequence generated from the AsLT
model (There are 100 points)
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Fig. 12 Results for the Doblog database

C. Evaluation by Real World Blog Data

We analyzed the behavior of topics in a real world blog data. Here, again, we assumed the true model behind the data to be either
the AsIC model or the AsLT model. Using each pair of the estimated parameters,(rl, pl) for AsIC and(rl, ql) for AsLT, we first
analyzed the behavior of people with respect to the information topics by simply plotting them as a point in2-dimensional space.
We next estimated the true model for each topic by applying the model selection method described in Section VI-A.

1) Data Sets and Parameter Setting:

We employed the real blogroll network used by Saito et al [18], which was generated from the database of a blog-hosting service
in Japan calledDoblog. 8 In the network, bloggers are connected to each other and we assume that topics propagate from blogger
x to another bloggery when there is a blogroll link fromy to x. In addition, according to the work of Adar and Adamic [36], it is
assumed that a topic is represented as a URL which can be tracked down from blog to blog. We used the propagation sequences
of 172 URLs for this analysis, each of which has at least 10 time steps. In these 172 URLs some of them are the same, meaning

8Doblog(http://www.doblog.com/ ), provided by NTT Data Corp. and Hotto Link, Inc.
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that there are multiple sequences for the same topic, i.e.,Ml > 1. However, as in the analysis of Section VI-B, we treated them
as if Ml = 1 and used each sequence independently. The main reason for this is that we want to investigate whether the same
topic propagates in the same way when there are multiple sequences as well as to test whether the model selection is feasible
from a single sequence data in case of the real data.

2) Parameter Estimation:

We ran the experiments for each identified URL and obtained the parametersp andr for the AsIC model based method andq
andr for the AsLT model based method. Figures 12a and 12b are the plots of the results for the major URLs (topics) by the
AsIC and AsLT methods, respectively. The horizontal axis is the diffusion parameterp for the AsIC method andq for the AsLT
method, while the vertical axis is the delay parameterr for both. The latter axis is normalized such thatr = 1 corresponds to
a delay of one day, meaningr = 0.1 corresponds to a delay of 10 days. In these figures, we used five kinds of markers other
than dots, to represent five different typical URLs: the circle (◦) stands for a URL that corresponds to the musical baton which
is a kind of telephone game on the Internet (the musical baton),9 the square (2) for a URL that corresponds to articles about a
missing child (the missing child), the cross (×) for a URL that corresponds to articles about fortune telling (the fortune telling),
the diamond (3) for a URL of a certain charity site (the charity), and the plus (+) for a URL of a site for flirtatious tendency test
(the flirtation). All the other topics are denoted by dots (·), which means they are a mixture of many topics.

The results indicate that in general both the AsIC and AsLT models capture reasonably well the characteristic properties of
topics in a similar way. We note that the same topic behaves similarly for different sequences except for the fortune telling.
This supports the assumption we made in Section VI-A. Careful look at the URLs used to identify the topic of fortune telling
indicates that there are multiple URLs involved and mixing them as a single topic may have been a too crude assumption. Other
interpretation is that people’s perception on this topic is not uniform and varies considerably from person to person and should
be viewed as an exception of the assumption. Behavior of the other topics is interpretable. For example, the results capture the
urgency of the missing child, which propagates quickly with a meaningful probability (one out of 80 persons responds). Musical
baton which actually became the latest craze on the Internet also propagates quickly (less than one day on the average) with a
good chance (one out of 25 to 100 persons responds). In contrast non-emergency topics such as the flirtation and the charity
propagate very slowly. We further note that the dependency of topics on the parameterr is almost the same for both AsIC and
AsLT, but that on the parametersp andq is slightly different, e.g., relative difference of musical baton, missing child and charity.
Althoughp andq are different parameters but both are the measures that represent how easily the diffusion takes place. As is
shown in Section V-C, the influential nodes are very sensitive to the model used and this can be attributed to the differences of
these parameter values.

3) Results of Model Selection:

In the analysis of previous subsection, we assumed that all topics follow the same diffusion model. However, in reality this is
not true and each topic should propagate following more closely to either one of the AsLT and AsIC models. We attempt to
estimate the underlying behavior model of each topic by applying the model selection method described in Section VI-A. As
explained, we treat each sequence independently and learn the parameters from each sequence, calculate its KL divergences
by Equation (14) for both the models, and compare the goodness. Table V and Figure 13 summarize the results. From these
results, we can see that most of the diffusion behaviors on this blog network follow the AsIC model. It is interesting to note
that the model estimated for the musical baton is not identical to that for the missing child although their diffusion patterns are
very similar (see Section VI-A-2). The missing child strictly follows the AsIC model. This is attributed to its greater urgency.
People would post what they know if they think it is useful without influenced by the behaviors of their neighbors. For musical
baton Table V indicates that the numbers are almost tie (4 vs. 5), but we saw in Section VI-B that the longer sequence gives a
better accuracy, and the models selected in longer sequences are all AsLT in Figure 13 for musical baton. Thus, we estimate that
musical baton follows more closely to AsLT. This can be interpreted that people follow their friends in this game. Likewise, it
is easy to imagine that people would behave similarly to their neighbors when requested to give a donation. This explains that
charity follows AsLT. The flirtation clearly follows AsLT. People are attempted to do bad things when their neighbor do so. Note
that there exists one dot at near the top center in Figure 13, showing the greatest tendency to follow AsLT. This dot represents a
typical circle site that distributes one’s original news article on personal events.

VII. DISCUSSION

Myers and Leskovec [24] have recently proposed a method in which the likelihood is described in somewhat generic way with
respect to a given diffusion dataset for a wide class of IC type information diffusion models. Their purpose is to infer the latent
network structure. On the other hand, our interest is to explore the salient characteristics of two contrasting information diffusion
models assuming that the structure is known. Although their purpose is substantially different from ours, we share with them

9It has the following rules. First, a blogger is requested to respond to five questions about music by some other blogger (receive the baton) and the requested
blogger replies to the questions and designates the next five bloggers with the same questions (pass the baton).
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TABLE V RESULTS OF MODEL SELECTION FOR THE DOBLOG DATASET

Topic Total AsLT AsIC
Musical baton 9 5 4
Missing child 7 0 7
Fortune telling 28 4 24

Charity 6 5 1
Flirtation 7 7 0
Others 115 11 104
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Fig. 13 The relation between the KL difference and sequence length for the Doblog database

the common idea of estimating parameters in information diffusion models. However, there exist some mathematically notable
differences. The main difference comes from the derivation of the probability densityhm,v that one or more active parent nodes
of a nodev succeed(s) in activatingv at timetm,v for them-diffusion sequence (see Equation (3)). In order to clarify this point,
we denote the corresponding formula used in [24] byh̃m,v, thenh̃m,v is expressed as follows:

h̃m,v = 1−
∏

u∈Cm(tm,v)

(1− w(tm,v − tm,u)Ai,j), (15)

where, according to their terminology,w(t) andAi,j stand for the transmission time model and the conditional probability of
infection transmission, respectively. Here note that the product termw(tm,v − tm,u)Ai,j is equivalent to our formulaXm,u,v,
whereXm,u,v is defined as the probability density that a nodeu activates the nodev at timetm,v. (see Equation (1)).

For an active parent nodeu, the term(1− w(tm,v − tm,u)Ai,j) appearing in Equation (15) conceptually corresponds to our
formulaYm,u,v, whereYm,u,v is defined as the probability that the nodev is not activated by the nodeu within the time-period
[tm,u, tm,v) (see Equation (2)). Here note that from the observedm-th diffusion sequence, we know for sure that the nodeu could
not succeed in activatingv during the time intervalt ∈ [tm,u, tm,v). Namely, our formulation reflects this observation explicitly
in probability estimation, rather than just subtracting the probability from1, as in the expression(1 − w(tm,v − tm,u)Ai,j).
Furthermore, we can transform Equation (2) as follows:

Ym,u,v = (1− pu,v) +
∫ ∞

tm,v

pu,vru,v exp(−ru,v(t− tm,u)) dt. (16)

Here we can naturally interpret this formula as follows: the first term of right-hand-side is the probability that the nodeu fails
to activatev, and the second term corresponds to the probability that the nodeu succeeds in activatingv after thetm,v, i.e., the
fact that the nodev is not activated by the nodeu within the time-period[tm,u, tm,v) means that it has either failed to activatev

at all or succeeded to activatev but the activation time is outside of the observed time-period. The basic interpretation ofh̃m,v

is that at least one active parent node activatesv at timetm,v. Namely, the formulation allows thatv is activated simultaneously
by its multiple parent nodes exactly at timetm,v, while our formulation does not consider this possibility. When the diffusion
process unfolds in continuous-timet, the probability measure of such simultaneous activation is zero. Thus, we employ our
hm,v formulation as described in Equation (3)). Of course, in case of the discrete-time modeling, the situation of simultaneous
activation by multiple active parents must be considered adequately. The objective function for this case under the discrete-time
IC model has been derived in [37]. The major advantage of their method is that it guarantees a unique optimal solution, whereas
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ours only guarantees that it converges to a stationary solution which is not necessarily a global maximum. However, it is not
clear that a similar approach can be applied to Linear Threshold type diffusion models. In addition, as discussed above and also
shown in Section III-C, we need to elaborate on the formula forhm,v in order to model the information diffusion process more
accurately reflecting subtle notion of different time delay models and as much information of observed data as possible. It is also
not clear that the above advantage of their formulation still holds when the formula forh̃m,v is modified accordingly. Our view is
that their formulation can be a useful technique for inferring latent network structure, but it has limitation if we use it to explore
the salient characteristics of different diffusion models. In this sense, we believe that our approach based on the EM-like learning
algorithm remains vital and useful for a wide class of information diffusion models.

We started with general description for the parameter values but had to introduce drastic simplification in experimental
evaluations both for synthetic datasets and real world datasets. The results in Section VI-C-2 implies that the assumption of
topics being a decisive factor for diffusion parameter values seems to be plausible, which in turn justifies the use of the same
parameter values for multiple sequence observation data if they are talking on the same topic. However, as one counter example is
observed (fortune telling), this is definitely not true in general. Finding a small number of factors,e.g., important node attributes,
from which the parameter values can be estimated in good accuracy, is a crucial problem. Learning such dependency is easy
as exemplified in [26] once such factors are identified and the real world data for such factors are available as part of observed
information diffusion data.

As we explained in Section V-C, the ranking results that involve detailed probabilistic simulation are very sensitive to the
underlying model which is assumed to generate the observed data. In other words, it is very important to select an appropriate
model for the analysis of information diffusion from which the data has been generated if the node characteristics are the main
objective of analysis, e.g., such problems as the influence maximization problem [10, 15], a problem at a more detailed level.
However, it is also true that the parameters for the topics that actually propagated quickly/slowly in observation converged to the
values that enable them to propagate quickly/slowly on the model, regardless of the model chosen. Namely, we can say that the
difference of models does not have much influence on the relative difference of topic propagation which indeed strongly depends
on topic itself. Both models are well defined and can explain this property at this level of abstraction. Nevertheless, the model
selection is very important if we want to characterize how each topic propagates through the network.

One of the objectives of this paper is to understand the behavioral difference between the AsIC model and the AsLT model.
The analysis in Section IV-B is based on the network structures taken from real world data. We feel more mathematical-oriented
treatment is needed to qualitatively understand the behavior difference of these two models for a wide class of graphs from
various perspectives,e.g., types of graphs: regular vs random, graphs with different characteristics: power-law, small-worldness,
community structure, etc.

There are other studies that deal with topic dependent information diffusion. Recent study by Romero et al [6] discusses
differences in the diffusion mechanism across different topics. They experimentally obtain from the observation data the proba-
bility p(k) that a node gets activated after its active parents failed to activate itk− 1 times in succession, and model the diffusion
process usingp(k) under the SIR (Susceptible/Infectious/Recover) setting. Their finding is that the shape ofp(k) differs con-
siderably from one topic to another, which is characterized by two factors, stickness (maximum value ofp(k)) and persistency
(rate ofp(k)’s decay after the peak), and that the repeated exposures to a topic are particularly crucial when it is in some way
controversial or contentious. Another recent study on Twitter by Bakshy et al [7] attempts to quantify a node’s influence degree
(the number of nodes that a seed node (initial node) can activate by learning a regression tree using various node’s attributes such
as no. of followers, no. of friends, no. of tweets, past influence degree and content related features. To their surprise none of
the content related attributes are selected in the learned regression tree. They attribute this to the fact that most explanations of
success tend to focus only on observed success, which invariably represent a small and biased sample of the total population.
They conclude that individual level predictions of influence is unreliable, and it is important to rely on average performance.
Both studies approach the similar problem from different angles. There are many factors that need be considered and much more
work is needed to understand this problem.

VIII. CONCLUSION

We deal with the problem of analyzing information diffusion process in a social network using probabilistic information diffusion
models. There are two contrasting fundamental models that have been widely used by many people: Independent Cascade model
and Linear Threshold model. These are modeled based on two different ends of the spectrum. The IC model is sender-centered
(information push style model) where the information sender tries to push information to its neighbors, whereas the LT model is
receiver-centered (information pull style model) where the information receiver tries to pull information. We extended these two
contrasting models (called AsIC and AsLT) by incorporating asynchronous time delay to make them realistic enabling effective
use of observed information diffusion data. Using these as the basic tools, we challenged the following three problems: 1) to
clarify how these two contrasting models differ from or similar to each other in terms of information diffusion, 2) to devise
effective algorithms to learn the model itself from the observed information diffusion data, and 3) to identify which model is
more appropriate to explain for a particular topic (information) to diffuse/propagate.

We first showed that there can be variations to each of these two models depending on how we treat time delay. We identified
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there are two kinds of time delay: link delay and node delay, and the latter is further divided into two categories: override and
non-override. We derived the likelihood function, the probability density to generate the observed data for each model. Choosing
one particular time delay model, we showed that the model parameters are learnable from a limited amount of observation by
deriving the parameter update algorithm for both AsIC and AsLT that maximizes the likelihood function which is guaranteed
to converge and performs stably. We also proposed a method to select a model that better explains the observation based on its
predictive accuracy. To this end, we devised a variant of hold-out training algorithm applicable to a set of sequential data and a
method to select a better model by comparing the predictive accuracy using the KL divergence.

Extensive evaluations were performed using both synthetic data and real data. We first showed using synthetic data with
the network structures taken from four real networks that there are considerable behavioral difference between the AsIC and
the AsLT models, and gave a qualitative account of why such difference is brought. We then experimentally confirmed that the
proposed parameter update algorithm converges to the correct values very stably and efficiently, it can learn the parameter values
even from a single observation sequence if its length is reasonably long, it can estimate the influential nodes quite accurately
whereas the frequently used centrality heuristics performs very poorly, the influential nodes are very sensitive to the model used,
and the proposed model selection method can correctly identify the diffusion models by which the observed data is generated. We
further applied the methods to the real blog data and analyzed the behavior of topic propagation. The relative propagation speed
of topics,i.e., how far/near and how fast/slow each topic propagates, that are derived from the learned parameter values is rather
insensitive to the model selected, but the model selection algorithm clearly identifies the difference of model goodness for each
topic. We found that many of the topics follow the AsIC model in general, but some specific topics have clear interpretations for
them being better modeled by either one of the two, and these interpretations are consistent with the model selection results. There
are numerous factors that affect the information diffusion process, and there can be a number of different models. Understanding
the behavioral difference of each model, learning these models efficiently from the available data and selecting the correct model
are a big challenge in social network analysis and this work is the first step towards this goal.
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APPENDIX

A. Learning Algorithm for AsIC model

MaximizingL(r,p;DM ) is equivalent to maximizing its logarithm. Letr̄ = (r̄u,v) andp̄ = (p̄u,v) be the current estimates of
r andp, respectively. Takinglog of hm,v involveslog of sum ofXm,u,v(Ym,u,v)−1, which is problematic. To get around this
problem, we defineαm,u,v for each(v, tm,v) ∈ Dm andu ∈ Bm,v, by

αm,u,v = Xm,u,v(Ym,u,v)−1

/ ∑

z∈Bm,v

Xm,z,v(Ym,z,v)−1.

Let X̄m,u,v, Ȳm,u,v, h̄m,v, and ᾱm,u,v denote the values ofXm,u,v, Ym,u,v, hm,v, andαm,u,v calculated by usinḡr and p̄,
respectively.

¿From Equations (3), (5) and (7), we can transform our objective functionL(r,p;DM ) as follows:

logL(r,p;DM ) = Q(r,p; r̄, p̄)−H(r,p; r̄, p̄), (17)

whereQ(r,p; r̄, p̄) is defined by

Q(r,p; r̄, p̄) =
M∑

m=1


 ∑

v∈Cm

Qm,v +
∑

v∈Cm

∑

w∈F (v)\Cm

log(1− pv,w)


 ,

Qm,v =
∑

u∈Bm,v

log (Ym,u,v) +
∑

u∈Bm,v

ᾱm,u,v log
(Xm,u,v(Ym,u,v)−1

)

andH(r,p; r̄, p̄) is defined by

H(r,p; r̄, p̄) =
M∑

m=1

∑

v∈Cm

∑

u∈Bm,v

ᾱm,u,v log αm,u,v. (18)
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SinceH(r,p; r̄, p̄) is maximized atr = r̄ andp = p̄ from Equation (18),10 we can increase the value ofL(r,p;DM ) by
maximizingQ(r,p; r̄, p̄) (see Equation (17)). Note here thatQ is a convex function with respect tor andp, and thus the
convergence is guaranteed. Here again we have a problem oflog of sum forlogYm,u,v. In order to cope with this problem, we
transformlogYm,u,v in the same way as we introducedαm,u,v, and defineβm,u,v by

βm,u,v = pu,v exp(−ru,v(tm,v − tm,u)) /Ym,u,v.

Finally, we obtain the following update formulas of our estimation method as the solution which maximizesQ(r,p; r̄, p̄):

ru,v =

∑
m∈M+

u,v
ᾱm,u,v∑

m∈M+
u,v

(ᾱm,u,v + (1− ᾱm,u,v)β̄m,u,v)(tm,v − tm,u)
,

pu,v =
1

|M+
u,v|+ |M−

u,v|
∑

m∈M+
u,v

(ᾱm,u,v + (1− ᾱm,u,v)β̄m,u,v),

whereM+
u,v andM−

u,v are defined by

M+
u,v = {m ∈ {1, · · · ,M} : v ∈ Cm, u ∈ Bm,v},

M−
u,v = {m ∈ {1, · · · ,M} : u ∈ Cm, v ∈ ∂Cm}.

Note that we can regard our estimation method as a variant of the EM algorithm. We want to emphasize here that each time
iteration proceeds the value of the likelihood function never decreases and the iterative algorithm is guaranteed to converge due
to the convexity ofQ.

B. Learning Algorithm for AsLT model

An iterative parameter update algorithm similar to the AsIC model can be derived for the AsLT model, too. We first defineφm,u,v

for eachv ∈ Cm andu ∈ Bm,v, ϕm,u,v for eachv ∈ ∂Cm andu ∈ {v} ∪ B(v) \ Bm,v, andψm,u,v for eachv ∈ ∂Cm and
u ∈ Bm,v, respectively by the following formulas.

φm,u,v = qu,vru,v exp(−ru,v(tm,v − tm,u)) / hm,v,

ϕm,u,v = qu,v / gm,v,

ψm,u,v = qu,v exp(−ru,v(Tm − tm,u)) / gm,v.

Let r̄ = (r̄v) andq̄ = (q̄u,v) be the current estimates ofr andq, respectively. Similarly, let̄φm,u,v, ϕ̄m,u,v, andψ̄m,u,v denote
the values ofφm,u,v, ϕm,u,v, andψm,u,v calculated by usinḡr andq̄, respectively.

¿From Equations (9), (10) and (11), we can transformL(r, q;DM ) as follows:

logL(r, q;DM ) = Q(r, q; r̄, q̄)−H(r, q; r̄, q̄), (19)

whereQ(r, q; r̄, q̄) is defined by

Q(r, q; r̄, q̄) =
M∑

m=1

( ∑

v∈Cm

Q(1)
m,v +

∑

v∈∂Cm

Q(2)
m,v

)
, (20)

Q(1)
m,v =

∑

u∈Bm,v

φ̄m,u,v log(qu,vrv exp(−rv(tm,v − tm,u))),

Q(2)
m,v =

∑

u∈{v}∪B(v)\Bm,v

ϕ̄m,u,v log(qu,v) +
∑

u∈Bm,v

ψ̄m,u,v log(qu,v exp(−rv(Tm − tm,u))).

It is easy to see thatQ(r, q; r̄, q̄) is convex with respect tor andq, andH(r,p; r̄, q̄) is defined by

H(r, q; r̄, q̄) =
M∑

m=1

( ∑

v∈Cm

H(1)
m,v +

∑

v∈∂Cm

H(2)
m,v

)
, (21)

10This can be easily verified using the Lagrange multipliers method with the constraint
∑

u∈Bm,v
αm,u,v = 1.
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H(1)
m,v =

∑

u∈Bm,v

φ̄m,u,v log(φm,u,v),

H(2)
m,v =

∑

u∈{v}∪B(v)\Cm

ϕ̄m,u,v log(ϕm,u,v) +
∑

u∈Bm,v

ψ̄m,u,v log(ψm,u,v).

SinceH(r, q; r̄, q̄) is maximized atr = r̄ and q = q̄ from Equation (21), we can increase the value ofL(r, q;DM ) by
maximizingQ(r, q; r̄, q̄) (see Equation (19)).

Thus, we obtain the following update formulas of our estimation method as the solution which maximizesQ(r, q; r̄, q̄) with
respect tor :

ru,v =


 ∑

m∈M(1)
v

∑

u∈Bm,v

φ̄m,u,v





 ∑

m∈M(1)
v

∑

u∈Bm,v

φ̄m,u,v(tm,v − tm,u) +
∑

m∈M(2)
v

∑

u∈Bm,v

ψ̄m,u,v(Tm − tm,u)



−1

,

whereM(1)
v andM(2)

v are defined by

M(1)
v = {m ∈ {1, · · · ,M} : v ∈ Cm},

M(2)
v = {m ∈ {1, · · · ,M} : v ∈ ∂Cm}.

As for q, we have to take the constraintsqv,v +
∑

u∈B(v) qu,v = 1 into account for eachv, which can easily be made using the
Lagrange multipliers method, and we obtain the following update formulas of our estimation method:

qu,v ∝
∑

m∈M(1)
u,v

φ̄m,u,v +
∑

m∈M(2)
u,v

ϕ̄m,u,v +
∑

m∈M(3)
u,v

ψ̄m,u,v,

qv,v ∝
∑

m∈M(2)
v

ϕ̄m,v,v

whereM(1)
u,v,M(2)

u,v andM(3)
u,v are defined by

M(1)
u,v = {m ∈ {1, · · · ,M} : v ∈ Cm, u ∈ Bm,v},

M(2)
u,v = {m ∈ {1, · · · ,M} : v ∈ ∂Cm, u ∈ B(v) \ Bm,v},

M(3)
u,v = {m ∈ {1, · · · ,M} : v ∈ ∂Cm, u ∈ Bm,v}.

The actual values are obtained after normalization. Here again, the convergence is guaranteed.
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