What can we do with graph-structured data?
- A data mining perspective -
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Recent advancement of data mining techniques has made it possible to mine
from complex structured data. Since structure is represented by proper relations
and a graph can easily represent relations, knowledge discovery from graph-
structured data (graph mining) poses a general problem for mining from struc-
tured data. Some examples amenable to graph mining are finding functional
components from their behavior, finding typical web browsing patterns, identi-
fying typical substructures of chemical compounds, finding typical subsequences
of DNA and discovering diagnostic rules from patient history records. These are
based on finding some typicality from a vast amount of graph-structured data.
What makes it typical depends on each domain and each task. Most often fre-
quency which has a good property of anti-monotonicity is used to discover typical
patterns. The problem of graph mining is that it faces with subgraph isomor-
phism which is known to be NP-complete. In this talk, I will introduce two con-
trasting approaches for extracting frequent subgraphs, one using heuristic search
(GBI) and the other using complete search (AGM). Both uses canonical labelling
to deal with subgraph isomorphism. GBI [6,4] employs a notion of chunking,
which recursively chunks two adjoining nodes, thus generating fairly large sub-
graphs at an early stage of search. It does not use the anti-monotonicity of fre-
quency. The recent improved version extends it to employ pseudo-chunking which
is called chunkingless chunking, enabling to extract overlapping subgraphs [5].
It can impose two kinds of constraints to accelerate search, one to include one
or more of the designated subgraphs and the other to exclude all of the desig-
nated subgraphs. It has been extended to extract unordered trees from a graph
data by placing a restriction on pseudo-chunking operations. GBI can further
be used as a feature constructor in decision tree building [1]. AGM represents
a graph by its adjacency matrix and employs an Apriori-like bottom up search
algorithm using anti-monotonicity of frequency [2]. It can handle both connected
and disconnected graphs. It has been extended to handle a tree data and a se-
quential data by incorporating to each a different bias in joining operators [3]. It
has also been extended to incorporate taxonomy in labels to extract generalized
subgraphs. I will show how both GBI and AGM with their extended versions
can be applied to solve various data mining problems which are difficult to solve
by other methods.
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