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Abstract

Knowledge acquisition is generally meant to be an ac-
tion of eliciting knowledge from human experts. On the
other hand, knowledge acquisition from data is called ma-
chine learning. These two are studied by separate research
communities. We have proposed a method to utilize these
two different knowledge sources and fuse them into an oper-
ational classifier under a framework of Ripple Down Rules
(RDR) method. The method is further extended to a situa-
tion where an environment changes over time. The principle
that unifies all of these is minimum description length prin-
ciple. In this paper we report the performance evaluation of
our method for two kinds of situations where: 1) the knowl-
edge source is changed from the expert to data and vice
versa at any time, and 2) both the knowledge source and en-
vironment is changed. Experiments were conducted to sim-
ulate building RDR trees for the above two situations using
the datasets in UCI repository (with appropriate modifica-
tion to simulate the environment change). The results are
encouraging and indicate that our method works well in a
situation in which the changes of the knowledge source and
environment are coupled.

1. Introduction

Knowledge acquisition (KA) is generally meant to be
an action of eliciting knowledge from human experts. KA
from data, on the other hand, is called machine learning.
These two are studied by separate research communities.
Both share the same goal of acquiring knowledge, store it
into a machine and make it executable. However, both are
different and each has pros and cons. When huge amount
of data is available, it is difficult for human experts to pro-
cess the data manually. Utilizing machine learning meth-
ods is a good approach to discover new knowledge from
data automatically. However, human experts are capable of
intuitively capturing the right knowledge at the right place

which is difficult for machines. Thus, it is important to pro-
vide a methodology for constructing a knowledge base sys-
tem (KBS) which can make the best use of information pro-
cessing capability of both human experts and machines.

As an initial step we have considered the task of con-
structing a classifier using both human expertise and knowl-
edge embedded in the data, i.e. fusing two different knowl-
edge sources into an operational classifier. We base our ap-
proach on a KA method called “Ripple Down Rules (RDR)”
method [2], which directly acquires and encodes knowledge
from human experts. It is a performance system that doesn’t
require high level model of knowledge at the KA stage. It is
an incremental KA method, and has been shown to be effec-
tive in knowledge maintenance for classification and diag-
nosis tasks [5]. Since it is an incremental KA method, there
is no clear distinction between knowledge acquisition and
knowledge maintenance. The original RDR method, how-
ever, is solely for KA from human experts and there is no
automated way of inducing a model from data. We incorpo-
rate the concept of the Minimum Description Length Prin-
ciple [7, 4] (MDLP) into the RDR method as an underlying
principle and our previous work [8, 9] supports this idea.

In this paper we conduct experiments using the datasets
from the UCI repository (with appropriate modification to
simulate the environment change) and report the perfor-
mance evaluation of our method for two kinds of situations
where: (1) the knowledge source is changed from the expert
to data and vice versa at any time, and (2) both the knowl-
edge source and environment is changed. For instance, dur-
ing the initial phase of KBS development, there may not be
enough data available and human experts is the sole source
of knowledge, but at a later stage when there is enough data
accumulated we may want to switch the knowledge source
to the data and induce a model without rebuilding it from
scratch. Or even when an abound data is available human
experts can provide an initial guess of knowledge and a ma-
chine learning method can refine it. The experiment (1) cor-
responds to this kind of scenario. Being able not to rely on
human experts at all times will contribute to reducing the
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Figure 1. Knowledge structure of the Ripple Down Rules method

cost of personnel expenses for constructing a KBS.
As another example, in the problem domain of trouble

shooting for personal computers, even the trouble shooting
method for the same machine can change over time due to
the innovation of technologies and cost reduction. In order
to adapt to such kinds of change it is necessary not only
to incorporate new trouble shooting method into a KBS but
also to discard obsolete knowledge from the KBS. The ex-
periment (2) corresponds to this kind of scenario. We be-
lieve that identifying which pieces of knowledge is no more
valid and deleting them from the KBS in accordance with
the changes in the problem domain characteristics, yet guar-
anteeing the consistency of the KBS, facilitates the effective
reuse of the accumulated knowledge in the KBS.

2. Ripple Down Rules

The basis of this method is the maintenance and retrieval
of cases1 When a case is incorrectly retrieved by an RDR
system, the KA (maintenance) process requires the expert to
identify how a case stored in a KBS differs from the present
case. The structure of an RDR knowledge base is shown in
Figure 1(a). Each node in the binary tree is a rule with a
desired conclusion (If-Then rule). Each node has a “corner-
stone case (CS-case)” associated with it, that is, the case that
prompted the inclusion of the rule. An inference process for
an incoming case starts from the root node of the binary
tree. The process moves to the YES branch of the present
node if the case satisfies the condition part of the node, and
if it doesn’t, the process moves to the NO branch. This pro-
cess continues until there is no branch to move on. The con-
clusion for the incoming case is given by the conclusion part
of the node in the inference path for the case whose condi-

1 RDR is a kind of case based reasoner and “data” is called “cases”.
Thus, we use both “data” and “cases” interchangeably.

tion part is lastly satisfied. This node which has induced the
conclusion for the case is called “last satisfied node” (LSN).

If the conclusion is different from the one which an ex-
pert judges the case to be, knowledge (new rule) must be ac-
quired from the human expert, and this rule must be added
to the existing binary tree. The KA process in RDR is illus-
trated in Figure 1(b). When the expert wants to add a new
rule, there must be a case that is misclassified by a rule in
RDR. The system asks him/her to select conditions for the
rule from the “difference list (D-list)” between these two
cases: the misclassified case and the CS-case. Then the mis-
classified one is stored as the refinement case (new CS-case)
with the new rule whose condition part distinguishes these
two cases. Depending on whether the last satisfied node is
the same as the end node (the last node in the inference
path), the new rule and its CS-case are added at the end of
YES or NO branch of the end node. Knowledge is never re-
moved or changed, simply modified by the addition of ex-
ception rules. This ensures that the knowledge is guaran-
teed to be used in the same context under which it is added
to the KBS.

3. Functions in the Proposed System

We have incorporated various functions into RDR on the
basis of the MDLP. There is no unique way of calculat-
ing the description length. It depends on how to encode the
model being built and the misclassified cased by the model.
This section describes the incorporated functions in our pre-
vious approach [8, 9].

3.1. Knowledge Acquisition from Data

Any element in the D-list which distinguishes between
the misclassified case and the CS-case can be used as a rule
condition. In general there are more than one such element.
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Figure 2. Search by data

In our approach the element which minimizes the total De-
scription Length (DL) is selected. The search space forms a
lattice and a greedy search is performed from both ends: the
most specialized condition to the misclassified case and the
most general condition to it.

Figure 2 is an example in which an input case misclas-
sified by the so far grown RDR tree has the attributes val-
ues {v1,2, v2,1, v3,2} and a CS-case whose node has derived
the false conclusion has the values {v1,1, v2,1, v3,1}. The
detail of the search algorithm in the lattice is omitted due
to the space limitation. The search starts with a condition
{v1,2&v3,2} which is most specific to the input case, and it
finds a condition {v1,2} that falls in a local minimum DL.
Then the search restarts with a condition {no condition}
which is most general for the input case, and it finds an-
other condition {not(v3,1)} that falls in a local minimum
DL. Whichever condition that results in a smaller DL is se-
lected as the condition part of a new node for the incoming
case. In this example, the condition {v1,2} is selected.

3.2. Knowledge Acquisition from both Data and
Human Experts

In addition to KA from human experts which is realized
in the standard RDR, KA from data can be utilized to jointly
construct an RDR KB in our approach. To fuse these two
methods, we let a human expert selects element(s) and use
this set to initiate search for finding the condition with a
smaller DL defined in Section 3.1 This can lead to finding
a better condition from the viewpoint of MDLP, compared
with the one selected by the expert. Our previous experi-
ments showed that incorporating the judgment (i.e., the se-
lected set of conditions) from the human expert during the
initial phase of inductive construction of a KBS statistically
improves its predictive accuracy.
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3.3. Knowledge Deletion and Pruning

Some part of a KB becomes useless even if D-list is
not empty due to the change in class distribution. However,
since many pieces of knowledge might still be valid for a
new environment, it would be reasonable to reuse them as
much as possible. The criterion in our approach is based on
the assumption that a new node is not to be added even if the
input case is misclassified, when adding the node does not
decrease the DL, and is carried out as follows. If such a situ-
ation takes place, first, tentatively delete the node which in-
duces the wrong conclusion. Cases of the same class as that
of the deleted node are also deleted. Other cases of differ-
ent classes in the deleted node are restored and redistributed
in the reorganized tree to their new LSN. The above pro-
cess is illustrated in Figure 3. If the normalized 2 DL for the
knowledge base after deletion is smaller than that of the cur-
rent one, accept the deletion. Otherwise, recover the current
knowledge base by retracting the deletion process.

Furthermore, pruning is incorporated for the incremental
construction of a KBS to increase prediction accuracy. As in
knowledge deletion, first, tentatively prune (delete) a node
from the RDR tree and calculate the DL for the remain-
ing KBS. If DL becomes smaller, then adopt pruning since
a smaller DL means better predictive accuracy on unseen
future data from the viewpoint of MDLP. The major differ-
ence between pruning and knowledge deletion is that the
cases which are stored in the pruned node are not deleted,
but redistributed and stored in other nodes in the pruned
KBS. Thus, what is removed from the KBS is only the piece
of knowledge which is represented as the If-Then rule on the
pruned node, not the cases themselves. This function is ef-
fective even for the static environment in which class distri-
bution does not change. Thus, it plays the role of avoiding
overfitting to the incoming data, just as in C4.5.

2 Because the DL monotonically increases in proportion to the number
of cases, the DL normalized as DLα/DL

′
α and DLβ /DL

′
β . Here, DL

′

denotes the DL for encoding the true class information for the whole
cases in the current RDR tree without using the tree information.



4. Performance Evaluation

Experiments were conducted to investigate whether the
RDR method equipped with the functions in Section 3 can
cope with the change of knowledge sources (KS) and the
change of class distribution. The results were evaluated with
respect to the prediction accuracy. To simulate the latter
change, synthesized data were created and used. It is as-
sumed that the expert can immediately change his/her in-
ternal model or expertise for the domain according to the
change of class distribution. Said differently, the label of in-
coming data is always assumed to be correct, reflecting the
environment where the data resides. Note that emphasis is
made on the use of MDLP in this paper, and KA from hu-
man experts is enhanced by the combined use of KA from
data in the experiments.
[Synthesized Data] A set of cases Xchg with different
class distribution from the original dataset Xorg was gen-
erated for each dataset as follows. First, all the cases in
Xorg are sorted in lexical order for class label. By preserv-
ing this order, the cases with the same class label are then
sorted w.r.t. values in lexical order for nominal attributes
and in ascending order for numerical attributes. Finally, the
class labels for (#of all cases ÷ #of classes ÷ 10) cases
are changed by shifting them so that the class label for
about 10% in Xorg is changed to neighboring class. Then,
they are divided into 75% and 25% to form a training data
(X train

org ,Xtrain
chg ) and a test data (X test

org ,Xtest
chg ), respectively.

[Training Set] Cases that are selected randomly from one
population (e.g., X train

org ) (with replacement as many times
as required) are fed sequentially to the RDR system.
[Test Set] The error rate of misclassified case for the test
data was evaluated using the knowledge base at prespec-
ified time points. Note that X test

org (X test
chg ) was used as the

test data when the population was X train
org (X train

chg ).
[Simulated Expert] Simulated Expert [3] (SE) is used
instead of a human expert for the sake of reproduction of
experiments and performance consistency in the RDR re-
search community. We follows this tradition and use an If-
Then rule set derived from a decision tree constructed by the
standard C4.5 [6] using the whole Xorg(Xchg) to be the SE.
A set of elements selected from the D-list by the SE is de-
fined as the intersection between the list and the condition
part of the If-Then rule in the SE. We assume that the SE al-
ways predicts correctly the case misclassified by the RDR
system at the KA stage.

4.1. Change in Knowledge Source

Suppose a human expert is available only for a cer-
tain duration to construct a knowledge base and KS can
be switched to data when the expert is not available. If
the constructed KBS has equivalent capability with the one

for which the expert is available all the time, it will con-
tribute to reducing the cost of personnel expenses. Thus, we
conducted experiments to investigate the effect of chang-
ing KSs during the consecutive course of KA. To focus
on the effect of change in KS, only the original population
(Xorg) was used in each dataset. Both knowledge deletion
and pruning were used in this experiment.
[Datasets] We used 15 datasets from University of Cal-
ifornia Irvine Data Repository [1] (see Table 1). Inductive
learning method (KA from data) would be eventually re-
sult in a correct KBS when there is a sufficiently large num-
ber of cases available. The knowledge of an expert is help-
ful when there is not much data accumulated. Thus, the total
number of sampled cases was set to 25% of original cases
for each dataset in this experiment.
[Knowledge Source] Three methods “SE”, “SE→Data”
and “Data” were compared. “SE” represents that the SE was
used as KS3. “Data” represents that only data was used as
KS. “SE→Data” represents that the SE was used for the ini-
tial phase (one third of the total sampled cases) and then the
KS was switched to data thereafter.
[Error Rate] Since a different ordering of sampled cases
results in a different KB in RDR [8], we repeated the sim-
ulation 10 times for each dataset by changing the parame-
ter of random sampling at each simulation and the error rate
was calculated as the average of 10 runs.

Results are summarized in Table 1. Our conjecture was
that “SE→Data” is equivalent to “SE” and is superior to
“Data”, which would alleviate experts being required avail-
able all the time. However, with paired t-test (one-side test)
with 95% confidence level, the error rate of “SE→Data” is
equivalent to that of “SE” for 12 datasets, inferior to for
2 datasets (with +∗ in Table 1) and superior to for 1 dataset
(with −∗). On the other hand, the error rate of “SE→Data” is
equivalent to that of “Data” for 13 datasets, inferior to for 1
datasets (with −∗∗) and superior to for 1 dataset (with +∗∗).
Thus, there is no distinct difference in the prediction accu-
racy between three methods and the results does not support
our conjecture for the situation in which only KS changes.

4.2. Change in both Knowledge Source and Class
Distribution

Another experiment was conducted to see the combined
effect of change in both KS and class distribution using the
“Nursery” dataset in Table 1. We chose this dataset since it
contains many cases and the prediction accuracy of the SE
for this dataset is sufficiently high. To investigate how the
performance of the constructed KBS varies, we set the total
number of sampled cases to 9000. To simulated the change

3 In this paper it is enhanced by the combined use of KA from data.



Dataset #case #class #attribute SE SE→Data Data C4.5
RDR size RDR size RDR size C4.5 size

Car Evaluation 1728 4 Nom.∗ 6 17.2 10.4 16.6 10.3 15.7 11.3 17.0 64.8
Nursery 12960 5 Nom. 8 10.2 22.5 9.6 25.1 10.9 24.1 6.6 211.2
Mushrooms 8124 2 Nom. 22 0.1 7.1 0.1−∗∗ 7.1 0.0 7.7 0.1 31.3
King-rook-vs-king-pawn 3196 2 Nom. 36 5.1+∗ 7.1 6.2 7.2 10.6 6.2 2.8 36.4
Congressional Voting Record 435 2 Nom. 16 6.3 2.5 6.3+∗∗ 2.5 7.4 2.9 5.6 6.0
Wisconsin Breast Cancer 699 2 Nom. 9 8.2 3.4 7.4 3.6 7.8 3.7 8.2 21.0
Splice-junction Gene seq. 3190 3 Nom. 60 11.5 6.9 10.6 7.1 10.0 7.6 11.2 193.8
Image segmentation 2310 7 Num.∗∗ 19 20.3 14.7 20.6 14.5 18.6 16.6 7.1 43.2
Page Blocks Classification 5473 5 Num. 10 8.0 7.7 8.5 6.9 9.1 6.9 4.7 37.0
PenDigits 10992 10 Num. 16 14.4 70.5 14.8 70.1 15.0 72.9 7.1 181.6
Yeast 1484 10 Num. 8 61.5 6.8 65.0 7.0 62.9 7.7 49.6 103.8
Pima Indians Diabetes 768 2 Num. 6 30.8 1.7 32.9 1.5 32.9 1.5 27.7 24.6
German Credit 1000 2 Mix.∗∗∗ 13/7 28.1 2.4 28.1 2.4 28.1 2.4 27.8 53.7
Contraceptive Method Choice 1473 3 Mix. 7/2 58.6−∗ 1.9 53.9 2.7 52.9 3.0 49.4 115
A Thyroid database for ANNs 7200 3 Mix. 15/6 1.3+∗ 6.6 2.0 6.8 2.5 6.8 0.8 15.2

Nom∗ :nominal attribute, Num∗∗: numerical attribute, Mix.∗∗∗: both nominal and numerical attributes(#nominal / #numerical)
RDR, C4.5: error rate (%)
size: the number of nodes of the binary tree of RDR and that of the decision tree by C4.5
+∗ (−∗): the error rate of SE is lower (higher) than that of SE→Data with 95% confidence level (paired t-test, one-side test)
+∗∗ (−∗∗): the error rate of SE→Data is lower (higher) than that of Data with 95% confidence level (paired t-test, one-side test)

Table 1. Results when only the knowledge source is changed

#sampled cases
method 1∼1000 1001∼2500 2501∼3000 3001∼4500 4501∼9000

SE→Data KA with SE KA,PR,DE with DA KA,PR,DE with DA KA,PR,DE with DA KA,PR,DE with DA
Data KA,PR,DE with DA KA,PR,DE with DA KA,PR,DE with DA KA,PR,DE with DA KA,PR,DE with DA

SE/Data KA with SE KA with DA KA,PR,DE with DA KA,PR with SE KA,PR,DE with DA
SE’ KA with SE KA with SE KA with SE KA,DE with SE KA,DE with SE
SE KA with SE KA with SE KA with SE KA with SE KA with SE

C4.5 C4.5 C4.5 C4.5 C4.5 C4.5

SE: Simulated Expert,DA: Data,KA: Knowledge Acquisition,PR: PRuning,DE: DEletion of Knowledge

Table 2. Five methods and C4.5 for changes in both knowledge source and class distribution

in class distribution, the population was changed from X org

to Xchg at the 3001st sampled case.
[Knowledge Source] Four different settings were simu-
lated: 1) KA from human experts only for the initial 1000
cases, followed by KA from data (method “SE→Data” in
Table 2), 2) KA from human experts for the initial 1000
cases and for 1500 cases after the class distribution change,
the rest being KA from data (“SE/Data”), 3) KA from hu-
man experts throughout the life (“SE’ ” and “SE”), and 4)
KA from data throughout the life (“Data”).
[Deletion and Pruning] Deletion and pruning are mostly
used in combination and not all the combination of the pa-
rameters is considered due to the combinatorial explosion.
[Summary of the Methods] Combination of the afore-
mentioned parameters is summarized in Table 2. A total of
five methods were simulated and the effects of the param-

eters are evaluated. Further the results are compared with
the standard C4.5 that runs in batch mode. In each run the
proposed functions in RDR were selectively utilized for the
predefined period to investigate the influence of each func-
tion. Note that since C4.5 is not an incremental method, ev-
ery time a new case was drawn from the population, the al-
ready constructed decision tree was discarded and a new
tree was constructed. For instance, the decision tree for the
6000 cases was constructed by treating all of these cases as
a training set given at that time point.

Results for one run are illustrated in Figure 4 w.r.t. er-
ror rate. In “SE→Data” the SE was used as the KS at the
initial phase (first 1000 cases) and after that only data were
utilized for constructing a KBS. Compared with “Data” in
which only the data is used throughout the cycle, the speed
of KA is faster in “SE→Data”. Even after the change in
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class distribution at the 3001st case, the error rate was kept
low. Method 3 is the same with method 1 except that the SE
was also utilized from the 3001st to the 4500th cases. Com-
pared with method 1 and 2, “SE/Data” showed even faster
KA after the change in class distribution. “SE”, in which the
SE was utilized as the KS throughout the cycle, showed the
immediate adaptation to the change and the error rate for the
unseen future data was the lowest. Note that the error rate
in method 3 was equivalent to that in “SE’ ”.This result in-
dicates that even if a human expert is not available all the
time, it is possible to construct an almost equivalent KBS
if KA from the expert is carried out at an appropriate tim-
ing. This is confirmed by paired t-test for many datasets.

Compared with C4.5, all the methods except “Data”
showed lower error rate. Since learning is carried out incre-
mentally and inductively only from data in “Data”, it is rea-
sonable that C4.5 which carries out learning in batch mode
gives a better result. On the other hand, it is reasonable that
the other four methods that use SE’s knowledge gives bet-
ter results than C4.5 because the SE has been built using all
the data available. The error rate of “SE→Data” and “Data”
are larger than “SE/Data”, “SE’ ” and “SE” in which the SE
is more heavily utilized.

In our approach DL is calculated based on the already en-
countered data (cases) and the remaining training data are
not utilized even if they are expected to be fed to RDR sub-
sequently. Nevertheless, MDLP seems to work very well in
general as a unifying principle, and use of SE knowledge
helps to reduce the search space. Further, knowledge dele-
tion and pruning are shown to be very effective when an en-
vironment changes over time.

5. Conclusion

This paper reported the performance evaluation of a
method which brings together two different methods that
were developed separately, one in knowledge acquisition
and the other in machine learning, under a framework of

Ripple Down Rules (RDR) method. The method was eval-
uated through simulation using a simulated expert and the
results show that 1) it is indeed possible to construct an ef-
fective KBS without fully relying on human experts if both
knowledge sources are adequately utilized, 2) these two dif-
ferent knowledge sources can be used alone (interchange-
ably) or simultaneously, and 3) it is possible to reduce the
cost of personnel expenses for incremental construction of a
KBS. Future work includes to improve the encoding method
for description length calculation, to test out the proposed
method for many more datasets of different characteristics
with nominal, numeric and mixed attributes, and to design
a good user interface. Another direction is to automatically
determine when to switch the knowledge source based on
the error rate or the ratio of description length.
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