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,NTERVIEWING IS ESSENTIAL IN
eliciting new knowledge from domain ex-
perts. However, computer-based knowl-
edge-acquisition systems suffer from the
so-called knowledge-acquisitiondilemma:
If the system is ignorant, it cannot raise
zood questions: if it is knowledgeable
enough. it does not have 1o raise questions.
Most efforts have therefore been devoted to
identifying what knowledge to give a sys-
tem in advance and how 1o use that advance
knowledge to facilitate acquisition.!

The tools forbuilding expert systems are
no longer simple, unstructured, general-
purpose ones. Today's tools are designed
for specific lasks. such as diagnosis or
design.? Accordingly. many interview sys-
tems for knowledge acquisition are de-
signed to elicit knowledge for a particular
class of problems, They use atask structure
(that is. a problem-solving method) to guide
knowledge acquisition.” >

Interviewing itself forms a class of tasks,
and itis worthwhile to look into the kind of
knowledge that a good interviewer uses.
Interviewers have knowledgze about the
task and domain under consideration. and
about interviewing itself. It is the lawer
knowledge that makes the interviewer an
interviewing experl. Since interviewing
{like diagnosis ordesign)is aclass of tasks,
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USING DOMAIN- AND TASK-INDEPENDENT PRIMITIVES CAN
FACILITATE OUR WRITING TASK-SPECIFIC INTERVIEW STRATEGIES.
USING BOTH STATIC AND DYNAMIC ANALYSIS LETS US BEGIN
KNOWLEDGE ACQUISITION WITH AN INCOMPLETE DOMAIN

-EXPERT

MODEL AND LATER REFINE AND BUILD THE KNOWLEDGE BASE.
WE CAN ACQUIRE KNOWLEDGE FOR CASES WE HADN’T EVEN
THOUGHT OF AT THE TIME OF STATIC ANALYSIS.

we can represent its task structure with a
set of primitives that are independent of
both domain and application 1asks and are
only interview-task dependent. These prim-
itives can facilitate the building of inter-
view systems. Existing: knowledge-
acquisition tools, however, emphasize
embedding knowlcdge of the problem-
solving methods.

Our major objective was to identify a set
of interviewing primitives. We have imple-
mented this idea in a prototype system
calledthe Shell for Interview Systems (S1S).
from which we can generate application-
specificinterviewing systems. Usingthe prim-
itives and other information on application
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tasks and domains, we can write task-
specific imerview strategies. Our prototype
is therefore aninterview metasystem(a sys-
tem that generates an interview system).

This is certainly not a new idea. For
example, Protégé is a tool for creating
models.® Assuming a class of tasks that can
be solved using skeletal-plan refinement,
Protégé generates application-tailored.
model-extending tools such as Opal, a
knowledge-acquisition tool for the Onco-
cin medical expert system.

In contrast, our approach does not em-
bed any problem-solving method in ad-
vance. In other words, Protégé uses a top-
down approach whereas our prototype takes
S =
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Table 1. Primitive attentions for static analysis.

ACTIVATION CRITERION

PRIMITIVE ATTENTION

NosameFrameNosameSloiNosameValue  Nothing to share )

SameValue Same value to share interviewing that guide the interview flow,
SameSlot Same 5:’“ to share e e prevent unnecessary queries, and make
g:migll'::g:mevalue g:m:fr:';%"gg;:?t?g]m:s e elicitation of new knowledge more effi-
SameFrameSameValue Same frame and value 1o share cient. They are similar to the concepts of
SameFrameSameSiot Same frame and slot to shae impropriety. critic, or credit assignment.’

SameFrameSameSlotSameValue Same frame, slot, and value to share

abottom-up approach. Having a task model
is certainly advantageous. because no in-
terview is feasible without knowing how
the knowledge is to be used. On the other
hand. since similar tasks use similar strat-
egies. constructing strategies from
fundamental primitives builds accumulat-
ing libraries. withthe same effectas having
various task models in advance. Both ap-
proaches aim at the same 2oal but from
opposite directions. Although Protégé
clearly distinguishes between building and
extending models. our examples illustrate
that these two activities are relative, One
mechanism can generate both tools.

We have demonsirated this idea’s gen-
erality and effectiveness for static analysis
intwo implementations. First, we used SIS
to generate SIS-More, a program that func-
tions like More. a knowledge-acquisition
system for diagnostic expert systems.> We
also built 11S-LD. an intelligent interview
system forthe logical design of databases.”
However, we wanted 1o extend our ideas to
a more general framework by including
dynamic analysis. since a system can ac-
quire knowledge more efficiently by actu-
ally solving a problem using acquired
knowledge and then refining it during
problem solving. Therefore. just as More
was extended 10 Mole (the knowledge-
acquisition system for diagnostic tasks that
first made explicit the idea of knowledge
acquisition by dynamic analysis®). so we
extended 11S-LD 1o become 1IS-DB, an
intelligent interview system for database
construction that uses a set of additional
primitives to describe its inmerviewing
strategy in dyvnamic analysis.

§1S, an interview
metasystem

SIS serves as an interview system skel-
eton. It provides interview-task-specific
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primitives and a set of descriptors (o rep-
resent task-specificinterview knowledge.
By instantiating SIS with this knowledge,
we can obtain a task-specific interview
system.

SIS supports knowledge acquisition by
static analysis. [t specifies question strate-
gies by analyzing the nature of the task in
advance, separate fromactual problem solv-
ing. In other words. the system considers
only static attributes of the knowledge base
rather than behaviors that result when the
knowledge base is actvally used. Task-
specific interview systems generated by
SIS donot contain a problem solver, that is.
acomponent thatevaluates the performance
of the expert system for which the knowl-
edge is to be elicited. (The version of SIS
we describe here is newer than reported
previously® and uses different terminolo-
gies to describe primitives.)

An interview system generated by SIS
begins by requesting initial information to
start an interview andconstructs an incom-
plete domain model in network form. It
then parses an expert’s sentences and gen-
erates asctoftask-specific arremions. Based
on these attentions, the system raises ques-
tions to elicit new knowledge. The domain
model is refined through answer/attention/
question cycles.

The domain model. SIS represents an
application task's domain model as a
network with nodes and links, that is, a
directed graph. Nodes represent concepls
and link relations among concepts. Both
nodes and links are represented as frames
with slots, and each slot has a set of values,
This representation includes standard fea-
tures such as class hierarchy and class-
instance relations.

Genericattentions, S1S's interview-task-
specific primitives, called generic attentions,
are clues encountered during the course of

“Generic” means that these attentions are
domain independent and task independent,
They are abstract entities that must be in-
stantiated to a specific situation and inter-
preted as meaningful task-specific atien-
tions when SIS is applied to a specific task.

The purpose of static analysis is to create
initial domain modecls. which are often
incomplete. Therefore, we emphasize build-
ing models from scratch. (This is not strictly
correct, since basic concepts must be pro-
vided as prototypes. as we explain later.)
The main operation here is to structure the
network by comparing each frame with
other frames in the partial structure or with
known prototype frames. Since both nodes
and links are represented as frames. and
each frame can be defined by specifying its
slots and their values. we have eight (;Cp +
1€} + 1Cs + 3Cy) basic primitives for com-
parison. We call these primitive atrentions,
and they are listed in Table 1.

Comparing frame structures involves one
or more primitive attentions. We define
cach comparison as a generic altention
because the result of this operation can be
a clue to take a new action. For example.
checking whether there is a linkable path
between two frames involves looking for a
node-frame with a slot whose value equals
that of a given slot of a given frame. The
generic attention of this operation is Found-
Candidate. Thisisequivalentiocomparing
two frames in which only one slot value is
constrained and shared. which we denote
as the primitive attention SameValue.
Checking if multiple paths exist from one
node to other nodes generates the generic
auention called SameSource. This is equiv-
alent to comparing two link-frames that
have the same node value for the from-slot,
which we denote as the primitive attention
SameSlotSameValue.

A sequence of linkable paths between
two frames forms a path. and if two paths
share one part we say that there is a com-
mon path. Checking if there is a common
path for different nodes generates the ge-
neric attention CommonPath, which canbe
rcalized by using the above two primitive
autentions in combination. Also, one prim-
itive attention can correspond to more
than one generic attention. For example,
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Table 2. Generlc attentions (thus far identified).

GENERIC ATTENTION Primimive(s) ACTIVATION CRITERION

FoundCandidate SameValue A concept linkable to a path

SameSource SameSiotSameVaiue Multiple paths to a node

CommonPath SameValue, SameSlotSameValue A common path for different nodes

ScriptTracer SameFrameSameSlot A query description in the class
UnknownObjectDetector NosameFrameNosameSlotNosameValue Unknown concept provided

DiscordDetector SameFrameSameSlot Discrepancy found in the slot values of two nodes
AmbiguityDetector SameFrameSameSiot More than two values assigned to one slot
CertaintyManager SameFrameSameSlotSameValue Reliability within the tolerance

ConstraintChecker SameFrameSameSiot Constraint violated for the slot value of a node

checking foradiscrepancy between the slot
values of two nodes generates Discord
Detector; checking if the slot value of a node
violates its constraint generates Constraint-
Checker. Both are generated by the Same-
FrameSameSlot primitive attention. We
distinguish between the two generic atten-
tions by specifying which frames or slots to
focus on. The “same™ here means that the
subsumption relation holds. For example,
comparing an instance withitsclassis part of
the SameFrame primitive auention.

Table 2 lists the generic atwtentions we
have identified for static analysis. We do
not claim that the list is complete. It is only
a subset of the generic attentions derivable
from primitive attentions. Each generic
attention has a corresponding criterion for
it to be activated. The primitive atention
SameFrameSameSlot is used most fre-
quently because it is a fundamental opera-
tion to check a new frame.

Implementation. The top layer of an
implemented system is the instantiated in-
terview-system layer (see Figure 1). Below
are two more levels. The middle level, the
internal-structure layer, represents the
system in terms of the program modules
specific to S1S. At the bottom, the knowl-
edge layer specifies the behavior of each
module in the internal-structure layer by
declaratively describing those behaviors.
The knowledge givenhere eventually deter-
mines the behavior of the interview system.

Interview strategy. As is clear from the
above description, generating and process-
ing attentions are central 10 knowledge
acquisition by interviewing in SIS. The
system executes each question and answer
by generating a corresponding attention
and processing it accordingly. Each auen-
tion has its own knowledge 1o raise a query
to the user. The details of the behaviors
that depend on each interview system are

Figure 1, Implementation of the interview system.

defined by the knowledge given to each
module at the knowledge layer. We use the
following descriptors to express five kinds
of knowledge:

(1) Prototype defines a metadescrip-
tion of the domain (for example, a class

description). It defines the attributes that
the nodes and links can have. their default
values, is-a relations between nodes. how
the knowledge acquired by the interviewee
is stored in the domain model. and how the
internal structure (domain model) is trans-
lated into English sentences.
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Praototype hypothesis
super_class noun
slots

{link_to_symptom, frequency_cond]. '

Prototype symptom
super_class noun
slots
[link_to_symptom, link_to_hypothasis, |Ink_to_test].

Prototype s_h_link
super_class noun
slots
[symptom, hypothesis, condition, attribute, value).

"iaskunimm.m.&!omnnﬂr
sub_task

: thnlthLumin_mdﬂ.
" wihile attentonListNothil
. -.do-check_domalin_model,
genarata_rule_set, .
check_rule_set.
Task make_initial_domain_mode!
sub_task
ask_initial_set_of_symptoms,
ask_initial_set_of_hypothesis,
ask_initial_association,
Task check_domain_model
sub_task
while getAtlention — A
do process_attention (A). |

Figure 2. SIS-More Prototype definitions,

Figure 3. The top-level task of S1S-More.

"Det-gen-atin-SameSource -
use SameSlotSameValue
object_pattem F1 — s &F2—s /* Pattern usad in Apply i
attention_pattern
SameSource(F1.list_of(F2)).

already acquired knowledge. The generic
attention can be instantiated to a task-
specific attention through renaming. The
system generates this attention only when
thecorresponding activationcriterion s satis-
fied for the objects defined by the Apply

Figure 4. Def-gen-atin.

declaration. Each time the domain model
changes, the system searches automatically
1o see if any criterion is satisfied for each

ly
SameSource
object

domain (s_h_link) — symptom & /*Find two s_h_links that have */
domain (s_h_link) — symptom. /* the same symptom value.

object specified by this declaration.

(4) Task controls the interview flow. It
also defines how to process gencric or
task-specific anentions when they are acti-
vated. It can handle loops. conditional
branches. and subtask calls. It also calls

/

.Figun 5. Apply.

Ask. which predefines the question to ask.
In other words, the user can define an

7asi: ditfmnﬁaﬂnn
attsntion SameSource (L1, |.2__
sub_task
Symptom = L1 — symptom,
callProlog getPathEndList (lz_s, Eudl.]sl}
callAsk ask_differentiation_start (Symptom, EndList),
differentiation_ask({ Symptom, EndList, HypoNot),
when HypoNot = [H1,H2]_)
do symptomDistinction (Symptom, HypoNot).

Task differentiation_ask (Symptom, EndList, ResuliList)
sub_task
allocVariable(RR),
( while getOneElement(EndList) = H
do callProlog remove(H,EndList,HR),
callAsk ask_new_symptom_by_dilf (Symptom,H,HR R},
when R !== [] do pushToVariable(R,RR)
). getvariable(RR) — ResullList,
freeVariable(RR).

interviewing strategy with a pair of Apply
and Task declarations. Each Task has its
own name, which is a strategy.

(5) Ask describes queries.

Applications. The interview systems we
generated with SIS — SIS-More and 11S-
LD — are differentin two ways. First. SIS-
More's task is diagnosis, while 11S-LDs is
design. Second. the systems have different
levels of knowledge acquisition: using Mus-
en's terminology.* SIS-More extends the
task model while [1S-LD creates it. The
task model in SIS-More is given as a set of
interviewing strategies and a domain
model structure (a domain metamodel de-
fined by Prototype descriptors), both of
which are the input to SIS. (A domain

Figure 6. A Task description of differentiation.

metamodel is a model that knows about
and generates a specific domain model.)
SIS-More then acquires instances of diag-
nostic knowledge foraspecific application
{for example. the domain of drilling flu-
ids). In 1[S-LD. the sk model is not the

(2) Def-gen-aitn defines generic atten-
tions from primitive awentions. The user
can add generic attentions to the list that
SIS recognizes.
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(3) Apply defines where 1o apply a ge-
neric attention. [t specifies which objects o
focus on and detects a network location
where the system adds, modifics. or deletes

e e eeiman -

e ———

input; it must be acquired. Its input is a
kind of metaknowledge 1o acquire such a
model. 11S-LD does not acquire instance
data (the content of the designed database).
IGEEEXPERT




SiS-More

The task of SIS-More is heuristic classi-
fication. The system acquires diagnostic
knowledge as rules that relate symploms to
a possible hypothesis. The eight question
strategies in More are based on insights
made in advance. so that actual problem
solving is unnecessary (static analysis).
For example. the differentiation strategy is
usedtodistinguishtwo hypotheses for which
the same symptom appears. Unless this
strategy is used. cases might arise in which
two hypotheses are derived for a single
symptom. This Kind of problem can easily
be predicted in advance and does not re-
guire problem solving.

The domain model. 515-More’s do-
main model is a network of causal rela-
tions between sy mptoms and hypotheses.
Since frames represent both nodes and
links in SIS. each hypothesis. sympiom.
and causal relation is represented by an
instance of a corresponding class frame.
which is defined using the Prototype
descriptor.

Interview strategy. We can represent
all ¢ight question strategies as well as task
control in SIS-More using the five SIS
descriptors. Figure 2 shows how we use
Prototype to define hypothesis, symptom,
and causal link. SIS-More s top-level task.
Construct_KB_in_More_manner, updates
and checks the domain model until there
are no more attentions (see Figure 3). In
Figure 4. the Def-gen-attn descriptor de-
fines the generic attention SameSource
using the primitive autention SameSlot-
SameValue. SameSource. which can be
used to represent the differentiation strat-
egv in the task description. is activated if
there are multiple paths between a symp-
tom and several hypotheses. Since Same-
Source stands for the sitvation of this
attention. noe renaming o a task-specific
attention is necessary. The Apply descrip-
wr in Ficure 5 defines the objects on
which te focus the SameSource attention.
Figure 6is a Task description of the differ-
entiation strategy. If this attention is gen-
erated, the system queries whether there
are any symptoms that can differentiate
the hypotheses, IF multiple hypotheses
remain that are not distinguishable, the
svstem gueries whether any symptom
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1. increase_ln_viscosity.
>1.

>ng.

>YyBs.

' "MIS_I;GHBN!INII!M. ulm_{nll’nx

Hmumwnmwwmmm Nmmmﬂﬂum
incmu_ln vlsousny.

>

Please ss!act symptoms assoclated with water_influx from:

shale_contamination and water_influx can give the same symptom
increase_in_viscosity. Can you provide a symptom assaciated with
shale_contamination that cannot be explained by water_influx ?

Gan you provide a symplom associated with water_influx
that cannot be explained by shale_contamination ?

Enter the symploms associated with water_infiux.
>increase_in_unemulsitied_water.
May increase_in_unemulsified_water be a hypothesis 10

increase_in_viscosity ?
>No.

Ok. I will make a rule KB. Wait a moment, please.

It increase_in_viscosity. Then shale_contamination
It increase_in_viscosity. Then water_influx
If increase_in_unemulsified_water. Then water_influx

Figure 7. A dialogue with SIS-More. User input is in bold type.

attributes can help differentiate these
hypotheses.

Dialogue. Figure 7 is an example dia-
logue between a user and SIS-More. The
system notices the ambiguity in the rela-
tions between the initial symptom and the
hypotheses, and raises questions to differ-
entiate the hypotheses. It then asks if the
newly provided symptom can be a cause of
the already known symptom. and it pro-
duces three diagnostic rules.

s

11S-LD creates logical designs of data-
bases based on the entity-relationship
model. The task therefore is 10 enumerate
the necessary and sufficient entities in the
domain of interest and the relationships
tactivities) among them. (Entities and rela-
tionships here are abstruct concepts. Ex-
amples are “part-17 and “construct-1."

which still need to be instantiated by actual
data.)

The domain model. We again us¢ a
network to represent [1S-LD’s domain
model as a plan structure (explained be-
low). Each relationship and entity in the
domain is represented by a verb frame and
a noun frame. The meaning of the nouns
is domain specific, so that each noun is
treated as an unknown concept. 115-LD is
not provided with adictionary for the nouns.
but with 17 abstract concepts such as
AbstractRelation, PhysicalObject. Living-
Thing. and s0 on. Each new noun acquired
by the interview is placed at a lower level
in the noun hierarchy as a more specific
concept. Therefore. each noun frame has
its superconcept as well as its attributes
(slots and values).

In contrast. 11S-LD has a domain-
independent verb dictionary. Each verb
frame has slots where the candidates of the
noun concept that fit into these slots are
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filled. Their initial values are abstract con-

(" construct-1
goal: exist
what: O \
action: make_exist
precond: exist )
what: O— ~

cepls. What we give SIS in the first place
depends on the nature of each application.
In this case, a relationship can be ex-
pressed using a verb, and a verb has its
own meaning. Thus, it makes sense to
prepare the verb dictionary in IIS-LD as
part of the domain metamodel using Pro-

goal: exist
what: 00—~

action: c_where 1

precond: exist

cond_preced: [T, O4-

part
|| super_class_is: {physicalObject]

. |instance: O— O

.| atributes:  © )

totype descriptors.

Plan structure. A sequence of activi-

i 1
cost =— pant-1 ~—m—

part-2

ties forms a plan. If the goal of verb A is

- company - - a subset of the precondition slot (se¢ be-
super_class_s: (organization] low) of verb B, then we say that A and B
instance: vy .
attributes: 0 can be_]mked. Asetofverbs lm]_(ed sequen-

tially is called a plan. Planning consti-
tutes searching for the verb that succeeds
or precedes the given plan. Thus the plan
structure represents a domain model in
address company-1 I1S-LD. (Correspondingly, the causal

| structure represents the domain model in

| | | |

S1S-More.)
Figure 8 shows a plan structure, the

Figure 8. A plan structure in N1S-LD.

conceptual diagram of the domain model
acquired and used by 1IS-LD. Rectangles
represent frames. From the content frame,

Prototype mstmﬁl
super_class verb
slots [

[goal, [exist [what, how_many, when, where]],

[action, [make_exist]],

[precondition, [exist, [what, how_many, when, where]]]).

which lists the verbs and nouns used in the
domain, we can see that the name of the
database is “MakerDB™ and that there are
two verbs and two nouns. Two frames rep-
reseht the activity in which a part (part-1)
is construcied from other parts (part-2) that

Rugs vy o

Figure 9. An 115-1D Prototype definition.

are supplied by a company. Each verb

Task design_db . ,

sub_task "

make_initial_domaln_mode]
generate_ER_model.

Task make_initial_domain_model
sub_task
do ask_query ->Q
check_domain_model
while Q !=={].

Task check_domain_model
sub_task

while getAttention — A i

do process_attention (A). I

e ——

plan 1 g‘ ! " v o,
attention FoundGandidate(F1, F2_s|
sub_task
callAsk exist_link(F1, F2_s, Cand),
callAsk new_value(Cand).

Ask new_value([V1IV_rest])
showNI {'Please enter an information requirement about ', V1),
get_answer Query,
new_value (V_rest).

Def_gen_attn FoundCandidate
use SameValue
object_pattern F1 — 51 & F2 — 52
attention_pattern

FoundCandidate (F1. list_of (F2)).

domain {verb) — goal

||

Figure 11, Plonning.
Apply
FoundCandidate :
object '
domain (verb) — precondilion & /* precondition of an instantiated */
prototype (verb) — goal, /* verb and goal of the verbs */
/* in Prototype */
domain (verb) — precondition & /* precondition of an instantiated */

/* verb and goal of the other */
/* instantiated verbs */

Figure 12. Def-gen-atin in 11S-10.
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Figure 13. Apply in 115-LD.
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frame has three slots: Goal indicates the
state attained by the verb, Action indicates
the action taken by the verb, and Precon-
dition indicates the states that must have
been attained for the verb to execute its
action.

Interview strategy. The nine generic
autentions in SIS are sufficient to describe
the interview strategies in SIS-More and
1IS-LD.

Figure 9 shows how we use the Proto-
type descriptor to define the verb “con-
struct™ in the dictionary. Figure 10 defines
Design_DB, 1I1S-LD's top-level 1ask. The
system first creates an initial model and
converts it to the entity-relationship de-
scription. It then updates and checks the
domain model until there are no more que-
ries and attentions.

Figure 11 is a Task description of the
Planning strategy associated with Found-
Candidate. If this attention is generated,
candidates of the verbs that can precede a
given verb are returned and displayed. In
Figure 12 the Def-gen-attn descriptor de-
fines the generic attention FoundCandidate
using the primitive attention SameValue.
FoundCandidate is activated if there is a
path linking two different nodes. The Apply
descriptor in Figure 13 defines the objects
on which to focus FoundCandidate: It tells
the system to focus on

(1) the goal of the verbs in the dictio-
nary (the prototype) and the precondition
of a given verb in the plan structure (the
domain model). and

(2) the goal of the verbs and the pre-
condition of a given verb in the plan
structure.

Dialogue. In the example dialogue be-
tween a user and IIS-LD in Figure 14, the
system uses the Planning strategy. Since
IIS-LD does not know the noun “part.” it
asks a question 1o locate it in the noun
hierarchy. Since “part” here does not refer
to a specific part, the answer is "No.” 11S-
LD then instantiates this noun. Found-
Candidate is generated by analyzing the
madel. and the candidate verbs are picked
up and displayed. 11S-LD guesses from the
default value of the Construct verb frame
that the superclass of “parnt” is a Physical-
Object. and the system lists the noun's
possible auributes. Dialogue continues and
HIS-LD outputs the designed conceptual

schema at the end. This example shows
that attentions are generated not only when
something is improper or criticized but
also when background knowledge can
make the elicitation more efficient.

Static analysis such as that used in

More and [1S-LD is best suited for cases
where the metastructure of the domain

= .

s

> .

> Ho mare.
Let's’discuss the following fact:

Do you agres 7

> Yes.

Which do you vsant to store 7
>8.

Is ‘company’ an insiance of an entity ?
> Ho.

> Yes.

Let's discuss the following facts:
F1:Part-1's ara constructed from part-2's.
F2:Part-2's are supplied from company-1's.
Is the next fact true ?

> Yes.

Let's discuss the following noun:
N:Part.

[ think it's one of the physicalObject.

Is it right ?

> Yes.

1.size 2.weight 3.cost 4.price 5.(other)
2, 3.

Designed conceplual schema is as follows:
construct (part-1.part-2)
supply (part.company)
part (name.weight.cost)

| company (name,address)

jrts which are congiriictod lrdm‘@tﬂerﬁafha o

. DOYUWant 1o Know the fiams 6f part-1's which ars:constnucted from part-2's 2.

' Plomentnr tha néxtinformation requirement.

*F1¥-:Part-1's are constructed from part-2's, '
| think you should store the infarmation about the following varbs which can precede ‘construct’:
1.buy 2.sell 3.make 4.ship 5.stock 6.supply...

Please enter the information requirement about *supply".
> Soma parts are suppliad from olher companies.

Do you want to store the information about *Part-1's are supplied from company-1's™ ?

F:Part-1's in F1 are constructed from part-2's in F2.

Please choose the attributes of the part from:

i3

Ok. | start designing conceptual schema. Wait for a moment, please.

Figure 14. Dialogue with IIS-1D,
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Table 3. Primitive attentions for dynamic analysls.

PRIMMIVE ATTENTION ACTIVATION CRITERION

FramelnD,NotinD,
FramelnD;MNotInD,
SlotinD,NotinD,
SlotinD;NotinD,
ValuelnD,NotinD,
ValuelnD,NotlnD,

A frame in D, but not in Dy

A frame in 0, but not in Dy

A slotin D, but not in D for a frame in both D, and D,

A slotin D; but not in O, for a frame in both 0, and D,

Avalue in D; but not in D; for a frame and a sict in both D, and 0;
Avalue in 0, but not in D, for a frame and a slct in both D, and D,

Table 4. Generic attentlons for dynami¢ analysls.

Gentric artention  PRisiTive

ACTIVATION CRITERION

FrameNo1Exist FramelnD;NotinD,
SlotNotExist SlotinD,NotinD,
ValueNotSame ValuelnD;NotinD,

Aframe in D, but not in D,
Aslotin 25 but notin D, for a frame in both O and 2,
A value in Oy but not in [, for a frame and a slot in

both B, and D;

knowledge is well understood. Static anal-
ysis is notas useful for the logical design of
a database for several reasons.

* ltisdifficultto prepare sufficientques-
tion strategies in advance.

* Domain expens often are unable to
answer on the spot.

* Some problems ¢an be noticed only in
actual use.

The last point was a particular problem
in the dalabase design domain. We often
detected a model deficiency while using
the implemented database. (Imagine the
situation in which a user is asked what kind
of relationship is missing without having
the actual data. that is. without running the
database program.)

Logical design and dynamic analysis.
11S-DB. an improved version of 1[S-LD,
employs dynamic analysis to overcome
this difficulty. 11S-DB includes I[S-LD as
onc of its components. By interviewing the
user. 1[S-DB acquires the domain knowl-
edge that maps the real world into the
structure of the database that the domain
expert/user wants to build. 1[S-DB uses
11S-LD 1o acquire the initial knowledge
and then refines it by huving the user use
the implemented database.

Queries raised to 11S-DB assume the
latest model that the user has in mind.
Deficiencies in the knowledge appear in
the disagreement between the model as-
sumed by the query and the implemented
muodel. The systemean raise questions based
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on this disagrecmentand modify the model
accordingly, simulating the behavior of a
database design expert. If a natwral-
language user interface is provided, the
system can explore the cause of the dis-
agreement without imposing an unneces-
sary burden on the user.

This refinement process is iterative, go-
ing through construction/preblem identifi-
cation/reconstruction cycles. [1S-DB eval-
uates the prototype database to identify
problems, analyzes the problems, and cor-
rects the domain model. It then recon-
structs the database based on this corrected
model and repeats the evaluation.

Applying knowledge and analyzing re-
sults are both important in dynamic analy-
sis. For example, in the case of dynamic
analysis during knowledge acquisition for
adiagnostic expert system, applying knowl-
edge means carrying out a diagnosis, and
analyzing results means comparing the pre-
dicted results with the decision made by
the expert.

As is clear from the above description.
11S-DB initiates an interview with the
query in question as a clue. based on which
modifications are made 10 the logical de-
sign. Once the clue :s obtained, there is no
substantial distinction between static and
dvnamic analysis. The stratcgies and the
mechanism are the same. The same data-
base would have been obtained if the clue
obtained dynamically were known from
the beginning.

Generic attentions. The purpose of
dynamic analysis is to refine the initial

incomplete domain model. This refinement
is based on comparing two networks, the
current domain model (D)) in the knowl-
edge base and the network representing an
expert’s problem solving (D1). An input
query in [1S-DB represents the partial plan
structure that the user has in mind about the
domain. and it can be compared with a plan
structure in the knowledge base.

Since frames represent the network. there
are only six primitive attentions in addition
to those for static analysis (see Table 3).
The two sets are similar, but their activa-
tion criteria and therefore their meanings
differ.

In [1S-DB. D, represents the world cov-
ered by the logical design. and D, repre-
sents a part of the world that the user has in
mind. We are interested in three cases for
this discussion:

* Case 1. The intersection of D, and D
is the world that the user requests and the
system can handle.

¢ Case 2. Those in D, and not in D are
the part covered by the logical design but
not in the user’s mind.

* Case 3. Those in D» and not in Dy are
the part the user has in mind but not cov-
ered by the logical design.

As isclear, discovering case 3 is important
in [IS-DB. Errors in Dy are generally diffi-
cult 1o find. and they can be detected as
contradictions in case 1.

As in SIS, we can define generic atten-
tions using these primitive attentions (see
Table 4).

Task-specific attentions and their
processing. Our analysis with 11S-DB
has resulted in five task-specific auen-
tions: FrameNotExist generated two, Slot-
NotExist generated two. and ValueNot-
Same generated one. 11S-DB activates and
processes them in various situations.
VerbNotExist, instantiated from Frame-
NotExist, is generated when a verb frame
in the query’s partial plan structure does
not exist in the database’s plan structure.
This corresponds to the situwation where
the user enters a query about an activity
not known to the domain model. Either
there is no frame for a verb with that mean-
ing. or a synonym was used. 11S-DB first
checks the synonym possibility. If it is
a valid synonym. the frame is renamed.
Otherwise 11S-DB adds the verb to the plan
structure.
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NounNotExist. also instantiated from
FrameNolExist, is generated when a noun
frame in the query's plan representation
does not exist in the database’s plan struc-
ture. As in VerbNotExist, the user has
entered either an entity unknown to the
domain or a synonym of a known noun.
1IS-DB interviews the user and adds a new
noun frame if needed.

VerbSlotNotExist. instantiated from Slot-
NotExist. is gencrated whenaslotina verb
frame in the query’s partial plan structure
does not exist in the corresponding verb
frame in the database’s plan structure. This
implies that a new attribute is needed in the
domain model. IIS-DB asks the user if this
attribute is to be added or not. If the answer
is yes. it is added to the verb frame.

Similarly. NounSlotNotSame. also in-
stantiated from SlotNotExist, is generated
when a noun frame slot in the query’s
partial plan structure is not among the slots
of the corresponding noun frame in the
database’s plan structure. IIS-DB asks the
user if the attribute should be included. and
adds it if so.

VerbSlotValueNotSame, instantiated
from ValueNotSame. is generated when a
slot’s value in a verb frame differs in
the query’s partial plan structure and the
database’s plan structure. There are two
cases:

(1) A new relation or a modification of
an existing relation is needed.

(2) Either the entity name correspond- |
ing to the value used in the query is a
synonym of an entity in the plan structure,
or the entity name subsumes (or is sub-
sumed by) some entity in the plan struc-
ture. For example, “company™ subsumes
“factory.”

11S-DB checks if a synonym or a subsump-
tion relation exists and. if so. replaces the
slot value of the query's plan representa-
tion so that the search becomes possible. If
not. the system initiates an interview and
modifies an existing verb or creates a new
verb frame after renaming.

Configuration. 11S-DB consists of [1S-
LD and other modules, including a data-
base-management-system interface, a
knowledge base for database construction,
and a supervisor (see Figure 15). The su-
pervisor monitors cach module’s behavior.

[1S-DB translates natural-language
queries into queries written in Data
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Figure 15. Configuration of 11S-DB.

Manipulation Language. The interface mod-
ule then transfers these queries to the data-
base management system and receives the
search results. It is necessary to have a
database management system for 1I1S-DB
to actually work. The present study uses a
relational database management system
written in Prolog that can process Data
Manipulation Language of the Structured
Query Language type.

Knowledge added to 11S-DB. The fol-
lowing knowledge is stored in the newly
added IIS-DB knowledge base:

* Definition — knowledge that defines
the database (using Data Definition
Language) based on the result of logical
design.

* Data load — knowledge used to gen-
crate the specification for the initial data
format and the initial data load program.

* Query processing — knowledge 1o
generate attentions by comparing the sys-
tem’s plan structure with the one esti-
mated from query (Def-gen-attn and Apply
descriptions).

* Strategy for dynamic analysis —
knowledge 10 resolve each attention (Task
descriptions).

* Structured Query Language (SQL) —
knowledge to generate the query from the

partial plan structure using the Data
Manipulation Language.

* Selection-result analysis — knowledge
to generate the response to the user from
the search results (Task descriptions).

* Modification — knowledge 10 gener-
ate, on the basis of the modified domain
model, both the specification of the format
for the additional data and the database
modification program.

Dialogue. Anexample dialogue between
11S-DB and a user is shown in Figure 16.
Ten steps are delineated by alternating shad-
ed bands. Steps | and 2 show the creation
of the prototype database program. First, a
database consisting of the relations supply.
stock, and part is created. The questions
raised by the system during this phase are
based on 1IS-LD reasoning. The response
here is similar to the dialogue with [IS-LD
(Figure |4). Figure 17a shows how the
database’s plan structure is modified dur-
ing the course of interviewing in the dia-
logue in Figure 16. The solid rectangles in
Figure 17a show the nlan structure created
by the dialogue in step 1. which is the
domain model up to this point. This is the
result of static analysis. Two verbs (“sup-
ply” and “stock™) and two nouns (“part”
and “warehouse™) each huve instances and
attributes.




12- interview.
Please enter the name of your database.
> makerDB

Let’s start designing a conceptual schema of makerDB.
Please enter the information requirement.

> Find the name and the quantity of parts which are stocked.

Is "part’ an instance of an entity ?

>No.

Please enter the information requirement.
>Find the name of parts which are supplied.
Please enter the information requirement.
>None.

Let’s discuss the following noun: N: part.
I think that it's one of the physncaIObject Is it right ?

>Yes.

Please choose the attributes of the part from:
1. size 2. color 3. price 4. (others) (.<nl> for none)

>2,3.

Olk. | start designing a conceptual schema. Wait a moment,
please.

Please choose the key attributes of the part from:

1. name 2. color 3. price

Which ?

»>1.

The Designed conceptual schema is the following:
type (part, price, int)

type (part, color, char)

type (part, name, char)

rel (stock, [part], {quantity])

key (stock, [part
hie (stack, part, |].1:1)
rel (supply, [part], l])

key (supply, [part])

hie (supply, par, [],1:1}

selEnt (part. []. [name color price])
key (part, [name])

12- do_formal.

Ok 1! | start making a load program.

12- do_load.

Ok ! Load start !

Completed making the first database !

12- do_use.

Please enter a query sentence.<none. for end.>

>Find the name and the color of paris which are stocked.

select name, color from part, stock where
stock.part=part.name

name color

nail black

wood blown
body white

furniture  yeliow

Please enter a query sentence. <none. for end.>

> Fin? the name and the quantity of parts which are supplied from
marui.

Is ‘marui’ an instance of an entity ?
s>Yes.

Please enter the entity name of ‘marui’.
>Company.

Let's discuss the following noun: N: company.
I think that it's one of the organizations. Is it nght ?

>Yes.

Please choose the attributes of the company from:
1. address 2. (others) (.<nl> for none)

>.

I thmk that you should reform the followmg table. Is it right ?
1: reform ‘rel (supply, [part], { ][
‘rel (supply. [company. part], [quantity])’

>Yes.

Please choose the hierarchical relation of company and part of
‘supply’
from:1.1:1 2. t:n 3.n:1 4.m:n Which ?

>3.

Ok !! | start making a load program.
1?- do_modify.
Ok !Load start !t Completed modifying the database !

1?- do_use.
Please enter a query sentence. <none. for end.>

t> Fil;d the name and the quantity of parts which are supplied from
oyota

Is ‘toyota’ an instance of a company ?
> Yes.
select quantity, part from supply where company=toyota

quantity pant

500 body
300 tire

Please enter a query sentence. <none. for end.>
> Find the name of parts which are constructed from tire.

| think you should reform the following table. Is it right ?
1: add ‘rel (construct, [part(0), part (1)), {})’

» Yes.

Please choose the hierarchical relation of part(O) and part(1) of
‘construct’ from: 1.1:1 2. 1:n 3.n:1 4. m:n Which ?

>4,

Ok !! I start making a load program.
1?- do_modify
Ok ! Load start !! Completed making the first database !

?- do_use.

Please enter a query sentence. <none. for end.>

> Find the name of paris which are canstructed from tire.
select part_0 from construct where part_1=tire

part_0

car
Please enter a query sentence.<none. for end.>

> None.

Figure 16. Dialogue with 11S-DB. User input is in bold type. Alternating uashaded and shaded bands separate the 10 steps.
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Figure 17. Modificatlon of plan structure: (a) Plan structure through step 8 of the dlalogue in Figure 16; (b) Plan representation for step 8, “Find
the name of parts which are constructed from tire.” Solid rectangles represent the structure through step 1. Dashed rectangles are added in step

5, and dotted rectangles ore added In step 8.

Step 3 shows the creation of the proto-
type database program, and Step 4 shows
its initial use. The domain model in the
database answers the query in step 4. Steps
5-10 show the dialogue that continues be-
cause there are discrepancies between the
domain model and the query. Instep 5. I1S-
DB does not know the term “marui” in the
query, so itasks whether it is an instance of
some entity. Since the answer is yes, it then
asks the name of the entity. The user gives
the name “company.” The system then
looks for the slots of the verb “supply™ and
finds an abstract noun, “organization.™ at
its where-slot. It responds as if it knows
that a company is one of the organizations
and then asks for the auributes. Since the
noun “company” appears in the query at
step 5 but was not in the plan structure, the
svstem creates the corresponding new
frames and adds supply preconditions. in-
cluding an exist:where-slot. The dashed
rectangles in Figure 17a have now been
added. The updated plan structure consists
ol both the solid and dashed rectangles.
I1S-DB creates the new load program and
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adds the data at step 6 (see Figure 16).
Since it now knows in step 7 that “toyota”
is a company. it does not repeat the same
questions. but simply confirms that this is
true. No problem arises since we have
added the data.

In step 8, we can see how the attention is
generated from the query, “Find the name
of parts which are constructed from tire.”
The corresponding partial plan structure of
this query is shown in Figure 17b. By
comparing the partizl plan structure of
the query and the plan structure formed
up to this point, IIS-DB found no corre-
sponding “construct” and “part-1" frames
inthe plan structure. This caused [IS-DB to
generate two kinds of attentions. VerbNot-
Exist and NounNotExist. and to create the
new frames (step 8 in Figure 16, the donted
rectangles in Figures 17a and 17b) accord-
ing to the procedures described earlier. The
verb frame “construct” and a new instance
of part, called “part-1." have been added.

Knowledge acquisition. In the first
part of knowledge acquisition, the user

e —— e em e o e

must answer interview questions without
using a prototype database. It is the sec-
ond part. which uses the database. that
distinguishes 1IS-DB; that is. it acquires
knowledge by dynamic analysis. Actually
using the database is a good stimulus for
the user. since various réquirements
emerge or become clarified only after
use. As 1IS-DB helps the user detect these
requirements, the system gradually im-
proves itself and eventually acquires the
following knowledge:

+ entities (nouns) and their attributes,

+ relationships (verbs) and their attributes,

+ links betweenentities and relationships.

* synonyms among entities and part_of
relations,

* links between two relations, and

* synonyms for relations.

Knowledge acquisition by dynamic
analysis offers several advantages. First.
knowledge acquisition by static analysis
¢an be incomplete, reducing the number of
detailed questions that would have been
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required to make a complete model. Also,
since it is not necessary to answer all the
questions while the user’s knowledge is
not well organized. the burden on the user
is reduced considerably.

Another benefit is that problem solving
stimulates the user to produce new require-
ments. It is effective in making ambiguous
knowledge explicit by putting the userin a

problem-solving environment. Also, the |

system can handle a requirement that the
user has not even thought of at the time of
static analysis.

| A generalized interview-

" system architecture

'

' Since the purpose of an interview is to
acquire knowledge that is useful in prob-
lem solving, the fundamental challenge is
to decide what kind of knowledge to ask
for in what situations. Whether the inter-
viewee is able to answer depends on how
the knowledge is asked. The best way to

; decide which knowledge is required is to
try to solve the problem. Once we analyze
and acquire the necessary knowledge, we

Interview Question
module strategies

Human expert -

Interview

IS-08 module

Prototype
database

Teiresias Debugger
TN
Human ”
expert
| Mole Interview Prototype
} Ask module expert system

. Human expert

. Human expert

Figure 18. The interview system and problem-solving function.

Learning module | '

i ' I Watcher ]-—-IProblem solver I——-—

f )

{ Y

I Debugger I

Knowledge
base

/

="

.._[

Interview module |

interviewee

Figure 19. A generalized interview-system architecture.
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. have no difficulty when we encounter sim-
| ilar problems the next time. The perfor-
! mance of the system increases gradually.

Good questions pull the interviewee into
the problem-solving process. The inter-
viewee becomes conscious about the
knowledge being used. All of the existing
knowledge-acquisition tools use the prob-
lem-solving function in some way, although
the degree of automation and what is meant
by the problem-solving function vary from
case to case.

Figure 18 shows how six knowledge-
acquisition tools (including ours) relate to
problem solving. Teiresias, one of the earli-
est knowledge-acquisition support tools,
works as a debugger for Mycin, a problem
solver. It is invoked when Mycin makes a
misjudgment. Detecting problem-solving
failures, identifying and modifying wrong
knowledge, and inputting new knowledge
are all left to the expert. The question strat-
egies in More confirm whether the knowl-
edge acquired up to acertain pointis enough
1o solve the problem.? IIS-LD uses a set of
question strategies to predict possible trou-
bles that might occur when the current do-
main model constructs a database. Mole
constructs the domain model using question
strategies similar to More, and then builds a
diagnostic expert system and refines the
domain model based on diagnostic failure.?
ASK (which acquires strategic knowledge
rather than domain knowledge) elicits justi-
fications from the user for specific choices
among actions if the user disagrees with the
choice made by the problem solver, an ex-
pert system for planning workups for chest
pain.! IIS-DB acquires the initial domain
model using I1S-LD, constructs a database
system, and refines the domain model based
on query failure. All these tools use the
common idea of acquiring knowledge when
the system fails to perform a task as expected.

Learning and interviewing. It is gener-
ally not efficient to interview while solv-
ing a problem. If the interviewer were lost
in thought, it would be a very lengthy
interview. We can improve efficiency by
chunking completed pieces of the prob-
lem-solving process and using them for
problem solving at later interviews. This
essentially involves adding a learning mech-
anism 1o an interview system.

If more fundamental domain knowledge,
often called deep knowledge, is available,
we can use the techniques of knowledge
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compilation to simplify the acquisition of
task-specific domain knowledge by inter-
view.> Compilation requires task knowl-
edge; however, if instead we have avail- :
able the result of using such knowledge
(for example, a design example), we can
compile the task-specific domain knowl-
edge (for example, design knowledge).
Since compilation is a kind of problem -
solving, failure to compile can initiate an
interview torefine the deep knowledge and
acquire heuristics that are not theoretically
derivable. The [sak knowledge-acquisition |
tool incorporates this idea.'

Both learning for efficiency improve-
ment and knowledge compilation are vari-
ations of knowledge chunking and thus are
sirongly related o explanation-based learn-
ing. Inexplanation-based learning, domain
theory corresponds 10 the initial knowl- ¢
edge given to the interview system, and
explanation corresponds to the problem-
solving and interview processes. What is
acquired is the updated domain theory.

Proposed architecture. OQur proposed
generalized interview-system architecture
is shown in Figure 19. The problem-solver
module solves a problem during the course
of interview, while the waicher module
monitors the problem solver’s behavior. .
When it becomes impossible 10 continue,
the watcher passes information about the
problem-solving history and the require-
ments for missing knowledge to the inter-
view module. and prompts for questions.
The debugger controls the problem solver
and makes it possible to solve a partial
problem. The interview module controls
the overall behavior of the whole system.
It monitors the problem solver through the
watcher and performs the interview with
the interviewee. It uses the debugger o try
1o solve the problem, and asks questionsto -
test and add 1o acquired knowledge. The
learning module monitors how the knowl-
edge is used. and it chunks the problem-
solving and interview process for ef-
ficiency by making links among pieces of
knowledge. It also performs knowledge
compilation. The knowledge-base module
stores the knowledge necessary for inter-
viewing as well as the acquired domain
knowledge. The libraries of the former
knowledge (various Prototype, Def-gen-atin,
Apply. Task. and Ask descriptions) be-
come available as experience accumulates.
This architecture is intended to incorporate

machine-learning techniques, especially

; those based on the analysis of failures. This .
idea has been panially implemented in Isak.

This architecture is similar to the learn-
ing-system model described by Buchanan
etal.? A major difference is that we empha-
size knowledge acquisition by interview-
ing. The learning module in Figure 19,
therefore, includes a function 10 make in-
terviewing more efficient by learning how
tointerview from pastexperience, whereas
Buchanan's learns new knowledge solely
from given instances.

GIVEN THIS APPROACH TO
acquiring knowledge through problem
solving using dynamicanalysis, future work
must look at failure detection in problem
solving, failure type classification, and fail-
ure resolution. In general, detecting failure
is easy for domains where the criteria to
evaluate resulis are well defined. Both Mole
and 1[S-DB have well-defined criteria: the
search must be executable, and the exe-
cuted results must be correct from the point
of view of human experts. If the failure is
easily classified and the resolution is defi-
nitely determined, knowledge acquisition
by dynamic analysis becomes relatively
easy. Both Mole and [IS-DB fall in this
category. Generally, however, it can be

difficult to analyze types of failure in ad- : 5¢pic paper.

vance and determine what actions 1o take,
Nevertheless. domain-independent resolu-
tions for failures are conceivable based on
the characteristics of the problem solver.
The question is whether these classifica-
tions and their corresponding resolutions
are properly defined, since the form they
use depends mainly onthe problem solver.,
not on the domain. Chandrasckaran's ge-
neric-task approach? together with the ge-
neric-attention concept proposed here can
provide a useful guide in this direction.
Another important issue is the informa-
tion transfer between the problem solver
and the interview module. The results of
the problem solver must be delivered 1o the
interview module either continuously or
discretely, thatis, only when problem solv-
ing gets stuck. In the former case, the
dialogue can become complicated because
each piece of incoming information is a
clue to knowledge acquisition. In the latter
case, the problem-solving history can
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become long and its analysis complicated.
Therefore, knowledge acquisition systems
need guidelines on how often results
should be transferred. Furthermore. these
systems must administer the dependency
of the problem-solving process on the
knowledge base such that all knowledge-
base modifications are efficiently re-
flected back to the problem-solving pro-
cess. Unfortunately, [IS-DB does not have
this capability. Each time 2 medification is
requested, everything has to be recreated
according 1o the new specification and the
load program (although I1S-DB automati-
cally generates both). This is not efficient
and needs improvement.

A common problem for current expert
systems is their rapid performance degra-
dation when applied to domains for which
they were not designed (that is, their lack
of robusiness). [1S-DB. for example, is
totally incompetent with queries that have
not been taken into account at the time of
design. However, in principle the problem
solver can grow continuously through dy-
namic analysis. provided a more efficient
update mechanism is employed. Smooth
resumption of the problem-solving pro-
cess will facilitate continuous growth,
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