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Abstract. Mutagenicity analysis of chemical compounds is crucial for
the cause investigation of our modern diseases including cancers. For the
analysis, accurate and comprehensive classification of the mutagenicity
is strongly needed. Especially, use of appropriate features of the chemical
compounds plays a key role for the interpretability of the classification re-
sults. In this paper, a classification approach named “Levelwise Subspace
Clustering based Classification by Aggregating Emerging Patterns (LSC-
CAEP)” which is known to be accurate and provides interpretable rules
is applied to a mutagenicity data set. Promising results of the analysis
are shown through a demonstration.

1 Introduction

Mutagenicity is one of the important biological activities of chemical compounds
for our health [1]. Mutation is a structural alteration in DNA. In most cases,
such mutations harm human health. A high correlation is also observed between
mutagenicity and carcinogenicity. However, the experimental identification of
the mutagenicity for all compounds is very hard due to the required cost and
time of the experiments. Accordingly, an analytical screening of the mutagenic
chemical compounds have been attempted in the field of Structure Activity Rela-
tionship (SAR) analysis [2]. The study of SAR between chemical structures and
biological activity is a well-established domain in medicinal science. However, the
automated classification of the mutagenicity based on the chemical structures is
still difficult due to the variety of the structure activity relationships. In recent
innovation of chemical analysis technologies, the high throughput screening on
the biological activity of chemical compounds became to provide the vast amount
of SAR data. The introduction of data mining techniques to SAR analysis will
be an efficient remedy to the difficulty of the mutagenicity classification. The ex-
tensive and detailed analysis of SAR data by some new classification technique
is expected to figure out chemical substructures causing the mutagenicity and
to facilitate the drug development process.

In the field of data mining, a new rule-based classification framework has been
proposed recently where each classification rule relates a class of instances with
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a quantitative frequent itemset appearing in the class instances. This frame-
work called “Levelwise Subspace Clustering based Classification by Aggregating
Emerging Patterns (LSC-CAEP)” [3] is based on both of “Subspace Clustering
(SC)” and “Class Association Rule (CAR)” techniques. It is known to have sig-
nificant advantages on both accuracy and interpretability of the classification
results. These advantages are highly desired for the SAR analysis on the mu-
tagenicity where the feasible relationships between the classification results and
the chemical substructures must be understood by chemists.

In this paper, some related work to LSC-CAEP is described at first to clar-
ify its features. Second, the principle of CAR mining used in LSC-CAEP is
explained. Third, the principle and the algorithm to mine QFIs which are the
conditional parts of CARs of LSC-CAEP are outlined. Subsequently, the perfor-
mance of LSC-CAEP is demonstrated for UCI benchmark data in comparison
with some major classification approaches. Finally, the mutagenicity analysis of
chemical compounds by using LSC-CAEP is shown together with the discussion
on the analysis result by an expert chemist.

2 Related Work

Subspace Clustering (SC) is to search numeric attribute subspaces to obtain
better clusters than these in the original attribute space. An initiative study
CLIQUE performs an axis-parallel grid based clustering where maximal sets of
connected dense blocks are searched by greedy merging the blocks in every sub-
space [4]. DOC seeks dense clusters in every subspace by counting the instances
in axis-parallel windows [5]. The computational complexity of the representative
grid and window based SC approaches is between O(N) and O(N log N) which is
tractable, where N is the number of instances in data. However, they miss some
clusters due to inadequate orientation, shape and size of the axis-parallel grids
and windows. The recently developed SUBCLU searches density-based subspace
clusters under a rigid density measure proposed by DBSCAN [6, 7]. It uses (anti-)
monotonicity property for the dense clusters that the instances in a cluster in an
attribute space are always included in some clusters in its subspaces. By combin-
ing this property with the Apriori algorithm, SUBCLU exhaustively derives all
dense clusters in every attribute subspace. However, because it basically needs
the pairwise distances among instances, its computational complexity under a
well designed algorithm lies between O(N log N) and O(N2) which is often un-
acceptable for large data sets [8]. Another drawback of these approaches is the
less interpretability, because the clusters having high dimensional and complex
shapes are hardly understood.

To overcome this interpretability issue, the approaches to mine “Quantita-
tive Frequent Itemsets (QFIs)” and “Quantitative Association Rules (QARs)”
have been studied. The items including numeric interval attributes such as
“< Age : [32, 35] >” are called “numeric items.” A numeric item having a unique
numeric value is represented by using a point interval such as “< NumCars :
[2, 2] >.” On the other hand, the items including categorical attributes such as
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“< Married : Y es >” are called “categorical items.” An itemset consists of nu-
meric and categorical items where each attribute does not appear in more than
one item in the itemset, i.e., any item does not share its attribute with the other
items. An itemset is a QFI if it is supported by given instances (transactions)
frequently more than a threshold called minimum support minsup. An example
QFI is “{< Age : [30, 39] >, < Married : Y es >, < NumCars : [2, 2] >}” which
states “There are many persons who are in their thirties, married and has two
cars.” Most of studies in this field take preprocessing approaches to partition the
value range of each numeric attribute into some intervals and to greedily merge
the adjacent intervals [9, 10]. The conventional Basket Analysis is subsequently
applied to find QFIs. Their complexity is O(N log N). QFIs and QARs are com-
prehensive to analyze the clusters and their inter-subspace relations. However,
the discretization of the entire numeric attribute space is not optimal for local
instance distribution in each subspace, and the greedy merging may miss the
optimal discretization.

The recent study is extending to classification based on “Class Association
Rules (CARs)” where the body is a QFI and the head a class value. Given a
training data set D which is an attribute-value and class table or a set of class
labeled transactions, let Dcl be a set of all instances having a class cl in D.
The body of a CAR is a QFI which is supported by Dcl more frequently than a
minsup threshold. The classification of an instance is made by using the CARs
which bodies are included in the instance. CBA is an initiative work on this
topic [11]. It seeks QFIs similarly to the above QFI mining, and subsequently
CARs are searched. CMAR and CAEP are the successors to improve the perfor-
mance by using multiple CARs for a classification [12, 13]. Especially the CAEP
shows better performance in comparison with the conventional classifiers such
as C4.5. However, these approaches have a problem on the optimality of the
discretization of the entire numeric attribute space similarly to the above QAR
mining approaches.

Aforementioned LSC-CAEP is an efficient remedy to overcome these difficul-
ties. It is based on a novel Subspace Clustering (SC) technique similar to SUB-
CLU which is based on a rigid density measure proposed by DBSCAN while
extending the algorithm to process both numeric and categorical items. This
technique enables a complete mining of QFIs while reducing the computational
complexity to O(NlogN) by the application of the density measure to each
numeric attribute axis. LSC-CAEP derives accurate and comprehensive Class
Association Rules (CARs) together with QFIs consisting of categorical items
and an axis-parallel and hyper-rectangular and optimum cluster in a numeric
attribute subspace.

3 Principle of CAR Mining

CARs in LSC-CAEP are derived by following the principle of CAEP [13]. The
training of CAEP consists of two processes. The first process is to derive all rule
bodies of CARs. Let the support of an itemset a by Dcl be supportDcl

(a) = |{t ∈
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Dcl|a ∈ t}|/|Dcl|. For every cl, a set of QFIs, LQFI(cl), in which every itemset
a satisfies supportDcl

(a) ≥ minsup, is derived from Dcl. In the original CAEP,
this is done through a procedure identical to the standard Apriori algorithm
whereas a SC is applied in this paper as described later. Subsequently, for every
a ∈ LQFI(cl), the following “growth rate” of a for a class cl is calculated. Let
D̄cl = D − Dcl be the opponent instances of cl.

Growth rate
If supportD̄cl

(a) �= 0, growth rateD̄cl→Dcl
(a) = supportDcl

(a)
supportD̄cl

(a) ,

If supportD̄cl
(a) = 0 and supportDcl

(a) �= 0, growth rateD̄cl→Dcl
(a) = ∞,

Otherwise growth rateD̄cl→Dcl
(a) = 0.

When the growth rate a is more than a “growth rate threshold” ρ(> 1), i.e.,
growth rateD̄cl→Dcl

(a) ≥ ρ, a is selected as a rule body where its head has the
class cl, i.e., a ⇒ cl. The underlying principle here is to select the rule bodies
having the strength to differentiate the class cl from the others. This is more
advantageous than the confidence based rule selection of CBA and CMAR. Even
if the rule confidence is high in Dcl, the rule can match many instances in D̄cl.
Such rules are weak for classification.

The second process is to derive a “base score” of each cl which is a weight-
ing factor on the votes for class prediction. First, a strength of a rule body
a is introduced as supportDcl

(a)/(supportDcl
(a) + supportD̄cl

(a)) =
growth rateD̄cl→Dcl

(a)/(growth rateD̄cl→Dcl
(a) + 1). This is because the rule

strength is mainly defined by the relative difference between supportDcl
(a) and

supportD̄cl
(a). Let LRB(cl) be the set of all rule bodies selected from LQFI(cl)

in the aforementioned process. The following “aggregate score” of an instance t
for a class cl represents the possibility of t to be classified into cl by the rule
bodies in LRB(cl).

Aggregate score

score(t, cl) =
∑

a⊆t,a∈LRB(cl)

growth rate(a)
growth rate(a) + 1

∗ supportDcl
(a). (1)

Because the number of rule bodies in LRB(cl) may not be balanced among
classes, instances usually may get higher scores for some specific classes. To
eliminate this bias, the base score is introduced to weight each class cl.

Base score:
base score(cl) is the aggregate score where the number of instances having their
aggregate scores less than this score is Tail% of all instances in Dcl.

The classification of CAEP is performed based on the CARs obtained in
the training phase. It uses the results of base score(cl), growth rate(a) and
supportDcl

(a) for all classes cl and all a ∈ LRB(cl) obtained in the training
phase. Given an instance t to be classified, its aggregate score for cl, score(t, cl), is
computed from these results and Eq.(1). Then, it is normalized by base score(cl)
to eliminate the aforementioned bias as follows.
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Normalized score
norm score(t, cl) = score(t,cl)

base score(cl) .

cl having the maximum normalized score is assigned to the class of t. Except the
derivation of LQFI(cl) for all cl, the computational complexity of the training
and the classification is O(N) where N = |D|, since it scans the training data
only twice.

4 Mining Rule Bodies of CARs

LSC-CAEP searches QFIs of rule bodies from a data set Dcl where each transac-
tion consists of numeric and categorical items. LSC-CAEP assumes that dense
clusters of the transactions exist with scattered background noise in the sub-
space. The upper part of Fig. 1 depicts this example where every numeric item
takes a point interval (unique) value in each transaction, and two dense clusters
exist in a two dimensional attribute subspace S = {p1, p2}.

LSC-CAEP uses a definition of density similar to DBSCAN. This approach
significantly reduces the possibility to miss clusters under an appropriate den-
sity threshold. LSC-CAEP uses a levelwise algorithm where it starts from the
clusters in one dimensional subspaces, and joins (k − 1) dimensional clusters
into a candidate cluster ĈS in k dimensional subspace S. While this is similar
to SUBCLU, LSC-CAEP can derive clusters on both numeric and categorical
items by embedding the levelwise subspace clustering into the standard Apriori
algorithm. At each level, first, it derives frequent itemsets consisting of categori-
cal items and numeric item’s attributes, then second, dense clusters in S formed
by the numeric attributes in the frequent itemsets are searched. The clusters
supported more than a minimum support (minsup) in numeric and categorical
attribute subspaces are exhaustively mined.

To avoid O(N2) computational complexity, LSC-CAEP does not compute
the pairwise distances among transactions. Instead, it projects transactions in a
candidate dense cluster ĈS onto each attribute axis of the subspace S. The upper
part of Fig. 1 shows a case that ĈS is a [0, 100] × [0, 100] region. All maximal
density-connected sets are searched in the transactions projected onto every axis
p, where a density-connected set on p is such that for each transaction in the set
±Δp neighborhood on p has to contain at least a minimum number of MinPts
transactions, and a maximal density-connected set is a density-connected set
which is not contained in any other density-connected set. An intersection of the
maximal density-connected sets on all axes in the subspace becomes a new ĈS

due to the (anti-)monotonicity of the density. In Fig. 1, the four intersections
are new ĈS . These projection and searching maximal density-connected sets are
iterated until each ĈS converges to a dense cluster CS . The two intersections
containing the dense clusters in Fig. 1 are retained under this iteration and the
rest pruned. In the lower part of Fig. 1, dense region of each retained intersection
is further narrowed down to ensure the density within the region projected to
every axis. Because the density on every axis is evaluated in a scan of sorted
transactions, the complexity of this algorithm is expected to be O(N log N).
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Fig. 1. Derivation of dense clusters

In the search of maximal density-connected sets on an axis, if MinPts is lower
than the background noise level, the projection of dense clusters may be buried in
the background. If it is too high, the projection of dense clusters may be missed.
Accordingly, MinPts is adapted to MinPts(ĈS, p) which is the expected num-
ber of transactions projected to the ±Δp neighborhood on an axis p from each ĈS

assuming that ĈS has the average density of the subspace S. MinPts(ĈS , p)
is always between the densities of the dense cluster and the background. In
Fig. 1, MinPts(ĈS, p) efficiently extracts the maximal density-connected sets
reflecting the dense clusters. This adaptive density threshold further accelerates
LSC-CAEP, because MinPts(ĈS , p) is higher for a lower subspace dimension,
and prunes more maximal density-connected sets below the noise level. In sum-
mary, LSC-CAEP takes the input parameters Δp (usually given by a unique
relative width αΔ over the total range of data on every axis) and minsup.
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5 Evaluation of Classification Performance

Table 1 shows the comparison of accuracy among C4.5, CBA and LSC-CAEP in
the experiments by using 23 data sets in UCI repository. The accuracies of C4.5
and CBA were evaluated through 10 fold cross validations. J48 implemented in
a data mining tool, Weka [15], was used for C4.5. CBA was obtained from its
authors. The default parameters are applied to C4.5 and CBA.

The optimal parameters of LSC-CAEP was determined by a grid search of the
parameter combinations to minimize the average classification error of 10 fold
cross validations for each data set. The parameters of LSC-CAEP are minsup,
αΔ, ρ and Tail. Mining QFIs for the rule bodies which computational complex-
ity is O(NlogN) needs the parameters of minsup and αΔ. The other part to
mine the relations between the rule bodies and the rule heads by following the
principle of CAEP is only O(N), and takes ρ and Tail. Accordingly, the grid
search of ρ and Tail was made over their wide ranges, whereas the search on
minsup and αΔ was limited to their feasible ranges based on our experience.

Table 1. Comparison of accuracies

dataset num. of num. of attri- num. of C4.5 CBA LSC-CAEP SD of
records butes(numeric) classes LSC-CAEP

Australian 690 14(6) 2 .8608 .8538 .8666 .0347
Cars 392 7(6) 3 .9617 .9744 1.0000 0
Cleve 303 13(5) 2 .7656 .8283 .8383 .0422
Crx 690 15(6) 2 .8608 .8538 .8715 .0442

Diabetes 768 8(8) 2 .7226 .7445 .7229 .0681
Ecoli 336 8(7) 8 .8422 .7018 .7794 .0992

German 1000 20(7) 2 .7070 .7350 .7173 .0517
Heart 270 13(6) 2 .7666 8187 .8222 .0694

Hepatitis 155 19(6) 2 .8387 .8182 .8236 .1062
Horse 368 22(8) 2 .6933 .8236 .8394 .0488
Hypo 3163 25(7) 2 .9889 .9826 .9793 .0071
Iris 150 4(4) 3 .9600 .9467 .9733 .0466

Labor 57 16(8) 2 .7368 .8633 .9500 .1124
Led7 3200 7(0) 10 .7337 .7206 .7400 .0117

Lymph 148 18(2) 4 .7635 .8157 .1189
Nursery 12960 8(0) 5 .9705 .8289 .9408 .0048
Pima 768 8(8) 2 .7382 .7290 .7141 .0338
Sonar 208 60(60) 2 .7884 .7746 .6681 .1288
Tae 151 5(1) 3 .5099 .4717 .5067 .1470

Tic-Toc-Toe 958 9(0) 2 .8507 .9959 1.0000 0
waveform 5000 21(21) 3 .7664 .7968 .7886 .0153

Wine 178 13(13) 3 .9382 .9496 .9833 .0374
Zoo 101 16(0) 7 .9207 .9709 .9309 .0477

Average .8123 .8264 .8379 .0555
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The final classification accuracies of LSC-CEAP were evaluated through 10 fold
cross validations over the randomly shuffled original data sets.

Table 1 indicates the top accuracies for each data set by a bold face. The bot-
tom row shows the average accuracy of each classifier over the 23 data sets. The
right most column shows the standard deviations of the accuracies of LSC-CAEP
over the 10 fold cross validations. The difference between the best accuracy and
the second best is smaller than the standard deviation for each data except car,
nursery, tic-toc-toe. Accordingly, LSC-CAEP is not very significant in terms of
the absolute difference of the accuracy from the other methods. However, the av-
erage accuracy of LSC-CAEP is higher than the other methods. Under a scoring
to assign 2 points to the best method and 1 point to the second for each data, the
total scores of C4.5, CBA and LSC-CAEP are 19, 18 and 32 points respectively.
Moreover, LSC-CAEP took the first place for 12 data sets among 23. Under the
assumption of equal accuracy of three methods, the probability of this fact which
follows a binominal distribution B(23, 1/3) is 23C12(1/3)12(2/3)11 = 2.9%. Based
on these observations, LSC-CAEP is concluded to outperform C4.5 and CBA.

6 Mutagenicity Risk Analysis

Data sets on the mutagenicity of 230 chemical compounds are released for a
benchmark of KDD Challenge 2000 in PKDD2000 conference [16]. We applied
the LSC-CAEP to a dataset called MOE.CSV which includes 2D descriptors gen-
erated using the MOE QuaSAR-Descriptors. This data contains 102 attributes
which include weight, density, hydrophobicity, geometric and physical descriptors
of each molecule such as diameters, surface areas, shape parameters, bond con-
nectivity, numbers of atoms and bonds of each type, electric charge distribution
parameters and van der Waals force parameters. The quantitative mutagenicity
activity of each instance is discretized by an expert chemist into four class levels
of Inactive, Low, Medium and High. The parameters of LSC-CAEP are set as
αΔ = 0.1Cminsup = 0.01, ρ = 1.3 and Tail = 50% according to parameter
survey.

Figure 2 represents QFIs of each class on an der Waals force area and vol-
ume plain. They should have a positive correlation in physics, and this fact is
clearly reflected. In addition, this result indicates that higher values of vdw.area
and vdw.vol lead high mutagenicity. LSC-CAEP can easily discover this type
of quantitative correlation and its association with class values among massive
attributes while this has been difficult within the conventional statistics and
data mining. The followings are a set of rules on the inactivity having significant
aggregate scores.

{< logP (o/w) : [1.69,−2.63] >} ⇒ Inactive

{< PEOEP C+ : [0.659, 1.11] >, < PEOEP C− : [−1.11,−0.659] >} ⇒ Inactive

{< radius : [3.0,−3.0] >, < vdw.area : [127.2, 162.4] >, < vdw.vol : [152.7,−198.1] >} ⇒ Inactive

The expert chemist suggested based on these rules that LogP (hydrophobicity),
vdw.area, vdw.vol, radius and PC (number of positive valence electrons) of each
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Fig. 2. QFIs of each class on vdw.area-vdw.vol plain

molecule are mutually correlated among inactive molecules, and could build a
feasible assumption that hydrophobic and small molecules having less electric
charge skewness have a tendency to be inactive. Based on the high rule inter-
pretability, the risk of the mutagenicity of every chemical compound supported
by chemical expertise can be predicted.

7 Conclusion

The generic high accuracy and interpretability of CARs derived by LSC-CAEP
have been demonstrated through its application to the benchmark datasets of
UCI and KDD2000 Challenge. Especially, its high practicality for chemical risk
analysis has been demonstrated. Further study on the wide applicability of LSC-
CAEP is currently underway.
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