
Density-Based Spam Detector

Kenichi YOSHIDA
Graduate School of Business Science, University

of Tsukuba
Otsuka 3-29-1, Bunkyo, Tokyo 112-0012, Japan

yoshida@gssm.otsuka.tsukuba.ac.jp

Fuminori ADACHI
Takashi WASHIO
Hiroshi MOTODA

ISIR, Osaka University
8-1, Mihogaoka, Ibarakishi, Osaka 567-0047,

Japan

{adachi,washio,motoda}@ar
.sanken.osaka-u.ac.jp

Teruaki HOMMA
Akihiro NAKASHIMA

KDDI Corporation
Garden Air Tower, 3-10-10, Iidabashi, Chiyoda,

Tokyo 102-8460, Japan

{teruaki,nakasima}@kddi.com

Hiromitsu FUJIKAWA
Katsuyuki YAMAZAKI

KDDI R&D Laboratories Inc.
2-1-15 Ohara, Kami-fukuoka, Saitama 356-8502,

Japan

{fujikawa,yamazaki}@kddilabs.jp

ABSTRACT
The volume of mass unsolicited electronic mail, often known
as spam, has recently increased enormously and has become
a serious threat to not only the Internet but also to so-
ciety. This paper proposes a new spam detection method
which uses document space density information. Although
it requires extensive e-mail traffic to acquire the necessary
information, an unsupervised learning engine with a short
white list can achieve a 98% recall rate and 100% precision.
A direct-mapped cache method contributes handling of over
13,000 e-mails per second. Experimental results, which were
conducted using over 50 million actual e-mails of traffic, are
also reported in this paper.

Categories and Subject Descriptors
H.2.8 [Database Management]: Data Mining; H.3.1 [In-
formation Storage and Retrieval]: Content Analysis
and Indexing; I.2.6 [Artificial Intelligence]: Learning

General Terms
Performance, Experimentation, Security

Keywords
spam, unsupervised learning, document space density, direct-
mapped cache

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’04, August 22–25, 2004, Seattle, Washington, USA.
Copyright 2004 ACM 1-58113-888-1/04/0008 ...$5.00.

1. INTRODUCTION
Mass unsolicited electronic mail, often known as spam [7]1,

has recently increased enormously and has become a serious
threat to not only the Internet but also to society. This is
especially true in Japan, where mobile phones have e-mail
capability and e-mails through these devices have become in-
dispensable to society. Under these circumstances, there ex-
ists a strong requirement for a spam filter which can protect
large mail servers. However, none of the currently known
spam filters can effectively cope with the huge volume of
traffic with sufficient accuracy.

Even though a lot of studies have been undertaken to
create and improve spam filters, most of them are for e-mail
clients which are used on a terminal. Such spam filters, for
e-mail clients, should be accurate, easy to personalize, and
easy to use. However, the required characteristics of a spam
filter for e-mail servers are slightly different. They are:

• High processing speed:
Large ISP e-mail servers have to handle billions of e-
mails per day. This means that the spam filter has to
handle more than 1000 e-mails per second. Since the
most well known spam filter program requires 10 to
100 milliseconds to deal with each e-mail, performance
improvement is necessary.

• Ease of maintenance:
Most of the traditional spam filtering methods requires
maintenance of their data-base so that they can han-
dle new types of spam. Unfortunately, spammers tend

1Mass electric mail includes both unsolicited mail and so-
licited mail. In general, mass solicited mail includes mail
magazines, error mails, etc., and spam mainly refers to un-
solicited mail. In this paper, spam refers to both types of
mass mail. Since a short white list, i.e., a data base which
stores the list of proper senders, seems to work well with the
method presented in this paper, we aren’t concerned about
this confusion of solicited and unsolicited mails. See Section
5.2 for details.

486

Industry Track PaperIndustry/Government Track Paper

to be very productive and are always producing new
type of spam. This makes maintenance work diffi-
cult, especially for e-mail servers. The learning func-
tion of the traditional method is adequate for individ-
ual customers but not for groups of customers. This
also makes maintenance difficult. A maintenance free
method such as an unsupervised learning method is
desirable.

• High accuracy:
Although accuracy is important for spam filter for clients,
it is also important for a spam filter to be accurate
for e-mail servers. When considering an anti-spam ar-
rangement, the requirements for judgment accuracy
are different for clients and servers. A server requires
miss-judgment probability of normal e-mail being marked
as spam to be zero, whereas that strict requirement is
not as necessary for clients. In other words, a method
of anti-spam arrangement that achieves the above re-
quirement will only be implemented within a network
server environment.

• Privacy protection:
In order to be implemented on an e-mail server within
a network, it is desirable that a method and related
operations do not directly look or reveal the content
of e-mail. Some type of abstraction needs to be done
at the first stage of the method.

This paper reports on a new spam detection method for
e-mail servers. Two key ideas of our study are 1) the use of
document space density [15] information, and 2) an efficient
implementation of the first idea through the use of a direct-
mapped cache [17]. The proposed method requires extensive
volumes of e-mail traffic to acquire the necessary density in-
formation. Thus it is not adequate to use this method for
client terminals. However, the latter three characteristics,
i.e., ease of maintenance, high accuracy and privacy protec-
tion, are achieved. To realize the first characteristics, i.e.,
high processing speed, an on-line unsupervised learning en-
gine with a direct-mapped cache method is developed.

Section 2 of this paper first surveys related work and de-
termines their limitations in order to clarify the motivation
of this research. Section 3 explains the analysis of document
space density with a direct-mapped cache engine. Section 4
reports on the experimental results that used over 50 million
actual pieces of e-mail traffic. It also compares our method
with other methods. Section 5 discusses related topics. Fi-
nally, Section 6 concludes our findings.

2. RELATED WORKS
Since spam has become a serious threat to society, a lot of

study has been undertaken to create spam filters to protect
e-mail users, e.g., [3, 4, 14, 16], and [18]. Some of them use
a Bayesian-like approach [4, 14], or a rule-based approach
[16], and some use a checksum data base [3, 18] to detect
spam.

Vector representation, e.g., TF IDF[15], combined with
machine learning techniques [8] are commonly used to de-
tect spam. A fundamental dilemma is the difficulty of the
learning problem. Figure 1 shows a sample vector repre-
sentation of a group of e-mails. Spammers today seem to
have a great deal of knowledge about techniques used to de-
tect spam. They try to make the size of their information

1’st hash value

2’
nd

 h
as

h
va

lu
e

spam
Not spam

Figure 1: Vector Representation of E-mail

much smaller. For example, they make shorter spam e-mail
with small alterations. They also add random words so that
random words disturb the statistical analysis. Such tricks
make the learning task difficult. In other words, finding a
function to discriminate between spam and non-spam mail
on this representation alone is not a simple task.

We also use related representation (See next section for
details). However, to treat Japanese and English e-mail to-
gether in an efficient way requires that we choose hash-based
text representation. Hash-based text representation is one
of the basic text representation methods [6] and it is used
for a variety of purposes, e.g., text retrieval [1], text com-
pression [13], and spam filtering[3, 18]. Since hash-based
text representation doesn’t require a morphological analysis
of Japanese text, it therefore improves the performance of
our method.

A high speed text search engine is an important compo-
nent of our method. A direct-mapped cache [17] is the core
of the engine and it is used as a substitute for the LRU
cache. LRU performance on heavily maldistributed data is
studied in various network applications. For example, [10]
analyzes WWW traffic and reveals LRU’s high performance
on gathering maldistributed WWW data. In our study, the
direct-mapped cache [17] is used to gather maldistributed
spam mails.

3. DENSITY-BASED SPAM DETECTOR
The analysis of document space density itself and the un-

supervised learning engine with a direct-mapped cache are
the key ideas of our study. This section explains these two
ideas with an implemented system.

3.1 Document Space Density
Although most of the conventional spam filters use vector

representation for the basic representation of data, we use
document space density [15] as the key piece of information
to distinguish spam from other e-mails. More precisely, we
just count the number of similar e-mails. By counting the
number of similar mails, we can estimate the local document
density around the mail.

Figure 2 shows the histogram of e-mails shown in Figure
1. The X and Y axis are that of Figure 1. The Z axis

487

Industry Track PaperIndustry/Government Track Paper

1’st hash value
2’nd hash

valueN
um

be
r

of
S

im
ila

r
E

-M
ai

l
spam

Not spam

Figure 2: Histogram of Similar Mails

Mail server

Mail server

Mail server

Mail server cluster

Switching Hub

Mass Mail Detector

Internet

SMTP
handler Vectorizer

Mass Mail
Cache

Figure 3: Configuration of Mass-Mail Detector

is the number of similar e-mails. As clearly shown in the
Figure, the use of the histogram makes distinguishing spam
from other e-mails far easier. Actually, experimental results
reported in Section 4 showed that simple threshold is enough
to distinguish spam from other e-mails.

Spammers conduct marketing, commercial, and even un-
ethical activities by sending out a huge amount of spam.
This high volume is required as it is the only way to receive
enough economical benefit. There is therefore a heavy mald-
istribution on e-mail traffic, making document space density
a good index to identify spam. Although ordinary users sel-
dom send more than 1000 similar e-mails, spammers have
to send the same spam far more than that. Note that some
of the unethical spam mail are said to be difficult to judge
even for a human. However, the existence of over thousand
identical e-mails makes the fact clear.

3.2 System Configuration
Figure 3 shows the system configuration of MMD (Mass-

Mail Detector) that we have implemented. By monitoring
network packets at the switching hub, the SMTP handler
analyzes SMTP traffic between mail servers and reconstructs
the text of e-mails. Then, Vectorizer transfers the text into
vector representation.

There are various vector representations, such as term fre-
quency and N gram [9]. Although they are candidate rep-
resentation, we use a hash-based vector representation (See
Figure 4). From each e-mail, hash values of each length L

Mail Text String Example

Mail T

ail Te

il Tex

l Text

Extract Substrings from Mail

Hash 1

Hash 2

Hash NCalc.
Hash

...

...

Hash-based
Vector Space Model

Figure 4: Hash-based Vector Representation

substring are calculated,2 and then the first N of them are
used as vector representation of the e-mail.

Japanese, English and other languages are used in mo-
bile phone e-mails in Japan. Bigram [9] is known to work
well for Japanese. Term frequency is commonly used for
English. The hash-based representation can extract enough
information from various languages in a singular and sim-
plistic way. Its efficiency is also the reason we choose this as
our representation method.

3.3 Caching Architecture
An unsupervised learning engine is used to find spam from

huge volumes of e-mail traffic. Since it has to handle over
1000 e-mails per second and it needs to check a million pre-
vious e-mails to handle the current single e-mail, naive im-
plementation requires over a billion similarity checks and
this isn’t realistic. To solve this problem, we have devel-
oped a new type of unsupervised learning engine which uses
a direct-mapped cache [17] architecture to speed up process-
ing.

Figure 5 shows the data structure and Figure 6 shows
the algorithm. The hash data base in Figure 5 stores the
hash values of each e-mail and the number of similar e-mails.
The direct-mapped cache copies the n% of the hash values.
It also stores the pointer to the e-mail’s entry in the hash
data base. To check a single piece of e-mail, in order to
find similar previous e-mail which share S% of the same
hash values, the algorithm shown in Figure 6 first checks the
direct-mapped cache. The direct-mapped cache is a simple
hash table, and the algorithm can find the entries of e-mails
which have the same hash value through this cache.

The contents in the direct-mapped cache are simply over-
written if the hash values are overlapped. When all the
hash values in the direct-mapped cache are overwritten by
other e-mails, the algorithm deletes the entry in the hash
data base for the overwritten e-mail so that it can reuse the
memory space of the hash data base.

Although this architecture does not have an explicit LRU
cache mechanism to control entries in the hash data base,
the overwrite mechanism of direct-mapped cache controls
the entry in the hash data base as if it were controlled by a
LRU mechanism.

2We use the standard hash function provided in linux C
library.

488

Industry Track PaperIndustry/Government Track Paper

DMC (Direct-Mapped Cache)

Entry 0
1
2

...
m

Pointer to Hash Database

Hash Database

Mail 0
1
2

...
M

Hash 1 Hash 2 Hash N...

h1 h2

Pointer by h1

Pointer by h2

No. of
Similar Mails

No. of
DMC Entry

Figure 5: Data Structure of Mass Mail Cache

Total Number of e-mail 53,985,002
Total Number of “spam” 12,324,762
DMC entry 2,000,000
Hash Data Base entry 1,000,000
“spam” threshold 100
L: length of substring 9
N: Number of hash values for each e-mail 100
n: Percentage of hash values copied in DMC 10 %
S: Similarity threshold 90 %

Memory Size 825 MByte
CPU time 4340 sec
Number of “spam” Type 14,320
Percentage of “spam” Type 22.8 %
Estimated Recall (See Fig 8) 98 %
Precision 100 %

Table 1: Summary of Experimental Results

4. EXPERIMENTAL RESULTS
Unfortunately, we are not allowed to disclose all of our

findings to protect privacy. This section only summarizes
important statistics.

4.1 Results on “spam” through Mobile Phone
We have analyzed actual SMTP traffic transferred through

segments of a genuine mail site. Since no single segment
transfers all of the SMTP traffic, we were only able to an-
alyze a part of the overall traffic. A Pentium 4, 2.4 GHz,
desktop computer with 2Gbytes of memory was used for the
experimentation.

Table 1 summarizes the results. 22.8% of the total number
of e-mails are spam, and the distribution of similar e-mail
is shown in Figure 7. As seen in various network data, [10]
for example, the distribution of similar e-mail follows Zipf’s
law (See Figure 7).

The similarity threshold used in the experimentations is
90%. E-mails transferred more than 100 times are marked
as spam. 100% of marked mails are mass mails as is defined.
One million entries for the hash data base and two million
entries for the direct-mapped cache consumed 825M bytes.
100 substrings whose length being 9 are used to make hash
values for each single e-mail. 10% of the hash values in the
hash data base are copied in the direct-mapped cache.

Main Procedure Check-Mail
Input

T : Text of Mail
Var h: Hash value
begin

New-Hash-DB-Candidate
← Make N Hash values from T

for h in New-Hash-DB-Candidate do
if Similar(Mail in Hash-DB pointed by h,

New-Hash-DB-Candidate)
then Update-Similar-Mail(

Mail in Hash-DB pointed by h)
exit Check-Mail

// If No Similar Entry exists in Hash DB
Store-New-Mail(New-Hash-DB-Candidate)

end

Function Similar
Input

H1: Hash-DB entry
H2: New-Hash-DB-Candidate

begin
if H1 and H2 share S same hash value
then return Yes
else return No

end

Procedure Update-Similar-Mail
Input

H1: Hash-DB entry
Var h: Hash value
begin

Increment “No.of Similar Mail” of H1
for first n h in H1 do

Set-DMC-Entry(current h, H1)
if No.of Similar Mail > D
then Mark H1 as “spam”

end

Procedure Store-New-Mail
Input

H2: New-Hash-DB-Candidate
Var h: Hash value
begin

Store H2 as New Hash DB Entry
for first n h in H2 do

Set-DMC-Entry(current h, H2)
Set “No.of Similar Mails” as 1
Set “No.of DMC Entry” as n

end

Procedure Set-DMC-Entry
Input

h: Hash value
H: Hash-DB Entry

begin
Set DMC Entry for h so that it points H
if Previous h already point Hash-DB Entry: e

& e �= H
then Decrement “No.of DMC Entry” of e
if “No.of DMC Entry” of e = 0
then Delete e from Hash DB

& Clear DMC entry which point e
end

Figure 6: Mass Mail Caching Algorithm

489

Industry Track PaperIndustry/Government Track Paper

1000

10000

100000

1 10 100 1000N
um

be
r

of
 S

im
ila

r
E

-m
ai

l M
es

sa
ge

Ranking

Figure 7: Distribution of Similar E-mail

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100 120 140 160 180 200

Number of Inserted SPAM

Recall rate
Missed spam

Figure 8: Recall Rate

Note that the results might include both unsolicited and
solicited mass e-mails. However removing solicited mass e-
mail, e.g., mail-based magazines, by using a short white list
is not difficult, and we aren’t concerned about the confusion
between solicited and unsolicited mails (See Section 5.2 for
details). A short white list seems to work well with density
based analysis.

Since counting the recall rate directly from actual e-mail
traffic has privacy issues and is difficult, we have performed
preparatory experimentation. From the traffic mentioned
above, the first 10 million e-mails are extracted and merged
with pseudo spam e-mail. The preparatory experimentation
measures the recall rate over this pseudo spam e-mail (See
Figure 8).

100 seeds of spam are prepared and each seed is randomly
inserted so that the total number of each pseudo spam be-
comes some specific number (10, 20, 30, 40, 60, 80, 100 and
200 are used in the experimentation). In Figure 8, hatched
squares show the number of totally missed seed. Of all the
seed inserted ones inserted more than 30 times were found.
Half of the seed inserted 10 times were found, but half were
missed.

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100 120 140

U
sa

ge
 (

%
)

Time spent from start (hour)

DMC usage
Hash Database Usage

Figure 9: Cache Usage Log

SVM NB C4.5 K-nn bsfilter SpamA.

Total CPU time (sec) 756 79 254 10881 65 225
Learning time (sec) 744 22 244 NA 33 NA
Memory Size (MB) 191 70 58 81 327 192
Recall (%) 81 47 77 81 73 83
Precision (%) 99 97 95 100 98 22
Speed Ratio 1009 106 379 14528 87 300

Table 2: Comparison with Other Methods

In the experiment, some occurrences of seed are missed
and the recall rate (ratio of found and inserted spam) shows
a different line (white squares in Figure 8). When each seed
is inserted 100 times, 98% of inserted spam e-mail are found.
Since this number means that when a spammer sends 1000
commercial e-mails per day, 98% of them are detected. Since
this seems to force a change in the current spammer’s busi-
ness model, we tentatively use 98% as the recall rate of our
methods. In practical sense, both the precision and recall
rate of our method are good enough.

Figure 9 shows the cache consumption. The continuous
line shows the hash data base consumption (percentage) and
the cross shows the direct-mapped cache consumption. Af-
ter the direct-mapped cache is filled, the consumption of the
hash data base becomes stable and is about 90%.

4.2 Performance Comparison
In the experiment shown in Table 1, our method could

handle 13,361 mails per second (1.25 billion e-mails per day).
None of the known spam filter seems to be able to handle
over thousand mails per second. Additionally, most of them
requires a supervisor for learning. Thus, as far as we know,
our method is the only solution for our purpose, i.e, filtering
out spam e-mail from regular mail traffic passing through
our server without human maintenance.

Table 2 shows some comparisons. It shows the perfor-
mance of the known method on our mail data. First 10,000
mails are used for this experimentation. To setup learning,
spam e-mails, detected by our method, are marked as spam
and others are marked as non-spam.

Support Vector Machine (SVM [11]), Naive Bayes (NB
[5]), C4.5 [12], and K-Nearest Neighbor (K-nn [8]) are re-

490

Industry Track PaperIndustry/Government Track Paper

SVM NB C4.5 K-nn

2/3 Train Recall (%) 81 47 77 81
1/3 Test Precision (%) 99 97 95 100

10 fold Recall (%) 100 88 100 100
CV Precision (%) 100 96 100 100

Test = Recall (%) 100 85 99 100
Train Precision (%) 100 97 99 100

Table 3: Testing methods

sults of well-known machine learning methods. Weka [19]
implementation are used in the experiments. Since these
are general supervised learning methods, the contents of
our hash data base are used as the attributes. The first
two thirds of the input are used for training. The latter one
third of them are used for testing.

bsfilter [2] is an implementation of the method proposed
in [14]. It is a slightly modified version so that it can handle
Japanese. SpamA shows the results of SpamAssassin [16].
Although it does not require learning, the lack of Japanese
handling results in its low precision. Since these two are
spam filters, original e-mails are directly input into the sys-
tem.

None of them have enough processing speed and none of
them shows a recall rate of over 90%. Among them, SVM
has the most desirable results (81% recall & 99% precision
within a reasonable amount of CPU time). However, the
difference between SVM’s results and that of our method
is significant. Also, the difference between supervised learn-
ing and unsupervised learning is significant, from a practical
point of view. The most apparent difference is the CPU time
required. SVM could only handle about 13.2 (= 10,000/756)
e-mails per second. In other words, the required CPU time
of SVM is 1009 times more than that of our method. There-
fore SVM is too slow for our purposes.

5. DISCUSSION

5.1 Accuracy & Evaluation Method
The results shown in Table 2 are worse than reported else-

where [4, 14, 16]. Since most of them do not fully specify the
experimental conditions and the data set used is different,
we can not firmly conclude the reason for this difference.
But experimental results shown in Table 3 show the diffi-
culty in evaluating the performance of spam filters. Table 3
shows the same performance measures shown in Table 2.
But it also shows the accuracy measured by 10 fold cross
validation and accuracy on the training test.

Although cross validation is one of the standard ways to
evaluate the accuracy of learning systems, it is not an ap-
propriate way to evaluate the accuracy of spam filters. As
shown in the Table, the accuracies measured by cross valida-
tion are similar to that on training data. Since a spammer
sends a lot of the same spam, random sampling of cross val-
idation tends to make an equivalent training set and test
set. Since most of the spam in the test set is contained in
the training set, accuracy measured by the cross validation
looks like the accuracy on the training set and is misleading.

However, in real situations, a spammer tends to create
a new type of spam so that it can avoid spam filters. To
emulate such situations, the first two thirds of data are used

Correct

Miss

75

80

85

90

95

100

0 50 100 150 200 250 300

R
ec

al
l R

at
e(

%
)

Mail Sequence

Figure 10: Effect of Topic Change

for training and the latter one third is used for testing. With
this sufficient amount of data it becomes a better method
for evaluation. Table 2 shows such results.

To check what happens in a real life situation, we per-
formed different experimentations. In the experimentations,
we used e-mails in a public mailing list to emulate spam
e-mails, and we used e-mails in a different mailing list to
emulate ordinary e-mails. The use of a public mailing list
enables us to undertake careful analysis of e-mail contents,
which we are not able to perform on e-mail traffic discussed
in the previous section.

The first mailing list has 528 e-mails (group S). The con-
tent of the e-mails relates to the Unix operating system. The
second mailing list has 1583 e-mails (group H). The content
of these e-mails relates to Chinese language. bsfilter was
trained with all the e-mails in group H and half of the e-
mails in group S. Half of the e-mails in group S was used to
check the change of recall rate. Figure 10 shows the results.

As clearly shown in Figure 10, bsfilter miss-classified most
of the e-mails after some period, in addition the recall rate
decreased. After careful analysis of the e-mails in group S,
it is revealed that a new topic starts in that period. In the
mailing list, the participants first discuss the general char-
acteristics of Unix. Then, from that period onward, they
start a new discussion about how to compile some specific
program on Unix. This change in topic disturbs the analysis
of bsfilter and reduces its recall rate.

Although a new type of spam, which introduces a new
product, seems to make a similar disturbance, it appears
that cross validation cannot evaluate these phenomenon.

Note that the recall rate of bsfilter can be increased by
on-line learning (See Figure 11). By reconstructing its data
base when it encounters new e-mail, we can increase the
recall rate of bsfilter. This emulates a more realistic situa-
tion of using a spam filter for personal use. However, cross
validation cannot handle this situation.

491

Industry Track PaperIndustry/Government Track Paper

Correct

Miss

75

80

85

90

95

100

0 50 100 150 200 250 300

R
ec

al
l R

at
e(

%
)

Mail Sequence

Figure 11: Effect of On-line Learning

5.2 Maintenance & Privacy
When we use supervised learning methods like [4, 14], such

methods require maintenance tasks. As shown in Figure
10, the accuracy of such methods decreases without main-
tenance. From the maintenance point of view, our unsuper-
vised learning method has the following two advantages:

• Supervised learning methods require a positive and
negative example of spam. This implies that someone
has to check the contents of the mail manually and
therefore has the potential to violate privacy. Since
our method does not require any supervisors, user’s
privacy is inherently protected.

• Although our method requires a white list, maintain-
ing such a white list is relatively easy, especially when
comparing it to maintaining a black list. The use of
open mail relay servers and faking of the header in-
formation are common techniques of spammers. This
makes the compilation of a black list difficult. None
of the solicited mass e-mails are reported to fake its
header information. The designing of a user interface
which enables the user to declare solicited mass mail
senders seems to be straight forward. Thus we choose
a method which works with a white list.

6. CONCLUSION
This paper reports on a new spam detection method which

analyzes document space density to detect spam. The char-
acteristics of this method are:

• High processing speed:
With a single small desk-top computer, e.g., Pentium
4, 2.4 GHz with 825M bytes of memory, this method
can handle over 13,000 e-mails per second (1.25 billion
e-mails per day). Though known methods tend to re-
quire too much computing resources, the performance
of this proposed method is good enough to support a
large mail server cluster of an ISP using a small PC.

The direct-mapped cache method contributes to the
efficient analysis of document space density.

• Maintenance free:
Most of the traditional spam filtering methods requires
maintenance of its data-base so that it can handle
new types of spam. An unsupervised learning engine
used in the proposed method can automatically update
its data-base, and does not require such maintenance.
Updating the data-base requires a lot of maintenance
work for ISP operators. Therefore, traditional spam
filtering methods are not adequate enough to be used
for e-mail servers that have a large number of cus-
tomers.

• 98% recall rate and 100% precision:
The results of our unsupervised learning engine might
include both unsolicited and solicited mass e-mails.
Since removing solicited mass e-mail, e.g., a mail-based
magazine, with a short white list, is not difficult, ISP
operators are able to use this method as perfect detec-
tor in a practical sense. Experimental results, which
used over 50 million actual pieces of e-mail traffic prove
this accuracy.

• Privacy protection:
Hash based text representation and an unsupervised
learning framework inherently protect user’s privacy.

At the time of writing this paper, we finished the research
phase and started to develop a system for daily services to
protect users. However, to fully utilize the proposed spam
detection method to protect customers, the enrichment of
anti spam and related law is necessary. The legal issues of
mass e-mail are beyond the scope of our study.

7. REFERENCES
[1] F. Adachi, T. Washio, H. Motoda, and H. Hanafusa.

Development and Application of Generic Search
method Based on Transformation Invariance (In
Japanese). In Proc. of the 10th Annual Conference of
Japanese Society for Artificial Intelligence, pages
1E3–04, 2003.

[2] bsfilter.
(http://www.h2.dion.ne.jp/nabeken/bsfilter/), 2003.

[3] Distributed checksum clearinghouse
(http://www.rhyolite.com/anti-spam/dcc/), 2003.

[4] P. Graham. Better bayesian filtering. In Proc. of the
2003 Spam Conference, 2003.

[5] G. H. John and P. Langley. Estimating continuous
distributions in Bayesian classifiers. In Proceedings of
the Eleventh Conference on Uncertainty in Artificial
Intelligence, pages 338–345. Morgan Kaufmann
Publishers, San Mateo, 1995.

[6] D. E. Knuth. The Art of Computer Programming,
Vol.3 – Sorting and Searching. Addison-Wesley, 1973.

[7] G. Lindberg. RFC2505: Anti-Spam Recommendations
for SMTP MTAs. IETF, 1999.

[8] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[9] R. Mitkov, editor. The Oxford Handbook of
Computational Linguistics. Oxford Press, March 2003.

[10] N. Nishikawa, T. Hosakowa, Y. Mori, K. Yoshida, and
H. Tsuji. Memory-based architecture for distributed

492

Industry Track PaperIndustry/Government Track Paper

www caching proxy. In Proc. of World Wide Web
Conference 98, pages 205–214, 1998.

[11] J. Platt. Fast training of support vector machines
using sequential minimal optimization, pages 185–208.
MIT Press, 1999.

[12] R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers, San Mateo, CA., 1993.

[13] T. Raita and J. Teuhola. Predictive text compression
by hashing. In Proc. of ACM Conference on
Information Retrieval, New Orleans, 1987.

[14] G. Robinson. Spam detection (http://radio.weblogs
.com/0101454/stories/2002/09/16/spamdetection.html),
2002.

[15] G. Salton and M. J. McGill. Introduction to modern
information retrieval. McGraw Hill, 1983.

[16] SpamAssassin (http://useast.spamassassin.org/),
2003.

[17] A. S. Tanenbaum. Structured Computer Organization
(4th Edition). Prentice-Hall, 1999.

[18] T. Wada, S. Saito, Y. Izumi, and T. Uehara. Contents
based Mass-Mail Filtering (In Japanese). In IPSJ SIG
Technical Report, pages 55–60, 2003.

[19] Weka 3: Machine learning software in java
(http://www.cs.waikato.ac.nz/ml/weka/), 2003.

493

Industry Track PaperIndustry/Government Track Paper

