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Abstract—Node influence is yet another useful concept to
quantify how important each node is over a network and can
share the same role that other centrality measures have. It can
provide new insight into the information diffusion phenomena
such as existence of epidemic threshold which the other topology-
based centralities cannot do. We focus on information diffusion
process based on the SIR model, and address the problem of
efficiently estimating the influence degree for all the nodes in
the network. The proposed approach is a further improvement
over the existing work of the bond percolation process [1],
[2] which was demonstrated to be very effective, i.e., three
orders of magnitude faster than direct Monte Carlo simulation,
in approximately solving the influence maximization problem
under a greedy search strategy. We introduce two pruning
techniques which improve computational efficiency by an order
of magnitude. This is a generic approach for the SIR model
setting and can be instantiated to any specific diffusion model.
It does not require any approximations or assumptions to the
model, e.g., small diffusion probability, shortest path, maximum
influence path, etc., that were needed in the existing approaches.
We demonstrate its effectiveness by extensive experiments on two
large real social networks. Main finding includes that different
network structures have different epidemic thresholds and the
node influence can identify influential nodes that the other
centrality measures cannot.

I. Introduction

Studies of the structure and functions of large complex
networks have attracted a great deal of attention in many dif-
ferent fields such as sociology, biology, physics and computer
science [3]. Pursuing fundamental network analysis, it has been
recognized that developing methods/tools for quantifying the
importance of each individual node in a network is crucially
important. Networks mediate the spread of information, and
it sometimes happens that small initial shocks cascade to
affect large portions of networks [4]. Such information cascade
phenomena are observed in many situations: for example,
cascading failures can occur in power grids (e.g., the August
10, 1996 accident in the western US power grid), diseases
can spread over networks of contacts between individuals,
innovations and rumors can propagate through social net-
works, and large grass-roots social movements can begin in
the absence of centralized control (e.g., the Arab Spring).
Understanding these phenomena involves dynamic analysis of
diffusion process. Thus, the node influence with respect to
information cascade is a useful measure of node importance.
It shares the same role that existing centrality measures have.
The well-known centrality measures include, but not limited

to, degree centrality [5], eigenvector centrality [6], Katz cen-
trality [7], PageRank [8], closeness centrality [5], betweenness
centrality [5], and topological centrality [9]. Notable feature
of these existing measures is that they all are defined by only
network topology. Node influence is different from them in
that it is defined through dynamical processes of a network.
Thus, it can provide new insight into the information diffusion
phenomena such as existence of epidemic threshold which the
topology-based centrality measures can never do.

Basic models of information diffusion over a network often
assume that each node has three states, susceptible, infective,
and recovered from the analogy of epidemiology. A node in
the susceptible state means that it has not yet been influenced
with the information. A node in the infective state means that
it is influenced with the information, and can propagate the
information to its neighbor nodes. A node in the recovered
state means that it can no longer propagate the information
to its neighbor nodes once it has been influenced with the
information, i.e., immune. The SIR model is typical among
such basic models and well exploited in many fields [3]. Here,
the SIR model is a discrete-time stochastic process model,
and assumes that a susceptible node becomes infective with
a certain probability when its neighbor nodes get infective,
and becomes subsequently recovered. In particular, it is known
that the SIR model on a network can be exactly mapped onto
a bond percolation process on the same network [3], [10].
The dynamical behaviors of the SIR model have been widely
studied in physics literature. One such important analysis is to
examine the epidemic threshold p∗

G
of a network G, where most

nodes of the network remain uninfected (i.e., a small outbreak)
if the probability that a susceptible node receives information
from its infective neighbor is smaller than p∗

G
, and the number

of infected (recovered) nodes rapidly increase (i.e., a large
outbreak) as the probability becomes greater than p∗

G
[3]. We

must be able to estimate node influence very efficiently to make
this kind of analysis feasible. In this paper, we focus on the
node influence based on the SIR model, and regard it as one of
the centrality measures and refer to it as the influence degree
centrality for convenience sake.

Let G = (V, E) be a directed network, where V and E
(⊂ V×V) stand for the sets of all nodes and links, respectively.
For the SIR model over G, the influence degree σG(v) of a
node v ∈ V is defined as the expected number of recovered
nodes at the end of the information diffusion process (i.e.,
when there are no nodes in the infective state), assuming that



at the initial time t = 0, only v is in infective state and all
other nodes are in susceptible state. In order to examine the
influence degree centrality in G, it is necessary to estimate
the influence degree σG(v) for every single node v ∈ V . We
refer to

∑

v∈V σG(v)/|V | as the average influence degree of G.
In order to examine the epidemic threshold of G, we must
further calculate the average influence degree of G for various
values of diffusion probability of the SIR model. Note that it
is difficult to calculate the influence degree exactly since the
SIR model is defined by a stochastic process [1], [13], [2].
In general, the influence degree is approximately estimated
through a number of simulations while the existing centrality
measures described above are exactly calculated. Thus, it is
an important research issue to estimate the influence degrees
{σG(v) | v ∈ V} efficiently.

In this paper, we propose an improved method of efficiently
estimating the influence degrees of all the nodes in network
G, {σG(v) | v ∈ V} under the SIR model setting. Estimating
influence degree is a sub problem in the influence maxi-
mization problem, which has recently attracted tremendous
interest in the field of social network mining [11]. The task of
the influence maximization problem is to identify a limited
number of seed nodes that maximize the expected spread
of influence over G. Kempe et al [10] first formalized this
problem and presented a good solution by using a greedy
search strategy. Since then, many researchers have proposed
various techniques for improving the efficiency in finding high-
quality approximate solutions [1], [12], [13], [14], [15], [16],
[17], [18]. These techniques include both of those that aim
at improving the efficiency of estimating the expected spread
for a given seed node set and those that aim at improving the
efficiency of the search for the seed node set. The proposed
method belongs to the former. Thus, it can naturally be applied
to the influence maximization problem through the greedy
search. It can also be utilized for identifying super-mediators
of information diffusion in social networks [19].

Many of the techniques cited above are designed for a
specific diffusion model, e.g., independent cascade or linear
threshold models, and introduce approximations and/or as-
sumptions to the model chosen such as assuming that the
diffusion probability is small enough to allow for linear ap-
proximation, considering only the shortest diffusion path or the
maximum influence path between a pair of nodes is enough,
approximating the diffusion path in the original network to be a
DAG for information spread, etc. To the best of our knowledge,
two groups of work, one [1], [2] (called bond percolation) and
the other [13] (called new greedy algorithm) are the only ones
that do not introduce any approximations and/or assumptions
to the model. Both use the same idea, and in this paper we
call it BP method for short.

The BP method was shown to be very efficient, three orders
of magnitude faster than direct Monte Carlo simulation in com-
puting the node influence degree [1], [2]. Our proposed method
for estimating the influence degree centrality {σG(v) | v ∈ V} in
network G makes it even faster by an order of magnitude by
introducing two new pruning techniques: the redundant-edge
pruning (REP) technique and the marginal-component pruning
(MCP) technique. The REP technique prunes redundant edges
for reachability analysis among three vertices and the MCP
technique recursively prunes vertices of in-degree 1 or out-

degree 1 from the quotient graph obtained by decomposing
the graph generated by the corresponding bond percolation
process into the strongly connected components (SCCs). We
extensively evaluate the proposed method using two large real
social networks, compare the computation time,1 and show that
the proposed method significantly outperforms the existing BP
method. The MCP technique is found to be more effective than
the REP technique. Use of both techniques is always better
than the single use of either technique. The proposed method
inherits the good feature of the BP method. It is a generic
framework to estimate the influence degree centrality under
the SIR model setting without need for any approximations
and assumptions. With this improved efficiency it is now
possible to estimate the node influence of every single node
of a network with one million nodes and 157 millions links
and analyze the existence of epidemic threshold. We further
confirmed that the node influence identifies nodes that are
deemed indeed influential which are not identifiable by the
existing centrality measures.

II. BP Method

We briefly revisit the BP method (see [2] for more detail).
A bond percolation process on a given network G = (V, E) is
the process in which each link of G is stochastically desig-
nated either “occupied ” or “unoccupied” according to some
probability distribution. The occupation probability distribution
is determined according to the assumed information diffusion
model and its associated parameter values. Now, we consider
M times of bond percolation processes. Let Em (⊂ E) denote
the set of occupied links at the m-th bond percolation process
and let Gm denote the network (V, Em). For any node v ∈ V ,
we define σ̄G(v) by

σ̄G(v) =
1

M

M
∑

m=1

|RGm
(v)|, (1)

where RGm
(v) stands for the set of reachable nodes from v on

Gm, and |RGm
(v)| is the number of nodes in RGm

(v). Here, we
say that a node w ∈ V is reachable from node v on Gm if there
exists a path from v to w in the network Gm. It is known [3] that
the influence degree σG(v) can be estimated by σ̄G(v) with a
reasonable accuracy if M is sufficiently large. 2 Here note that
the bond percolation technique decomposes each network Gm

into its SCCs, where an SCC (strongly connected component)
is a maximal subset C of V such that for all v, w ∈ C there
is a path from v to w on Gm. Note that RGm

(v) = RGm
(w)

(v,w ∈ C). Thus, we can obtain RGm
(v) for any node v ∈ V by

calculating RGm
(v) for only one node v in each component C.

Let Qm = (Cm,Em) be the quotient graph obtained by the SCC
decomposition of Gm = (V, Em), where Cm is the set of all the
SCCs of Gm, and Em (⊂ Cm×Cm) is the set of edges in Qm, i.e.,
(C,D) ∈ Em if there exist some pair of nodes v ∈ C and w ∈ D
which satisfies (v,w) ∈ Em. Note that the quotient graph Qm is
a DAG (directed acyclic graph). For each component C ∈ Cm,
we can also consider the set of reachable components from
C on Qm, which is denoted by RQm

(C). Here, a component
D ∈ Cm is an element of RQm

(C) when there exists a path from

1The estimation accuracy of {σG(v) | v ∈ V} is the same because of no new
approximations and assumptions introduced.

2It is shown that setting M to a few thousands usually gives good accuracy
in experiments using real social networks (see [2]).



vertex C to vertex D on the graph Qm. Then, for any node
v ∈ C, we can calculate the number of reachable nodes from
v on the network Gm by

|RGm
(v)| = |C| +

∑

D∈RQm (C)

|D|. (2)

In case of the MCP technique as described later, this equation
is replaced as follows:

|RGm
(v)| = hm(C) +

∑

D∈RQm (C)

hm(D), (3)

where hm(D) is initially set to hm(D) = |D| for any component
D ∈ Cm, and it is to be updated iteratively. Note that in general
|RGm

(v)| , |C| +
∑

D∈Fm(C) |RGm
(wD)| for any node v ∈ C, unless

Qm is a tree. Here, Fm(C) denotes the set of child components
of component C in Gm, defined by

Fm(C) = {D ∈ Cm | (C,D) ∈ Em},

and wD stands for a representative node of a component D ∈
Cm.

In summary, the existing BP method first computes the
subset RQm

(C) of Cm for each component C ∈ Cm by following
the edges on the quotient graph Qm, then calculates |RGm

(vC)|
for only one node vC ∈ C by using Eq. (2), and finally sets as
follows:

|RGm
(v)| ← |RGm

(vC)|, (∀v ∈ C \ {vC}).

III. ProposedMethod

We enhance the existing BP method by introducing two
techniques: redundant-edge pruning (REP) and marginal-
component pruning (MCP). Again, we focus on the quotient
graph Qm = (Cm,Em) of the network Gm = (V, Em) constructed
through the m-th bond percolation process.

The REP technique performs pruning redundant edges for
reachability analysis among three components in Gm, i.e., three
vertices on Qm. For each component C ∈ Cm in Gm, an edge
(C,D) ∈ Em is called a redundant edge with respect to C
if component D is reachable from C via another component
X ∈ Cm. Let EPQm

(C) denote the set of all redundant edges
with respect to C ∈ Cm. Then, we have

EPQm
(C) =



















(C,D) ∈ Em
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∣
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. (4)

Note that if an edge (C,D) ∈ Em is a redundant edge with
respect to component C, i.e., (C,D) ∈ EPQm

(C), then it is
possible to correctly compute RQm

(C) without using the edge
(C,D). Thus, the REP technique prunes the set of redundant
edges EPQm

(C) when computing RQm
(C) for any component

C ∈ Cm. If interpreted as a network motifs [20], the REP
technique detects such 3-vertices {C, X,D} on graph Qm that
form a feedforward motif pattern {(C, X), (X,D), (C,D)}, and
prunes its short-cut edge (C,D) from them. Let EPQm

denote
the set of all the redundant edges, i.e.,

EPQm
=
⋃

C∈Cm

EPQm
(C).

In summary, the REP technique computes the set of all the
redundant edges EPQm

, and replaces the set of edges on Qm

as follows:
Em ← Em \ EPQm

.

The MCP technique recursively performs pruning compo-
nents of in-degree 1 or out-degree 1 in the network Gm. Here,
we define the sets of components of in-degree 1 and out-degree
1 by Eqs. (5) and (6), respectively:

CPIQm
= {C ∈ Cm | |Bm(C)| = 1, |Fm(C)| = 0}, (5)

CPOQm
= {C ∈ Cm | |Fm(C)| = 1, |Bm(C)| = 0}. (6)

Here, Bm(C) denotes the set of all parent components of C,

Bm(C) = {D ∈ Cm | (D,C) ∈ Em}.

We define the set CPQm
of components of in-degree 1 or out-

degree 1 in Gm by CPQm
= CPIQm

∪ CPOQm
. Below we

explain two basic ideas of the MCP technique. First, for any
component C ∈ CPIQm

of in-degree 1, we can easily prove
the following properties:

1) |RGm
(v)| = |C| for any v ∈ C.

2) Setting hm(D) ← hm(D) + |C| for the unique parent
component D ∈ Bm(C), |RGm

(vX)| is obtained by

|RGm
(vX)| = hm(X) +

∑

Y∈RQm (X)\{C}

hm(Y)

(see Eq. (3)) for any component X ∈ Cm \ {C}, where
vX stands for a representative node of X.

Second, for any component C ∈ CPOQm
of out-degree 1, we

can easily prove that if |RGm
(vD)|, (vD ∈ D) is given for the

unique child component D ∈ Fm(C), then |RGm
(vC)|, (vC ∈ C)

is obtained by

|RGm
(vC)| = |C| + |RGm

(vD)|

without computing RQm
(C) by following the edges on Qm.

Therefore, it is possible to prune the components of in-degree
1 or out-degree 1 in Gm from Cm when computing RQm

(C) for
any component C ∈ Cm.

For a component X ∈ Cm, let IEQm
(X) be the set of all

edges attached to X in Qm. We define the operation of pruning
a component C ∈ Cm in graph Qm by

Qm ⊖C = (Cm \ {C}, Em \ IEQm
(C)).

Evidently, after pruning a component C, there might exist some
component D ∈ Cm such that D < CPQm

and D ∈ CPQm⊖C .
Thus, the MCP technique need to recursively perform pruning
components. In summary, unless |CPQm

| = 0, the MCP tech-
nique recursively selects a component C ∈ CPQm

, and prunes
C by

Qm ← Qm ⊖C

after 1) setting

|RGm
(vC)| ← |C|, (vC ∈ C)

hm(D) ← hm(D) + |C|

for the unique parent component D ∈ Bm(C) if C ∈ CPIQm
,

and 2) setting

|RGm
(vC)| ← |C| + |RGm

(vD)|



when |RGm
(vD)|, (vD ∈ D) has been computed for the unique

child component D ∈ Fm(C) if C ∈ CPOQm
.

In our proposed method, the REP technique is applied
before the MCP techniques, because it is naturally conceivable
that the REP technique increases the number of components of
in-degree 1 or out-degree 1. Clearly we can individually incor-
porate these techniques into the existing BP method. Hereafter,
we refer to the proposed method without the MCP technique
as the REP method, and the proposed method without the
REP technique as the MCP method. Since it is difficult to
analytically examine the effectiveness of these techniques, we
empirically evaluate the computational efficiency of these three
methods in comparison to the existing BP method.

IV. Experiments

Using large real networks, we evaluated the effectiveness
of the proposed method.

A. Network Datasets

We employed two large social networks, where all the
networks are represented as directed graphs. Here, we adopt
the notation for a link in which the link creator is the target
node in order to emphasize the direction of information flow.

The first one is a network extracted from “@cosme”,3 a
Japanese word-of-mouth communication site for cosmetics, in
which each user page can have fan links. A fan link (u, v)
means that user v registers user u as her favorite user. We
traced up to ten steps in the fan-link network from a randomly
chosen user in December 2009, and extracted a large weakly-
connected network consisting of 45, 024 nodes and 351, 299
directed links. We refer to this directed network as the Cosme
network.

The second one is a network extracted from a set of
message posts from “Japanese Twitter”,4 which totally con-
sist of 201, 297, 161 messages (tweets) made by 1, 088, 040
active users (micro-bloggers or twitters who posted no less
than 200 messages) during the period of almost three weeks
(from March 5, 2011 to March 24, 2011), when the massive
earthquake and consequent tsunami in eastern Japan occurred
on March 11, 2011. We used the network constructed from
the follower links between these users, which resulted in
a network consisting of 1, 088, 040 nodes and 157, 371, 628
directed links. We refer to this huge network as the Twitter
network.

B. Experimental Settings

One of the simplest models of the SIR framework is the
independent cascade (IC) model [10], where nodes have two
states (active and inactive), and can switch their states only
from inactive to active. The IC model on a network G = (V, E)
has a diffusion probability pu,v with 0 < pu,v < 1 for each link
(u, v) ∈ E as a parameter. Suppose that a node u ∈ V first
becomes active at time-step t, it is given a single chance to
activate each currently inactive child node v ∈ V with (u, v) ∈
E, and succeeds with probability pu,v. If u succeeds, then v will

3http://www.cosme.net/
4http://twitter.jp

become active at time-step t + 1. If multiple parent nodes of v
first become active at time-step t, then their activation trials are
sequenced in an arbitrary order, but all performed at time-step
t. Whether u succeeds or not, it cannot make any further trials
to activate v in subsequent rounds. The process terminates if
no more activations are possible. It is well known [10] that the
IC model on G for diffusion probabilities {pu,v | (u, v) ∈ E} is
equivalent to the bond percolation process on G for occupation
probabilities {pu,v | (u, v) ∈ E}, that is, these two models have
the same probability distribution for the final active (recovered)
nodes. In the experiments, we employed the IC model.

Now, we explain the setting of diffusion probabilities
{pu,v | (u, v) ∈ E} for the IC model. We draw {pu,v | (u, v) ∈ E}
independently assuming a generative model according to the
beta distribution with a mean of µ. Note that the beta distri-
bution is the conjugate prior probability distribution for the
Bernoulli distribution corresponding to a single toss of a coin.
Then, the average occupied probability of the corresponding
bond percolation process over G reduces to µ. Actually, this
formulation is equivalent to assigning a uniform value µ to the
diffusion probability pu,v for any link, i.e., pu,v = µ, ∀(u, v) ∈ E.
In the experiments, we investigated the four cases of very low,
low, medium, and high diffusion probabilities:

µ = r/d̄G, (r = 0.25, 0.5, 1.0, 2.0),

where d̄G is the mean out-degree of network G. We refer r to
the diffusion probability factor.

For the parameter M of the proposed method, we found
M = 1, 000 to be a reasonable value for estimating the
influence degrees for the Cosme and Twitter networks through
our preliminary experiments. Thus, we used M = 1, 000 unless
otherwise stated.

In the next subsection, we explain experimental results for
computation time. All our experimentation was undertaken on
a single PC with Intel(R) Xeon(R) CPU X5690 @ 3.474 GHz,
with 198 GB of memory, running under Linux.

C. Efficiency Evaluation

First, we evaluated the efficiency of the proposed method.
We compared the computation time of the proposed, REP,
MCP, and existing BP methods. All of them are based on
the bond percolation process on the same network G, and
have the same accuracy for the same M (see Eq. (1)). Here,
we used M = 100 trials, and evaluated the time for each
trial (corresponding to M = 1), because the existing BP
method needed much time for the Twitter network. Figure 1
shows the computation time of each method as a function of
diffusion probability factor r, where the average values are
plotted and the standard deviations are indicated by the error
bars. The results show that the MCP technique can always be
useful although the REP technique is not necessarily effective
alone. However, the proposed method, which incorporates both
techniques, always performs the best. The Twitter network
requires much longer computation time than the Cosme net-
work since the former is much larger than the latter. It is
in particular important to reduce the processing time in case
of large diffusion probability µ since the processing time in
general increases as µ becomes larger. In case of r = 2.0, the
proposed method is about 18 times faster than the existing BP
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Fig. 1: Computation time comparison.

method on average for the Cosme network. Moreover, when
using M = 1 in the Twitter network for r = 2.0, the proposed
method requires only about 2 minutes while the existing BP
method needs about 20 minutes. Thus, for M = 1, 000, the
existing BP method would have needed about two weeks
while the proposed method would have required only about
one day and a half. Compared to the existing BP method,
the proposed method also has smaller standard deviations,
especially for the diffusion probabilities with medium and high
values. When the diffusion probability takes a large value,
the information diffusion path length changes substantially for
each trial as seen in the next experiment (see Fig. 2). This
fluctuation is attributed to whether or not information diffusion
paths in network G arrive at several marginal components of
G, that is, we conjecture that the structure of quotient graph
Qm substantially change for each trial m. In general, it takes
more time to trace down longer paths for identifying RQm(C)

in the BP framework. Since the MCP technique attempts to
prune such marginal components in advance, we can expect
that the MCP method has smaller standard deviations than
the existing BP method. Further, since the REP technique
finds candidates of marginal components, we can conjecture
that the proposed method combining both the REP and MCP
techniques is more stable than the other three methods in
terms of computation time. These results demonstrate the
effectiveness of the proposed method.

Next, we investigated a global picture of the node influence
estimation of the BP method framework with M = 1, 000 for
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Fig. 2: Results for “influence degree vs. standard deviation”.
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Fig. 3: Relation between σ̄1
G

(v) and s̄1
G

(v).

the Cosme and Twitter networks. Using the proposed method
with M = 1, 000, we estimated the influence degree of each
node v in network G by σ̄G(v) (see Eq. (1)), and then calculated
the standard deviation s̄G(v) of samples {|RGm

(v)|} for each
v ∈ V . Figure 2 plots the pair (σ̄G(v), s̄G(v)) for all v ∈ V . We
first see that all the results are qualitatively very similar, and
these plots can provide a tool of network structure analysis. In
fact, there exists a critical influence degree σ̄G(v∗) for network
G such that standard deviation s̄G(v) is an increasing function
of influence degree σ̄G(v) if σ̄G(v) ≤ σ̄G(v∗), but s̄G(v) is
a rapidly decreasing function of σ̄G(v) if σ̄G(v) > σ̄G(v∗).
Moreover, influence degree σ̄G(v) and its standard deviation
s̄G(v) increase as the diffusion probability becomes larger. We
also investigated the relation between ratios σ̄1

G
(v) and s̄1

G
(v),

σ̄1
G(v) = σ̄G(v)/max

u∈V
σ̄G(u), s̄1

G(v) = s̄G(v)/σ̄G(v),

for all v ∈ V . Figure 3 plots the pair (σ̄1
G

(v), s̄1
G

(v)) for all v ∈ V .

We observe that s̄1
G

(v) is essentially a decreasing function of

σ̄1
G

(v), and the function form does not primarily depend on
the value of diffusion probability although it does depend on
network structure. Moreover, roughly speaking, s̄1

G
(v) becomes

almost equal to or less than 100 = 1.0 when the ratio σ̄1
G

(v)

is larger than 10−1 for both the networks, which means that
standard deviation s̄G(v) becomes almost equal to or less
than σ̄G(v) for nodes whose influence degree σ̄G(v) is greater
than 10% of the maximum value of influence degree. These
results imply that the estimation accuracy with M = 1, 000 is
acceptable from a statistical point of view.

D. Average Influence Degree

We consider finding the epidemic threshold p∗
G

of the IC
model for the Cosme and Twitter networks. To this end, we ex-
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Fig. 4: Average influence degree curves.

amined the relation between the diffusion probability pu,v = µ
and the average influence degree

∑

v∈V σG(v)/|V |. Since this
is a computationally heavy task, we estimated the average
influence degree using the proposed method with M = 100.
Figure 4 shows the estimated average influence degree as a
function of diffusion probability factor r, where the standard
deviations (see Eq. (1)) are indicated by the error bars. Here,
we investigated r = r1ak−1, (r1 = 0.01, a = 1.2, k = 1, . . . , 35),
that is, 1.3 × 10−3 ≤ µ ≤ 6.3 × 10−1 for the Cosme network
and 6.9 × 10−5 ≤ µ ≤ 3.4 × 10−2 for the Twitter network. We
first observe that the standard deviations are relatively small,
and the accuracy with M = 100 is acceptable when the goal is
to estimate the average influence degree. We needed about 1.1
minutes for the Cosme network and about 9.1 hours for the
Twitter network to obtain the results shown in Figure 4. From
Figure 4, we can find that the epidemic threshold p∗

G
= r∗

G
/d̄G

is given by p∗
G
= 1.9×10−2 (r∗

G
= 0.15) for the Cosme network

and p∗
G
= 2.8×10−4 (r∗

G
= 0.04) for the Twitter network. These

results imply that the epidemic threshold depends on network
structure and the Twitter network spreads information more
easily than the Cosme network.

E. Comparison with Conventional Centralities

Although estimating influence degree centrality for large
networks is a time-consuming and difficult task, the proposed
method enabled us to approximately calculate the influence
degree within a reasonable time even for huge social networks.
Thus, for the huge Twitter network, we evaluated whether or
not the influence degree centrality can actually provide a novel
concept in comparison with conventional centralities.

As conventional centralities, we examined the between-
ness centrality, the closeness centrality, the hub centrality,
and the PageRank centrality for network G. Here, the be-
tweenness betw(v) of a node v is defined as betw(v) =
∑

u∈V

∑

w∈V spathG
u,w(v)/spathG

u,w, where spathG
u,w is the total

number of the shortest paths between node u and node v
in G and spathG

u,w(v) is the number of the shortest paths
between node u and node v in G that passes through node
v. The closeness close(v) of a node v is defined as close(v)
= (1/|V |)

∑

u∈V (1/distG(v, u)), where distG(v, u) stands for the
graph distance from v to u in G. Also, the hub centrality score
of a node is obtained by the HITS algorithm [21] that defines
the hub and authority centrality, and the PageRank score
of a node is provided by applying the PageRank algorithm
with random jump factor 0.15 [8] to the reverse network

TABLE I: Ranking results for conventional centralities in the
huge Twitter network.

Rank Degree Betweenness Closeness

1 masason shuzo matsuoka masason

2 GachapinBlog SNOOPYbot GachapinBlog

3 higashimototiji NHK PR shuzo matsuoka

4 shuzo matsuoka moomin valley higashimototiji

5 555hamako shuumai takapon jp

Rank Hub PageRank

1 tomo7272 masason

2 ktamiya natalie mu

3 euro tour JAXA jp

4 rakko001 Hayabusa jaxa

5 mabou77 GachapinBlog

TABLE II: Ranking results for the influence degree centrality
in the huge Twitter network.

Rank r = 0.25 r = 0.5 r = 1.0 r = 2.0

1 masason masason masason masason

2 GachapinBlog GachapinBlog GachapinBlog GachapinBlog

3 higashimototiji itoi shigesato itoishigesato utadahikaru

4 itoi shigesato higashimototiji higashimototiji shiro tsubuyaki

5 555hamako Astro Soichi utadahikaru tenkijp

G− = (V, E−) that is constructed through reversing any link
of G, that is, E− = {(u, v) ∈ V × V | (v, u) ∈ E}.

Tables I and II show the top five nodes in the degree,
betweenness, closeness, hub, PageRank, and influence degree
(r = 0.25, 0.5, 1.0, 2.0) centralities for the Twitter network. We
can first observe that each centrality measure actually extracts
its own proper nodes. For the influence degree centrality, while
the diffusion probability setting affects the result, the top two
nodes coincided. They were “masason” and “GachapinBlog”,
which also appeared in the top five of the degree, closeness and
PageRank centralities. Here, “masason” is the Twitter account
of Masayoshi Son who is a famous Japanese businessman and
CEO of SoftBank (a big IT company), and “GachapinBlog” is
the Twitter account of Gachapin who is a popular Japanese TV
character in a children’s program. These are very influential in
Japanese Twitter. Unlike other centralities, the hub centrality
extracted the representatives of a certain big community in
Japanese Twitter, where “tomo7272” is the Twitter account
of an ordinary person who often posts nice tweets. Note
that “shuzo matsuoka” is a famous bot in Japanese Twitter,
and was extracted by the degree, betweenness and closeness
centralities. However, it did not appear in the top ten of the
influence degree ranking. The tweet of bot attracts many people
but dies out very rapidly. Thus, it is not identified as influential
by the proposed method. On the other hand, “utadahikaru” was
extracted only by the influence degree centrality with medium
and high diffusion probabilities while it did not appear in the
top ten of other rankings. Here, “utadahikaru” is the Twitter
account of Hikaru Utada who is a Japanese American singer
known as one of the most influential artists in Japan. These
results demonstrate that the influence degree centrality can
serve as a novel measure that extracts influential nodes in terms
of information diffusion which are not identified by existing
measures.

V. Conclusion

We view the dynamic process of information diffusion as
an important ingredient to evaluate the importance of a node in



a social network, and consider that the node influence degree
shares the same role that other existing topology-based central-
ity measured have. Unlike the existing centrality measures, the
influence degree centrality is not easily computable because it
is defined to be the expected number of information spread.
We proposed a method that can estimate the influence degree
of every single node in a large network simultaneously under
the framework of SIR model setting. More specifically, we
proposed two new pruning techniques on top of the existing
bond percolation approach, in which the problem is reduced
to counting the reachable nodes from each single node in the
directed graph which is generated by bond percolation. We
tested our algorithm using two real world networks, one with
40K nodes and the other with 1, 000K nodes. The experimental
results confirmed that the new pruning techniques improve the
computational efficiency by an order of magnitude over the
existing bond percolation method which is already three orders
of magnitude faster than direct Monte Carlo simulations.

We also demonstrated that the proposed method can esti-
mate the epidemic threshold of the IC model even for a huge
Twitter network with 1, 000K nodes in reasonable time by
examining the relation between the diffusion probability and
the average influence degree, and showed that the epidemic
threshold depends on network structure and the Twitter net-
work spreads information more easily than the Cosme network.
Further, it is confirmed that the nodes identified as influential
by the influence degree centrality based on the SIR model
are not necessarily the same or similar to those identified
by the other existing centralities, and the influence degree
centrality can identify those nodes that are deemed indeed
influential but are not identifiable by the existing methods.
The bond percolation is a generic approach for the SIR model
and can be instantiated to any specific diffusion model. It does
not require any approximations or assumptions to the model
to improve the computational efficiency, e.g., small diffusion
probability, shortest path, maximum influence path, etc., that
were needed in the existing approaches. We instantiated it to
the independent cascade (IC) model, but the same technique
can be applied to other instantiations, e.g., linear threshold (LT)
model.

Our immediate future work is to extensively evaluate the
proposed method for various instantiations of the SIR frame-
work including the LT model by using large real networks
in a variety of fields. Needless to say, it is also necessary
to mathematically clarify the performance difference between
the proposed method and the existing BP method in terms
of computational efficiency. In several real-world networks,
there exist phenomena in which the SIS model is more suitable
than the SIR model [3], [22], where every node is allowed
to be activated multiple times. It is known that the SIS-
type independent cascade model on a network can be exactly
mapped onto the IC model on a layered network built from
the original network [10], [23]. Thus, note that the proposed
method developed for the SIR setting can also be applied to the
SIS setting. Our future work includes evaluating the proposed
method in the SIS framework.
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