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Abstract. Mining from graph-structured data has its root in concept
formation. Recent advancement of data mining techniques has broadened
its applicability. Graph mining faces with subgraph isomorphism which
is known to be NP-complete. Two contrasting approaches of our work on
extracting frequent subgraphs are revisited, one using complete search
(AGM) and the other using heuristic search (GBI). Both use canonical
labelling to deal with subgraph isomorphism. AGM represents a graph
by its adjacency matrix and employs an Apriori-like bottom up search
algorithm using anti-monotonicity of frequency. It can handle both con-
nected and dis-connected graphs, and has been extended to handle a tree
data and a sequential data by incorporating a different bias to each in
joining operators. It has also been extended to incorporate taxonomy in
labels to extract generalized subgraphs. GBI employs a notion of chunk-
ing, which recursively chunks two adjoining nodes, thus generating fairly
large subgraphs at an early stage of search. The recent improved ver-
sion extends it to employ pseudo-chunking which is called chunkingless
chunking, enabling to extract overlapping subgraphs. It can impose two
kinds of constraints to accelerate search, one to include one or more of the
designated subgraphs and the other to exclude all of the designated sub-
graphs. It has been extended to extract paths and trees from a graph
data by placing a restriction on pseudo-chunking operations. GBI can
further be used as a feature constructor in decision tree building. The
paper explains how both GBI and AGM with their extended versions
can be applied to solve various data mining problems which are difficult
to solve by other methods.

1 Introduction

Recent advancement of data mining techniques has made it possible to mine from
complex structured data. Since structure is represented by proper relations and a
graph can easily represent relations, knowledge discovery from graph-structured
data (graph mining) poses a general problem for mining from structured data.
Some examples amenable to graph mining are finding functional components
from their behavior, finding typical web browsing patterns, identifying typical
substructures of chemical compounds, finding subsequences of DNA typical to
some functions and discovering diagnostic rules from patient history records.
The first example above is also called concept formation and has been a
subarea of artificial intelligence research since many years ago. One such work



is by Yoshida and Motoda[l1], where a concept is defined as something that
minimizes inference load and the problem is finding a mapping that satisfies
this requirement. This can be amenable to graph mining problem. The results of
qualitative simulation of a digital circuit was mapped to a set of directed graph
from which hierarchical concepts such as “pull down transistor”, “exclusive OR”
and “carry chain” were extracted. The idea behind the concept formation from
a graph-structure data and its application to a digital circuit is schematically
shown in Figs. 1 and 2. Similar work is reported in [1].
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Graph mining is based on finding some typicality from a vast amount of
graph-structured data. What makes it typical depends on each domain and each
task. Most often frequency which has a good property of anti-monotonicity is
used to discover typical patterns. Some measure such as information gain or >
are also used but since they are not monotonic with respect to graph subsump-
tion, special care must be taken. Graph mining inevitably faces with subgraph
isomorphism which is known to be NP-complete. For example, three subgraphs
in Fig. 3 are all isomorphic and it is not easy to find all of them in a huge set of
graphs.

Two contrasting approaches have
been taken to handle this problem,
one searching all possible space effi-
ciently devising a good data structure
with an appropriate indexing and the Fig. 3. Three isomorphic graphs
other avoiding exhaustive search using
a greedy algorithm with good heuristics. In this paper, our own work on these
two approaches is revisited, AGM family for the former and GBI family for the
latter, and how these are applied to solve difficult problems which are not easily
solved my other approaches is explained. Both approaches use canonical labeling
to handle subgraph isomorphism.

2 AGM family - algorithm and its applications -

AGM [3, 4] represents a graph by its adjacency matrix. Labels of nodes and edges
are assigned natural numbers. The adjacency matrix is defined as follows. First



node labels are ordered according to their values and grouped according to this
order, and a square matrix is formed. An element of the matrix is the edge label
if there is an edge between the corresponding node pair and 0 if there is no edge
between them. Since the same graph can be represented by multiple adjacency
matrices because any permutation of the raw and the column within the same
node label represents the same graph, each matrix is given a code and a code
which gives a minimum (maximum) is defined as the canonical label.

A code consists of two parts, 3
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two graphs are the same, they A1 7001 3o o101

are identified as isomorphic. 3\ o110 S\t 1010
CODE(X5)=112331100111001

. . . . CODE(X)=112331101100011
An example is given in Fig. 4. CoDEegeuzsIoIMO >

The graph has 5 nodes with 3
node labels and no edge labels.
The node labels are ordered as
grey (:1), dark—grey (:2) and > CODE(X;)=112331011100011 > CODE(X)=112331010011101
black (=3). The first part is
11233 and the second part is
1011100011. The four adjacency matrices below represent the same graph. These
are different only in the node numbering within the same label. The canonical
label is 112331010011101 if the minimum is chosen.

Once we have defined a canonical label, candidate subgraph can be generated
and searched using an Apriori-like bottom up search algorithm. In Apriori an
itemset Py of size k can be generated by 2 frequent itemsets of size k — 1 that
share the same k — 2 items. This is called a join operation. Then it verifies that
all the subsets of size k — 1 in P, are frequent or not, and if not it discards
Py,. Finally the support of Py is checked to see if it satisfies the min. support
condition. The similar procedure can be applied to graphs. Two graphs of size
k — 1 can be joined to generate a
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Fig. 4. Adjacency matrix and canonical label

1st matrix 2nd matrix 111123
graph of size k. Figure 5 shows an 11112 1113 511011
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All the possible alternatives must 0 o
be considered. If we have 3 labels Fig.5. Join operation of AGM

for edges, there are 8+ 1 adjacency matrices for undirected graph and its square
for directed graph. Thus, the number of subgraphs rapidly increases with size.
AGM can handle general graphs, both connected and disconnected, both directed
and undirected, and both labeled and unlabeled.



Since AGM is most generic, restricting the types of subgraphs is straightfor-
ward. It is easy to place a bias in join operation. B-AGM, biased AGM, can
handle connected subgraphs,  frequent subgraph
tree, ordered tree, path and e e ot e

fee dered Output
sequence [5]. The conceptual requent ordered tree
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minimum support Tree uence

(the average graph size is
27). The connected version Fig.6. Mining Various substructures by B-AGM
of B-AGM, AcGM favorably Framework
compares with the other later developed graph mining algorithms[10,6]. All do
the complete search. If we limit the search to induced subgraphs, B-AGM is
most efficient.
AGM family has been 10000
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cal compound analysis such
as mutagenicity, HIV and
dopamine, and a few oth-
ers such as Web browsing
history analysis and con-
sumer behavior analysis. In 't 2 3 4 s 6 7 8 9 10
the analysis of mutagenicity minimum support (%]

of amino acid compounds, Fig.7. Performance evaluation of AcGM (PTE
AGM was able to find that data, Average size of graphs=27)

compounds that have hydro-

gen next to the nitro substituent in a benzene ring can be active. The results was
obtained by using only the topological information of graphs. Later analysis of
three dimensional structure of these compounds revealed that in case of hydro-
gen there is no steric hindrance that destroys the coplanarity to a benzene ring
but a more complicated one does destroy the coplanarity. This explains the min-
ing results. When applied to HIV data, AGM was able to find a subgraph which
is very close to what is called azido-thymidine (AZT), a well known anti-HIV
medicine. The found subgraph is shown in Fig. 8. This is a three class problem
and the task is to find all the frequent subgraphs that are greater than the min-
imum support in the active compounds and less than the maximum support in
the inactive compounds.

AGM was extended to handle taxonomy in node labels. Use of taxonomy
makes it possible to find more abstract concepts even if there are not enough
number of frequent subgraphs at the base level description. The problem is
conceptually easy but overgeneralization must be prevented. It is possible to
extract the least general subgraph by discarding more general subgraphs that
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have the same total occurrence where multiple count is allowed if there are more
than one occurrence of a subgraph in a graph. This technique was applied to
PTE dataset and AGM H_{Q

found more discriminative

subgraphs together with the o;ﬁ_ﬂ;
taxonomy itself. AGM was HaC

further extended to handle (b) Azidothymidine (AZT)
three dimensional structure Anti-HIV medicine
without modifying the al- o
gorithm (3D-AGM). Edge H—/< \ o
length was discretized into (8) discovered pattern O;gi/” \ on
a finite number and was fnC;'cj['ﬁl . ?g; 352265

given different labels. With '
this approach, when applied

to classification of dopamine Fig. 8. Discovered subgraph by AcGM for HIV
antagonists, 3D-AGM was data

able to find more discriminative substructures than the standard AGM. An in-
teresting application of AGM is consumer behavior analysis. Each time a person
goes to a grocery store, items purchased together are recorded and this can be
used for later analysis. The purchase history can be mapped to a directed graph.
When applied to a data for a beer market, AGM discovered that a particular
brand ” Asahi super dry” is sold together with fresh fish and fruit. This hypoth-
esis was tested in collaboration with the grocery store by rearranging the items
so that these three are placed close. Interestingly the sales of beer went up more
than double and fish sales went up also by 12% during the promotion [9].

(c) Thymine

3 GBI family - algorithm and its applications -

GBI [7] employs a notion of chunking, which recursively chunks two adjoining
nodes, thus generating fairly large subgraphs at an early stage of search. GBI
also uses canonical labeling to solve the graph isomorphism problem. Due to the
nature of chunking, GBI is able to handle only connected graphs. Instead, GBI
can use any criterion that is based on the frequency of paired nodes. However,
for finding a subgraph that is of interest any of its subgraphs must be of interest
because of the nature of repeated chunking. The frequency measure satisfies
this monotonicity property. However, if the criterion chosen does not satisfy
this property, repeated chunking may not lead to finding good subgraphs even
though the best pair based on the criterion is selected at each iteration. To resolve
this issue GBI uses two criteria, one based on frequency measures for chunking
and the other for finding discriminative subgraphs after chunking. The latter
criterion does not necessarily exhibit the monotonicity property. Any function
that is discriminative can be used, such as Information Gain, Gain Ratio, Gini
Index and others.

The original GBI contracts graphs after chunking and thus the size of the
graphs progressively becomes smaller as chunking proceeds and thus the compu-
tational complexity is almost quadratic to the graph size. The basic algorithm



is given in Fig. 9. How- GBI(G)

ever, the biggest problem Enumerate all the pairs P, in G

with this approach is that Select a subset P of pairs from P, (all the
it cannot find overlapping pairs in G) based on typicality criterion
subgraphs. Later version in- Scei"lieti;iinpalr from P,;; based on chunking

troduced a beam search to Chunk the selected pair into one node ¢

alleviate this problem (B- G, := contracted graph of G

GBI), but it was not enough. while termination condition not reached
The recent improved version P := P U GBI(G.)

ClI-GBI extends it to em- return P

ploy pseudo-chunking which Fig. 9. Algorithm of GBI

is called chunkingless chunk-
ing, enabling to extract overlapping subgraphs [8].

In Cl-GBI, the selected pairs are registered as new nodes and assigned new
labels but are never chunked and the graphs are never “contracted” nor copied
into respective states as in B-GBI. In the presence of the pseudo nodes (i.e.,
newly assigned-label nodes), the frequencies of pairs consisting of at least one

new pseudo node are counted.

. . Pseudo-node
The other is either one

of the pseudo nodes in- Pseudo- Pseudo-
. Chunking Chunking

cluding those already cre- >

ated in the previous steps

or an original node. The A A

most frequent pairs with the

number equal to the beam %:% 3 "IPajrg;%nk o P%.):(%e

width specified in advance @_'® 2 G-@ 2 chunked

are selected among the re- ’ @8 2

maining pairs and the new :

pairs which have just been Fig. 10. Pseudo-chunking of C1-GBI

counted for their frequen-

cies. These steps are repeated for a predetermined number of times, each of
which is referred to as a level. Those pairs that satisfy a typicality criterion
(e.g., pairs whose information gain exceeds a given threshold) among all the
extracted pairs are the output of the algorithm. A frequency threshold is used
to reduce the number of pairs being considered to be typical patterns. Another
possible method to reduce the number of pairs is to eliminate those pairs whose
typicality measure is low even if their frequency count is above the frequency
threshold. The two parameters, beam width and number of levels, control the
search space. The frequency threshold is another important parameter. The al-
gorithm of CI-GBI is depicted in Fig. 10. In contrast to GBI and B-GBI graph
size remains the same due to pseudo-chunking, and thus, the number of pairs
to pseudo-chunk progressively increases (computational complexity is now expo-
nential to the size). It searches a much larger portion of subgraphs and in fact,
search can be complete by setting the beam width and the level large enough.
Like B-AGM, the subgraphs to be searched can be limited to paths, acyclic



subgraphs and subgraphs (both induced and general) by placing appropriate
constraints when chunking the pairs.

Performance of Cl-GBI was evaluated using the same PTE dataset as in
AGM. The results are shown in Table 1. The number of beam width and the
number of levels to find all Table 1. Performance evaluation of Cl-GBI
the subgraphs are shown.

The subgraphs found are (PTE Data)
confirmed to be the same as
what were found by AcGM.

Genera subgraphs
Frequency threshold () 30% 20% 10%

i . No. of freq. patterns 68 190 844
GBI family does not aim Beam width (b) 10 10 10
to find all the possible sub- No. of levels (N) needed 12 18 84
graphs but rather it at- Induced subgraphs
tempts to find reasonably Frequency threshold () 30% 20% 10%
good spbgraphs at an eérly No. of freq. patterns 49 139 537
stage in the search with-  Beam width (b) 10 10 10

out searching all the space. Number of levels (N) needed 4 7 18

To accomplish this, various

techniques are introduced to improve its search efficiency. Two of them are men-
tioned here. The first one is to impose constraints to restrict search. Two kinds
of constraints can be conceived. One is to extract only patterns that are of in-
terest to domain experts or related to domain knowledge, and the other is to
exclude extracting patterns uninteresting to domain experts or unrelated to do-
main knowledge. Both are called INpattern constraint and EXpattern constraint.
Their implementation is straightforward. However, subgraph isomorphism check-
ing is needed to check these constraints, and thus the number of checking must
be reduced as much

as possible. For this, neces-
sary conditions for two sub-
graphs to be isomorphic, e.g.
degree of node, node and
edge labels, etc. are used. If
these conditions are not sat-
isfied, there is no need to
compare the two subgraphs.
The second one is to use
pruning. Frequency satisfies
anti-monotonicity but infor-
mation gain, and x? do not
satisfy this constraint. However, they have a nice property of being convex with
respect to the arguments. In this case it is possible to set an upperbound to
them. Suppose we have a subgraph P and want to chunk it with other sub-
graph, generating a larger subgraph (). The information gain of @) is bounded
by the maximum of these extreme cases where the input instances containing )
only consists of a single class. If the upperbound for @ is less than or equal to
the so far found best information gain or x2, then there is no need to pseudo
chunk P.
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Fig. 11. Using Cl-GBI as a feature constructor in
decision tree building



If the final task is clas-
sification, graph mining has
to be combined with clas-
sifier construction. For this
task, GBI family can be
used as a feature construc-
tor in decision tree build-
ing [2] (See Fig. 11). De-
cision tree constructed this
way was named DT-GBI or
DT-CIGBI. Each node has
a subgraph for which an in-
put data is tested. Cl-GBI
is run recursively reusing
whatever can be inherited
from the previous runs. The
beam width and depth level
are parameters that can be

DT-GBI(D)
Create a node DT for D
if termination condition reached
return DT
else

P := GBI(D) (with the number of
chunking specified)

Select a pair p from P

Divide D into D, (with p) and D,, (with-

out p)

Chunk the pair p into one node ¢

D, := contracted data of D,

for D; := Dy, D,
DT, := DT-GBI(D;)
Augment DT by attaching DT; as its
child along yes(no) branch

return DT

Fig. 12. Algorithm of DT-CIGBI

set at each tree level. The algorithm of DT-CIGBI is given in Fig. 12
The performance of DT-CIGBI was evaluated by a synthetic dataset. Di-

rected graphs are randomly generated and equally divided into two classes, ac-
tive and inactive. Four kinds of basic patterns were embedded in class active
with equal probability. The average size of the graphs is changed from 30 to 50.

Fig. 14. Test pattern found in the in-
put graph in Fig.13

Fig.13. An example of input graph
classified as positive by DT-CIGBI

The expectation was that these basic patterns appear in the test nodes of the
decision tree, but the result was not exactly what was expected. The patterns
chosen at each node were subgraphs of the basic patterns. Figure 13 shows one
of the decision trees obtained and an input graph that failed in the first and the
second tests but passed the third test and classified as positive. A graph of size
50 is not a large graph, but for humans it is complicated enough and not easy
to check if it includes the subgraph used for the test.



Both DT-GBI and DT- oo Trs Tom Tomn Teor Teorsn Tor
CIGBI were applied to a Wm%\ow,\mwﬂcio”ma_maqamh P P P P P T —
medical dataset of chronic wWﬁwwwﬂ_mwg< T [ [ R L
hepatitis B and C which has ~ ,3mee — T

been collected at the medical WW%,M_MN%M draphs ,
department of Chiba Univer-

sity over 20 years from 1982
to 2001. It is a large un-
cleansed time series data and
has inconsistent measure-
ments and many missing val-
ues. It was hoped that graph
mining can extract typical
correlation among different
tests across time. Figure 15
shows how the time series data of each patient is converted to a directed graph
after steps of preprocessing.

P2 \P..:_:o_m._ __:_A:.:..

Fig. 15. Data preprocessing and conversion to a
directed graph

The star shaped graph represents the various test data that are averaged
over two months at a particular time point. These are connected sequentially
and artificial links are added up to two years in future to represent possible
direct effects of the past to the future. The main task is classifying patients with

different fibrosis stages. The
data used was 500 days
before and after the first
biopsy. Feature selection re-
sulted in 32 tests (measure-
ments) as the useful at-
tributes. and the average
size of the graphs was about
300. For each experiment
10 fold cross validation was
run 10 times. Beam width
was set to 15 and the num-
ber of levels to 20 at every
node of the tree. The average
error of distinguishing be-
tween F4 stage (liver cirrho-
sis) and FO+F1 stages (al- Fig.16. Optimal decision tree to classify fibrosis
most healthy) is 12.5% and Progress

its standard deviation was

2.12%. The average error of distinguishing between F4 stage and F3+F2 stages
(not cirrhosis yet but close to it), which is a more difficult task, was 23.5% with
the standard deviation of 2.39%. One of the decision trees is shown in Fig. 16.
The patterns are fairly complex and these were exactly what we were expecting.

Pattern 211
LC=38, n-LC=58

Pattern 213
LC=26,n-LC=58

Pattern 214
LC=10, n-LC=8

Pattern 215
LC=16, n-LC=46



However, unfortunately the medical doctors could not interpret these patterns.
They thought the techniques interesting but did not accept the results blindly.

Detailed analysis revealed that there are groups of patients whose data be-
have strangely. This lead to a two stage analysis in which first these abnormal
patients were separated from the rest and then a classifier was constructed for
each group. The weighted average error of normal and abnormal patients reduced
considerably to 7.3% and the tree became very simple and easily interpretable.

4 Conclusion

The paper discussed the use of graph-structured data in data mining perspec-
tive. Graph mining is an important area for extracting useful knowledge from
structured data. Many interesting and difficult problems can be solved with this
approach. However, graph mining is a computationally heavy task. Good algo-
rithm and good data structure are needed. However, what is more important is
a right problem setting to produce human understandable solutions. Human’s
cognitive capability is limited.
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